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2 Total energy, wave function, and electron density matrix in LCAO formulation

Denisty functional total energy Etot considered in this document is

Etot = Ekin + Ena + E(NL)
ec +Eδee +EXC + ESCC, (1)

that is given as the sum of the kinetic energy Ekin, the electrostatic energy, Ena, Eδee, ESCC, the exchange-
correlation energy EXC, and the nonlocal pseudopotential energy E(NL)

ec . The detail of each energy component
will be described in Section 4. The OpenMX is based on the the norm-conserving pseudopotential formulation
and its valence and semi-core wave functions are expressed by the Linear Combination of Atomic Orbitals
(LCAO) with the expansion coefficients c:

ψ(k)
σµ (r) =

1√
N

N∑
n

exp (iRn · k)
∑

iα

cσµ,iα(r− ti −Rn), (2)

where Rn is the Bravais lattice vector, and φ is a pseudo atomic orbital as the basis function. The indexes i, σ,
α are for site, spin, and atomic orbital, respectively. Then the electron density n for spin σ is

nσ(r) =

N∑
n

∑

iα,jβ

ρ
(Rn)
σ,iα,jβφiα(r− ti)φjβ(r− ti −Rn), (3)

where the density matrix ρ(Rn)
σ,iα,jβ is defined as

ρ
(Rn)
σ,iα,jβ =

1

VB

∫

B
dk

occ∑
µ

exp (iRn · k) c∗σµ,iαcσµ,jβ. (4)

The integration is performed over the 1st Brillouin zone whose volume is VB. The summation is taken over the
occupied states.
∗Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku-ku, Nagoya, 468-8511, Japan, email: shiihara@toyota-ti.ac.jp
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3 Basics for stress formulation

In the stress formulation of the LCAO scheme, the basis function under strain does not change its shape∗ but
its center moves according to the strain tensor ε acting on the supercell:

φiα(r− ti −Rn)→ φiα (r− (I + ε) (ti −Rn)) , (5)

where I is the identical matrix and the cell strain matrix is

ε =



εxx εxy εxz
εyx εyy εyz
εzx εyz εzz


 . (6)

The cell matrix is supposed to be symmetric. Under the cell strain, an arbitrary position vector in the cell moves
as follows:

r→ (I + ε) · r. (7)

An arbitrary position vector in the reciprocal space also moves like

k→ (I + ε)−1 · k. (8)

Equations (7) and (8) show that the exponential terms in Eqs (2) and (4) are invariant under strain. Equation (7)
also shows that the cell integration under stain is given as

∫

Ω
dr→ det(I + ε)

∫

Ω
dr (9)

The atomic-scale stress tensor acting on a supercell is defined as the first-order expansion coefficient of the total
energy Etot(ε) about a point ε = 0:

Eεtot = Etot +
∑
γη

Aγηεγη + higher order, (10)

and
σγη = lim

ε→0

∂Eεtot

∂εγη
= Aγη. (11)

Hereafter an operation like Eq. (11) will be expressed by ∂f/∂εγη (f is an arbitrary function or functional)
and we will call it the strain derivative of f . According to Eq. (11), it is easily seen that the strain derivative
satisfies the product rule:

(fg)ε =

(
f +

∑
γη

Fγηεγη + · · ·
)(

g +
∑
γη

Gγηεγη + · · ·
)

(12)

∂

∂εγη
fg = fGγη + gFγη = f

∂g

∂εγη
+ g

∂f

∂εγη
(13)

In addition, Eq. (7) shows that an arbitrary real-space vector under strain satisfies

∂lι
∂εγη

= διηlη. (14)

This relationship is often utilized to transform the strain derivative to the deviation with respect to the atomic
coordinate, corresponding to a force acting on each atom:

∂

∂εγη
=

∂tη

∂εγη

∂

∂tη
= tγ

∂

∂tη
(15)

In the following section, we will derive the strain derivatives for energy components in Eq. (1) using the
operation in Eq. (11).
∗This is not the case for plane-wave methods.
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4 Strain derivative of each energy components

4.1 Kinetic energy component

The kinetic energy term is

Ekin =
∑
σ

N∑
n

∑

iα,jβ

ρ
(Rn)
σ,iα,jβ

〈
φiα(r− ti)

∣∣∣T̂
∣∣∣φjβ(r− ti −Rn)

〉
. (16)

Then the strain derivative of the kinetic term is derived as

∂Ekin

∂εγη
=

∂

∂εγη


∑

σ

N∑
n

∑

iα,jβ

ρ
(Rn)
σ,iα,jβ

〈
φiα(r− ti)

∣∣∣T̂
∣∣∣φjβ(r− ti −Rn)

〉



=
∑
σ

N∑
n

∑

iα,jβ

∂ρ
(Rn)
σ,iα,jβ

∂εγη

〈
φiα(r− ti)

∣∣∣T̂
∣∣∣φjβ(r− ti −Rn)

〉

+
∑
σ

N∑
n

∑

iα,jβ

ρ
(Rn)
σ,iα,jβ

∂

∂εγη

〈
φiα(r− ti)

∣∣∣T̂
∣∣∣φjβ(r− ti −Rn)

〉
.

(17)

The above expression involves the strain derivative of the electron density matrix. In the following subsections,
similar terms to this will be seen in the strain derivative for each energy component. They will be treated at the
end of this section and summed up to a term called overlap stress. About the terms in the third line, using the
following coordinate transformation r− tj −Rn → r , we have

〈
φiα(r− ti)

∣∣∣T̂
∣∣∣φjβ(r− ti −Rn)

〉

→
〈
φiα(r)

∣∣∣T̂
∣∣∣φjβ(r + ti − tj −Rn)

〉

=
〈
φiα(r)

∣∣∣T̂
∣∣∣φjβ(r− tji,n)

〉
,

(18)

where only tji,n is affected by the cell strain:

tji,n → (I + ε) · tji,n. (19)

Using the chain rule shown in Eq. (15), we can transform the strain derivative to the derivative with respect to
the atomic position:

∂

∂εγη

〈
φiα(r)

∣∣∣T̂
∣∣∣φjβ(r− tji,n)

〉

=

(
∂

∂tγji,n

〈
φiα(r)

∣∣∣T̂
∣∣∣φjβ(r− tji,n)

〉)
tηji,n.

(20)

After the coordinate transformation,

∂

∂εγη

〈
φiα(r)

∣∣∣T̂
∣∣∣φjβ(r− tji,n)

〉

=

(
∂

∂tγji,n

〈
φiα(r)

∣∣∣T̂
∣∣∣φjβ(r− tj −Rn)

〉)
tηij,n.

(21)

Inserting Eq. (21) to Eq. (17), we can obtain the strain derivative of the kinetic energy term.
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4.2 Energy component for Ena

Ena is a part of the electrostatic energy:

Ena =

∫

Ω
n(r)

∑

I

Vna,I(r− tI)dr

=
∑
σ

N∑
n

∑

iα,jβ

ρ
(Rn)
σ,iα,jβ

∑

I

〈φiα(r− tI) |Vna,I(r− tI)|φjβ(r− ti −Rn)〉,
(22)

where the potential Vna,I is the sum of the local pseudopotential Vcore,I of atom I and the potential V (a)
I (r− tI)

coming from the atomic electron density ρ(a)
I (r− tI). Its strain derivative is

∂Ena

∂εγη
=
∑
σ

N∑
n

∑

iα,jβ

∂ρ
(Rn)
σ,iα,jβ

∂εγη

∑

I

〈φiα(r− tI) |Vna,I(r− tI)|φjβ(r− ti −Rn)〉

+
∑
σ

N∑
n

∑

iα,jβ

ρ
(Rn)
σ,iα,jβ

∂

∂εγη

∑

I

〈φiα(r− tI) |Vna,I(r− tI)|φjβ(r− ti −Rn)〉.
(23)

As already explained, the term including the strain derivative of the electron density matrix is included in the
overlap stress. The second term in the right hand side of Eq. (23) can be expanded using a projector expansion:

∂

∂εγη

∑

I

〈φiα(r− tI) |Vna,I(r− tI)|φjβ(r− ti −Rn)〉

=
∂

∂εγη

∑

I

Lmax∑

lm

Nrad∑

ζ

〈
φiα(r− tI)

∣∣ Vna,IR̄lζYlm
〉 1

clζ

〈
Vna,IR̄lζYlm

∣∣ φjβ(r− ti −Rn)
〉
.

(24)

Contracting the indexes (lmζ) to a single index λ and using
〈
φiα(r− tI −Rn)

∣∣ Vna,IR̄lζYlm
〉

= Siαn,Iλ, we
have

∂

∂εγη

∑

I

〈φiα(r− tI) |Vna,I(r− tI)|φjβ(r− ti −Rn)〉

=
∂

∂εγη

∑

Iλ

Siα0,Iλ
1

clζ
Sjβn,Iλ

=
∑

Iλ

1

clζ

(
∂Siα0,Iλ

∂εγη
Sjβn,Iλ + Siα0,Iλ

∂Sjβn,Iλ
∂εγη

)

=
∑

Iλ

1

clζ

(
∂Siα0,Iλ

∂τγiI
τηiISjβn,Iλ + Siα0,Iλ

∂Sjβn,Iλ
∂τγjI,n

τηjI,n

)

(25)

In Eq. (25), we employed the chain rule as in Eq. (20). After some modification,

∑

Iλ

1

clζ

(
∂Siα0,Iλ

∂τγiI
τηiISjβn,Iλ + Siα0,Iλ

∂Sjβn,Iλ
∂τγjI,n

τηjI,n

)

=
∑

Iλ

1

clζ

(
∂Siα0,Iλ

∂τγi
τηiISjβn,Iλ + Siα0,Iλ

∂Sjβn,Iλ
∂τγj,n

τηjI,n

)
.

(26)

Inserting Eq. (26) to Eq. (23), we can obtain the strain derivative of Ena.
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4.3 Non-local pseudopotential energy component

The nonlocal pseudopotential energy based on the norm-conserving pseudopotential technique is

E(NL)
ec =

∑
σ

N∑
n

∑

iα,jβ

ρ
(Rn)
σ,iα,jβ

∑

I

〈
φiα(r− ti)

∣∣∣V̂NL,I(r− tI)
∣∣∣φjβ(r− tj −Rn)

〉
. (27)

The strain derivative of this energy component can be obtained in a similar procedure taken in that of Ena:

∂E(NL)
ec

∂εγη
=
∑
σ

N∑
n

∑

iα,jβ

∂ρ
(Rn)
σ,iα,jβ

∂εγη

∑

I

〈
φiα(r− ti)

∣∣∣V̂NL,I(r− tI)
∣∣∣φjβ(r− tj −Rn)

〉

+
∑
σ

N∑
n

∑

iα,jβ

ρ
(Rn)
σ,iα,jβ

∂

∂εγη

∑

I

〈
φiα(r− ti)

∣∣∣V̂NL,I(r− tI)
∣∣∣φjβ(r− tj −Rn)

〉 (28)

The Kleinman-Bylander separated form is used to express the second term in the righthand side:

∂

∂εγη

∑

I

〈
φiα(r− ti)

∣∣∣V̂NL,I(r− tI)
∣∣∣φjβ(r− tj −Rn)

〉

=
∂

∂εγη

∑

Il

〈φiα(r− ti) | ϕIl〉 vKB,Il 〈ϕIl | φjβ(r− tj −Rn)〉
(29)

Since this expression has a similar form to Eq. (24), its strain derivative can be obtained as done in Subsection
4.2. Using 〈φiα(r− ti −Rn) | ϕIl〉 = Siα,Il, we have

∂

∂εγη

∑

Il

〈φiα(r− ti) | ϕIl〉 vKB,Il 〈ϕIl | φjβ(r− tj −Rn)〉

=
∂

∂εγη

∑

Il

vKB,IlSiα0,IlSjβn,Il

=
∂

∂εγη

∑

Il

vKB,Il

(
∂Siα0,Il

∂εγη
Sjβn,Il + Siα0,Il

∂Sjβn,Il
∂εγη

)

=
∑

Il

vKB,Il

(
∂Siα0,Il

∂tγiI
tηiISjβn,Il + Siα0,Il

∂Sjβn,Il
∂tγjI,n

tηjI,n

)
.

(30)

Some simple modification on the derivative with respect to the atomic coordinate leads to

∑

Il

vKB,Il

(
∂Siα0,Il

∂tγiI
tηiISjβn,Il + Siα0,Il

∂Sjβn,Il
∂tγjI,n

tηjI,n

)

=
∑

Il

vKB,Il

(
∂Siα0,Il

∂tγi
tηiISjβn,Il + Siα0,Il

∂Sjβn,Il
∂tγj,n

tηjI,n

)
.

(31)

Inserting Eq. (31) to Eq. (28), we can obtain the strain derivative of E(NL)
ec .

4.4 Electrostatic energy component

The electron-electron Coulomb energy is

Eδee =
1

2

∫

Ω
δn(r)δVHdr. (32)
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This energy component represents the electrostatic interaction between difference charge δn given by

δn(r) = n(r)−
∑

I

n
(a)
I (r− tI), (33)

where n(a)
I is an atomic charge density evaluated by a confinement atomic calculations associated with the

site i. δVH is the electrostatic potential coming from δn. Considering Eq. (13), we have the following strain
derivative of this electrostatic energy:

∂Eδee

∂εγη
= δγη

∫

Ω
δn(r)δVHdr +

1

2

∫

Ω

∂δn(r)

∂εγη
δVHdr +

1

2

∫

Ω
δn(r)

∂δVH

∂εγη
dr (34)

Note that the first term of the right-hand side is a strain derivative of the volume term shown in Eq. (9). Here,
we expand the second term:

1

2

∫

Ω

∂δn(r)

∂εγη
δVHdr =

1

2

∫

Ω
δVH

∂

∂εγη

(
n(r)−

∑

I

n
(a)
I (r− tI)

)
dr

=
1

2

∫

Ω
δVH

(
∂n(r)

∂εγη
−
∑

I

∂

∂εγη
n

(a)
I (r− tI)

)
dr

=
1

2

∫

Ω
δVH

(
∂n(r)

∂εγη
−
∑

I

∇γn(a)
I (r− tI)(r

η − tηI )
)

dr,

(35)

where we used the following equation,

∂n
(a)
I (r− tI)/∂εγη = ∇γn(a)

I (r− tI)(r
η − tηI ). (36)

In Eq. (35), we need the strain derivative of the electron density:

∂n(r)

∂εγη
=

∂

∂εγη

∑
σ

N∑
n

∑

iα,jβ

ρ
(Rn)
σ,iα,jβφiα(r− ti)φjβ(r− ti −Rn)

=
∑
σ

N∑
n

∑

iα,jβ


∂ρ

(Rn)
σ,iα,jβ

∂εγη
φiα (r− ti)φjβ(r− ti −Rn)

+ρ
(Rn)
σ,iα,jβ

∂φiα(r− ti)

∂εγη
φjβ(r− ti −Rn)

+ρ
(Rn)
σ,iα,jβφiα(r− ti)

∂φjβ(r− ti −Rn)

∂εγη

)

(37)

The strain derivatives of the PAO are

∂φiα(r− ti)

∂εγη
= ∇γφiα(r− ti)(r

η − tηi ), (38)

and
∂φjβ(r− tj −Rn)

∂εγη
= ∇γφjβ(r− tj −Rn)(rη − tηj −Rηn). (39)

Substituting Eqs. (38) and (39) for Eq. (37), we have

∂n(r)

∂εγη
=
∑
σ

N∑
n

∑

iα,jβ


∂ρ

(Rn)
σ,iα,jβ

∂εγη
φiα (r− ti)φjβ(r− ti −Rn)

+ρ
(Rn)
σ,iα,jβ∇γφiα(r− ti)(r

η − tηi )φjβ(r− ti −Rn)

+ρ
(Rn)
σ,iα,jβφiα(r− ti) ∇γφjβ(r− tj −Rn)(rη − tηj −Rηn)

)
.

(40)

6



Furthermore, substituting Eq. (40) for Eq. (35) , the second term in the right-hand side of Eq. (34) turns to be

1

2

∫

Ω

∂δn(r)

∂εγη
δVHdr =

1

2

∫

Ω
δVH

∑
σ

N∑
n

∑

iα,jβ


∂ρ

(Rn)
σ,iα,jβ

∂εγη
φiα(r− ti)φjβ(r− ti −Rn)

+ρ
(Rn)
σ,iα,jβ {∇γφiα(r− ti)(r

η − tηi )}φjβ(r− tj −Rn)

+ρ
(Rn)
σ,iα,jβφiα(r− ti)

{
∇γφjβ(r− tj −Rn)(rη − tηj −Rηn)

}]
dr

−1

2

∫

Ω
δVH

{∑

I

∇γn(a)
I (r− tI)(r

η − tηI )
}

dr.

(41)

We finally consider the third term in the right-hand side Eq. (34), which includes the strain derivative of the
Hartree potential. To calculate this term, we employ the Fourier expansion of the Hartree potential:

∂δVH(r)

∂εγη
=
∑

G

{
4π

|G|2
∂δn(G)

∂εγη
exp (iG · r) + 4πδn(G)

∂

∂εγη

1

|G|2 exp (iG · r)

}

=

∫

Ω

1

|r− r′|
∂δn(r′)
∂εγη

dr′ + 8π
∑

G

δn(G)
GγGη

|G|2 exp (iG · r).

(42)

As already mentioned, the exponential term is invariant under strain. To obtain Eq. (42), we used the following
expression

∂

∂εγη

(
1

|G|2
)

=
2GγGη

|G|4 . (43)

Then, the strain derivative of the electrostatic energy is obtained as follows:

∂Eδee

∂εγη
= δγη

∫

Ω
δn(r)δVHdr +

1

2

∫

Ω

∂δn(r)

∂εγη
δVHdr

+
1

2

{∫

Ω
δn(r)

∫

Ω

1

|r− r′|
∂δn(r′)
∂εγη

dr′+8π
∑

G

δn(G)
GγGη

|G|2 exp (iG · r)dr

}

= δγη

∫

Ω
δn(r)δVHdr +

∫

Ω

∂δn(r)

∂εγη
δVHdr

+4π

∫

Ω
δn(r)

∑

G

δn(G)
GγGη

|G|2 exp (iG · r)dr.

(44)

To obtain the above expression, we used the following relationship:
∫

Ω
δn(r)

∫

Ω

1

|r− r′|
∂δn(r′)
∂εγη

dr′dr =

∫

Ω

∂δn(r′)
∂εγη

∫

Ω

δn(r′)
|r− r′|dr′dr

=

∫

Ω

∂δn(r)

∂εγη
δVHdr.

(45)

4.5 Exchange correlation energy component

Here we consider the GGA exchange correlation energy given by

EGGA
XC =

∫

Ω
fXC(n↑, n↓, npcc,∇n↑,∇n↓,∇npcc)dr, (46)
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where npcc is a charge density used for a partial core correction (PCC). Note that the strain derivaive of the
LDA energy appears as a part of that of GGA, which is

∂EGGA
XC

∂εγη
=

∂

∂εγη

∫

Ω
fXC(n↑, n↓, npcc,∇n↑,∇n↓,∇npcc)dr

= δγηE
GGA
XC +

∫

Ω

{∑
σ

(
∂fXC

∂nσ

∂nσ
∂εγη

+
∂fXC

∂ |∇nσ|
∇nσ
|∇nσ| ·

∂∇nσ
∂εγη

)

+
∂fXC

∂npcc

∂npcc

∂εγη
+

∂fXC

∂
∣∣∇npcc

∣∣
∇npcc∣∣∇npcc

∣∣ ·
∂∇npcc

∂εγη

}
dr.

(47)

The above equation is derived by using the expression, ∂ |∇n| /∂∇n = ∇n/ |∇n| ∂nσ/∂εγη. The strain
derivative of the LDA energy will be obtained if the terms including the gradient of charges are removed from
Eq. (47). The strain derivative of the valence electron density of spin σ has been already shown in Eq. (37).
Since npcc is a localized function whose center locates at an atomic core position, the strain derivative of npcc
can be calculated as in Eq. (36):

∂npcc(r− tI)/∂εγη = ∇γnpcc(r− tI)(r
η − tηI ) (48)

The gradient of nσ in the LCAO formulation is

∇nσ = ∇
N∑
n

∑

iα,jβ

ρ
(Rn)
σ,iα,jβφiα(r− ti)φjβ(r− ti −Rn)

=
N∑
n

∑

iα,jβ

ρ
(Rn)
σ,iα,jβ (∇φiα(r− ti)φjβ(r− ti −Rn) + φiα(r− ti)∇φjβ(r− ti −Rn))

(49)

In Eq. (47), the strain derivative of the gradient of electron density, ∇n, appears. First we consider the expan-
sion of ∇n with respect to strain ε,∇εnε. † The expansion of the gradient operater is

∇ε =

[
∂xη
∂xεγ

]
. (50)

Using
[
∂xη
∂xεγ

]
=
[
∂xεγ
∂xη

]−1
and rε = [I + ε] · r, we have

∂xεγ
∂xη

= δγη + εγη. (51)

The strain is infinitesimal, hence [δγη + εγη]
−1 → [δγη − εγη]. Then, Eq. (50) turns to be

∇ε = [δγη − εγη]∇. (52)

Eventually,∇εnε is obtained as follows:

∇εnε = [δγη − εγη]∇
(
n+

∑
γη

∂n

∂εγη
εγη + · · ·

)
. (53)

The above equation gives the strain derivative of∇n,

∂∇n
∂εγη

= ∇ ∂n

∂εγη
+∇ηneγ , (54)

†The stress formulation related to this term is different than that actually impremented in the OpenMX code. The formulation used
in the OpenMX is described in Appendix A.
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where eγ indicates the unit vector of γ direction. The above expression is understandable if we consider the
following relationship:

[εγη]∇n =




εxx∇xn εxy∇yn εxz∇zn
εyx∇xn εyy∇yn εyz∇zn
εzx∇xn εzy∇yn εzz∇zn


 . (55)

Inserting Eq.(54) to a part of Eq. (49), we have
∫

Ω

∂fXC

∂ |∇n|
∇n
|∇n| ·

∂∇n
∂εγη

dr =

∫

Ω

∂fXC

∂ |∇n|
∇n
|∇n| ·

(
∇ ∂n

∂εγη
+∇ηneγ

)
dr

=

∫

Ω

∂fXC

∂ |∇n|
∇n
|∇n| · ∇

∂n

∂εγη
+

∂fXC

∂ |∇n|
∇γn∇ηn
|∇n| dr

=

∫

Ω

∂fXC

∂ |∇n|
∇2n

|∇n|
∂n

∂εγη
+

∂fXC

∂ |∇n|
∇γn∇ηn
|∇n| dr.

(56)

Using Eqs. (40), (48), and (56), the strain derivative of EGGA
XC shown in Eq. (47) can be calculated.

4.6 Energy component for screened ion-ion potential

The energy coming from screened ion-ion interaction is a part of the electrostatic energy,

ESCC =
∑

I 6=J

[
1

2

ZI − ZJ
|tI − tJ | −

∫

Ω
n

(a)
I (r− tI)V

(a)
H,J(r− tJ)

]
. (57)

Now we calculate the strain derivative of this energy component,

∂ESCC
∂εγη

=
∑

I 6=J

[
1

2

∂

∂εγη

ZI − ZJ
|tI − tJ | −

∂

∂εγη

∫

Ω
n

(a)
I (r− tI)V

(a)
H,J(r− tJ)dr

]
. (58)

The first term in the right-hand side is easily obtained using the chain rule, Eq. (14), as follows:

1

2

∂

∂εγη

ZI − ZJ
|tI − tJ | =

1

2
ZIZJ

(
tγI − tγJ

) (
tηI − tηJ

)

|tI − tJ |3
. (59)

To develop the second term in the right-hand side of Eq. (58) , the coordinate transformation is used as in Eq.
(18). Then we have

∂

∂εγη

∫

Ω
n

(a)
I (r− tI)V

(a)
H,J(r− tJ)dr =

∫

Ω′

∂n
(a)
I (r′ − tI + tJ)

∂εγη
V

(a)
H,J(r′)dr′

=

∫

Ω′

{
−∇γn(a)

I (r′ − tI + tJ)
(
tηI − tηJ

)}
V

(a)
H,J(r′)dr′

= − (tηI − tηJ
) ∫

Ω
∇γn(a)

I (r− tI)V
(a)
H,J(r− tJ)dr′.

(60)

Finally we obtain the strain derivative of the energy component as follows:

∂ESCC
∂εγη

=
∑

I 6=J

[
1

2
ZIZJ

(
tγI − tγJ

) (
tηI − tηJ

)

|tI − tJ |3

− (tηI − tηJ
) ∫

Ω
∇γn(a)

I (r− tI)V
(a)
H,J(r− tJ)dr

]
.

(61)
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4.7 Overlap component

Summing up the strain derivatives of the density matrix already appeared, we have

∑
σ

N∑
n

∑

iα,jβ

∂ρ
(Rn)
σ,iα,jβ

∂εγη

〈
φiα(r− ti)

∣∣∣T̂
∣∣∣φjβ(r− ti −Rn)

〉

+
∑
σ

N∑
n

∑

iα,jβ

∂ρ
(Rn)
σ,iα,jβ

∂εγη
〈φiα(r− ti) |Vna,I(r− tI)|φjβ(r− ti −Rn)〉

+
∑
σ

N∑
n

∑

iα,jβ

∂ρ
(Rn)
σ,iα,jβ

∂εγη

〈
φiα(r− ti)

∣∣∣V̂NL,I(r− tI)
∣∣∣φjβ(r− ti −Rn)

〉

+
∑
σ

N∑
n

∑

iα,jβ

∂ρ
(Rn)
σ,iα,jβ

∂εγη
〈φiα(r− ti) |δVH|φjβ(r− ti −Rn)〉

+
∑
σ

N∑
n

∑

iα,jβ

∂ρ
(Rn)
σ,iα,jβ

∂εγη
〈φiα(r− ti) |VXC,σ|φjβ(r− ti −Rn)〉

=
∑
σ

N∑
n

∑

iα,jβ

∂ρ
(Rn)
σ,iα,jβ

∂εγη

〈
φiα(r− ti)

∣∣∣Ĥσ

∣∣∣φjβ(r− ti −Rn)
〉
.

(62)

The density matrix is defined in Eq. (4). Its strain derivative is

∂ρ
(Rn)
σ,iα,jβ

∂εγη
=

∂

∂εγη

1

VB

∫

B
dk

occ∑
µ

exp (iRn · k) c
(k)∗
σµ,iαc

(k)
σµ,jβ

=
1

VB

∫

B
dk

occ∑
µ

exp (iRn · k)


∂c

(k)∗
σµ,iα

∂εγη
c

(k)
σµ,jβ + c

(k)∗
σµ,iα

∂c
(k)
σµ,jβ

∂εγη


.

(63)

To derive this equation, we used the expressions, 1/VB → 1/det(I + ε), dk → det(I − ε)dk, and Rn · k →
Rn · k. Substituting Eq. (63) for Eq. (62), we obtain

∑
σ

N∑
n

∑

iα,jβ

∂ρ
(Rn)
σ,iα,jβ

∂εγη

〈
φiα(r− ti)

∣∣∣Ĥσ

∣∣∣φjβ(r− ti −Rn)
〉

=
1

VB

∫

B
dk

{∑
σ

Tr

(
Θ
(
EF − ε(k)

σ

) ∂c
(k)†
σ

∂εγη
H(k)
σ c(k)

σ

)
+ Tr

(
Θ
(
EF − ε(k)

σ

)
c(k)†
σ H(k)

σ

∂c
(k)
σ

∂εγη

)}

=
1

VB

∫

B
dk

{∑
σ

Tr

(
Θ
(
EF − ε(k)

σ

)(∂c
(k)†
σ

∂εγη
S(k)c(k)

σ + c(k)†
σ S(k)∂c

(k)
σ

∂εγη

)
ε(k)
σ

)}
.

(64)

In the above equation, Θ is a diagonal matrix consisting of Heaviside step functions, and ε(k)
σ indicates the

eigenenergy of the wave function. The strain derivative of the orthonormalization condition ( c
(k)†
σ S(k)c

(k)
σ = I

) is
∂c

(k)†
σ

∂εγη
S(k)c(k)

σ + c(k)†
σ S(k)∂c

(k)
σ

∂εγη
= −c(k)†

σ

∂S(k)

∂εγη
c(k)
σ . (65)
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Inserting Eq. (65) to Eq. (64), we obtain

1

VB

∫

B
dk

{∑
σ

Tr

(
Θ
(
EF − ε(k)

σ

)(∂c
(k)†
σ

∂εγη
S(k)c(k)

σ + c(k)†
σ S(k)∂c

(k)
σ

∂εγη

)
ε(k)
σ

)}

= −
∑
σ

N∑
n

∑

iα,jβ

E
(Rn)
σ,iα,jβ

∂S
(Rn)
iα,jβ

∂εγη

= −
∑
σ

N∑
n

∑

iα,jβ

E
(Rn)
σ,iα,jβ

∂S
(Rn)
iα,jβ

∂tγij,n
tηij,n

= −
∑
σ

N∑
n

∑

iα,jβ

E
(Rn)
σ,iα,jβ

∂S
(Rn)
iα,jβ

∂tγi
tηij,n,

(66)

where

E
(Rn)
σ,iα,jβ =

1

VB

∫

B
dk

occ∑
µ

exp (iRn · k) ε(k)
σ c

(k)∗
σµ,iαc

(k)
σµ,jβ. (67)

This is the overlap stress appearing because of the incompleteness of basis functions.

A Appendix: OpenMX stress implementation of GGA

This section describes how the strain derivative term related to the gradient of electron density in Eq. (47)
is calculated in the OpenMX code. To treat this term accurately, it is necessary to formulate the derivative
term according to the discretization manner employed in this software; the GGA exchange-correlation energy
functional is integrated by using the trapezoidal rule on a real-space FFT grid:

EXC = ∆V
∑
σ

∑
p

fXC
(
nσp ,
∣∣∇nσp

∣∣ , npcc
σ

)
, (68)

where ∆V is the volume per a single grid point. The function or coordinate with the index p indicates that on
the grid point p ≡ (i, j, h), i.e., nσp ≡ nσ(rp), ∇nσp ≡ ∇nσ(rp), and rp ≡ (xi, yj , zh). The strain derivative of
Eq.(68) is obtained as

∂EXC

∂εγη
= δγηEXC + ∆V

∑
σ

∑
p

∂fXC

∂nσp

∂nσp
∂εγη

+ ∆V
∑
σ

∑
p

∂fXC

∂
∣∣∇nσp

∣∣
∂
∣∣∇nσp

∣∣
∂∇nσp

· ∂∇n
σ
p

∂εγη
+ [pcc terms] , (69)

where [pcc terms] means terms related to the pseudo-core correction.
The problem is how to correctly calculate ∂∇nσp/∂εγη in the third term of the right-hand side of Eq. (69).

In the OpenMX, the gradient of a function is calculated by using a finite difference along the lattice vector: a,
b, and c. Hence, the finite difference should be transformed into that along the xyz coordinates to obtain the
gradient. First, we consider the total derivative of the density∇nσp ,

dnσ = dx
∂nσ

∂x
+ dy

∂nσ

∂y
+ dz

∂nσ

∂z
(70)

Considering a difference in the lattice vector a, differences in xyz directions are

dx = ∆axdλ, dy = ∆aydλ, dz = ∆azdλ. (71)

where ∆ax, ∆ay, and ∆az are determined according to the grid spacing in the axis a. Then we can express the
finite difference of the density nσp along the axis a using those along xyz axes:

dnσ(λ) = ∆axdλ
∂nσ

∂x
+ ∆aydλ

∂nσ

∂y
+ ∆azdλ

∂nσ

∂z
. (72)
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Figure A-1: Finite difference calculation in OpenMX

Generalizing Eq. (72) for the cases of the vectors b and c, we have




∆ax ∆ay ∆az
∆bx ∆by ∆bz
∆cx ∆cy ∆cz






∂nσ

∂x
∂nσ

∂y
∂nσ

∂z


 =




∂nσ(a)
∂λ

∂nσ(b)
∂λ

∂nσ(c)
∂λ


 . (73)

In the OpenMX, the finite difference is calculated as illustrated in Fig. A-1. Then,

2∆axdλ
∂nσ

∂x
+ 2∆aydλ

∂nσ

∂y
+ 2∆aydλ

∂nσ

∂y
= ∆nσ(a). (74)

Note that, in Eq. (74), the gradients in xyz directions are the ones at the point ai in Fig. A-1. A generalized
form of Eq. (74) with dλ = 1 is




∆ax ∆ay ∆az
∆bx ∆by ∆bz
∆cx ∆cy ∆cz






∂nσ

∂x
∂nσ

∂y
∂nσ

∂z


 =

1

2




∆nσ(a)
∆nσ(b)
∆nσ(c)


 , (75)

Using the matrix

F =




∆ax ∆ay ∆az
∆bx ∆by ∆bz
∆cx ∆cy ∆cz


 , (76)

we can rewrite Eq. (75) as

F∇nσ =
1

2
∆nσ. (77)

This is the relationship between the finite differences along xyz direction and lattice vectors. Now we consider
the strain derivative of Eq. (77):

∂F

∂εγη
∇nσ + F

∂∇nσ
∂εγη

=
1

2

∂∆nσ

∂εγη
. (78)

Then we obtain
∂∇nσ
∂εγη

= G
1

2

∂∆nσ

∂εγη
−G

∂F

∂εγη
∇nσ, (79)
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where F−1 = G. Firstly, the second term is considered. The lattice vector a under strain becomes



∆aεx
∆aεy
∆aεz


 =




1 + εxx εxy εxz
εyx 1 + εyy εyz
εzx εzy 1 + εzz






∆ax
∆ay
∆az


 . (80)

There are similar expressions for the cases of b and c. Then some examples for the strain derivatives of the
matrix F can be described as follows:

∂F

∂εxx
=




∆ax 0 0
∆bx 0 0
∆cx 0 0


 (81)

∂F

∂εxy
=




∆ay 0 0
∆by 0 0
∆cy 0 0


 (82)

∂F

∂εxz
=




∆az 0 0
∆bz 0 0
∆cz 0 0


 (83)

From the above equations, it is easily seen that ∂F/∂εγη have



∆aη
∆bη
∆cη


 (84)

in γ th column and other elements are zero in 3x3 matrix. Then, the second term of the right-hand side of Eq.
(79) related to xy strain becomes ‡

G
∂F

∂εxy
∇nσ =




G11 G12 G13

G11 G22 G23

G31 G32 G33






a12 0 0
a22 0 0
a32 0 0






∂nσ

∂x1
∂nσ

∂x2
∂nσ

∂x3




=




3∑
I=1

G1IaI2 0 0

3∑
I=1

G2IaI2 0 0

3∑
I=1

G3IaI2 0 0







∂nσ

∂x1
∂nσ

∂x2
∂nσ

∂x3




=




∂nσ

∂x1

3∑
I=1

G1IaI2

∂nσ

∂x2

3∑
I=1

G2IaI2

∂nσ

∂x3

3∑
I=1

G3IaI2



.

(85)

‡Hereafter, the coordinates xyz are expressed by x1x2x3, and



∆ax ∆ay ∆az
∆bx ∆by ∆bz
∆cx ∆cy ∆cz


→




a11 a12 a13

a21 a22 a23

a31 a32 a33


 .
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Generalizing the result, we have

G
∂F

∂εγη
∇nσ =




∂nσ

∂xγ

3∑
i=1

G1iaiη

∂nσ

∂xγ

3∑
i=1

G2iaiη

∂nσ

∂xγ

3∑
i=1

G3iaiη



. (86)

Since G is the inverse matrix of Eq. (76), Eq. (86) becomes




∂nσ

∂xγ

3∑
i=1

G1iδ1η

∂nσ

∂xγ

3∑
i=1

G2iδ2η

∂nσ

∂xγ

3∑
i=1

G3iδ3η



. (87)

Returning to Eq. (79), we see that the first term of the right-hand side can be described as follows:

1

2
G
∂∆nσ

∂εγη
=

1

2




G11 G12 G13

G21 G22 G23

G31 G32 G33


 ∂

∂εγη




nσ(i+ 1, j, h)− nσ(i− 1, j, h)
nσ(i, j + 1, h)− nσ(i, j − 1, h)
nσ(i, j, h+ 1)− nσ(i, j, h− 1)




=
1

2

∂

∂εγη




3∑
I=1

G1In
σ
I (+)−

3∑
I=1

G1In
σ
I (−)

3∑
I=1

G2In
σ
I (+)−

3∑
I=1

G1In
σ
I (−)

3∑
I=1

G3In
σ
I (+)−

3∑
I=1

G1In
σ
I (−)



,

(88)

where nσI (±) means nσi±1,j,h if I = 1, nσi,j±1,h if I = 2, and nσi,j,h±1 if I = 3. Note that the operator ∂/∂εγη
in Eq. (88) only affects to nσ. Back to Eq. (69), we see that the term related to Eq. (88) becomes

∆V
∑
σ

∑
p

Aσp ·
(

1

2
G
∂∆nσ

∂εγη

)

=
∆V

2

∑
σ

∑

k

∑

i,j,h

Aσijh,k
∂

∂εγη

(
3∑

I=1

GkIn
σ
I (+)−GkInσI (−)

)

=
∆V

2

∑
σ

∑

k

∑

i,j,h

AσijkGkI
∂

∂εγη
nσI (+)− ∆V

2

∑
σ

∑

k

∑

i,j,k

AσijkGkI
∂

∂εγη
nσI (−)

=
∆V

2

∑
σ

∑

k

∑

i,j,h




Aσi−1,j,k,hGk1
∂

∂εγη
nσi,j,h −Aσi+1,j,k,hGk1

∂
∂εγη

nσi,j,h
Aσi,j−1,k,hGk2

∂
∂εγη

nσi,j,h −Aσi,j+1,k,hGk2
∂

∂εγη
nσi,j,h

Aσi,j,k−1,hGk3
∂

∂εγη
nσi,j,h −Aσi,j,k+1,hGk3

∂
∂εγη

nσi,j,h




(89)

Considering
1

2
[∆Aσk(a)Gk1 + ∆Aσk(b)Gk2 + ∆Aσk(c)Gk3] =

∂Aσk
∂xk

, (90)

we have

−∆V
∑
σ

∑
p

∇ ·Aσp
∂nσp
∂εγη

. (91)
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In Eq. (69), the term related to Eq. (86) becomes

∆V
∑
σ

∑
p

Aσp ·
(
−G

∂F

∂εγη
∇nσp

)

= −∆V
∑
σ

∑
p

Aσp

[
Aσp,1

∂nσp
∂xγ

δ1η +Aσp,2
∂nσp
∂xγ

δ2η +Aσp,3
∂nσp
∂xγ

δ3η

] (92)

Inserting Eqs. (91) and (92) to Eq. (69), we eventually obtain

∆V
∑
σ

∑
p

Aσp ·
∂∇nσp
∂εγη

= −∆V
∑
σ

∑
p

∇ ·Aσp
∂nσp
∂εγη

−
∑
σ

∑
p

∂nσp
∂εγη

Aσp,η,

(93)

where Aσp,η = Aσp,1
∂nσp
∂xγ

δ1η +Aσp,2
∂nσp
∂xγ

δ2η +Aσp,3
∂nσp
∂xγ

δ3η.
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