第一原理電子状態計算の基礎と応用

密度汎関数理論に基づく第一原理電子状態計算の基礎と応用に関 して講義を行う。固体における物質の凝集機構と電子状態から議 論を始め、現実物質の物理・化学的性質の包括的な理解の枠組み を与える密度汎関数理論と線形応答理論の基本概念及びその定式 化を解説する。また、密度汎関数理論の応用として、構造の安定 性、反応座標解析、磁気特性、光との相互作用、内殻励起現象等 に関して応用事例と共に議論する。第一原理計算プログラム OpenMXのチュートリアルも実施する。

講義スケジュール: 2021年8月開講 8回×80分 9月 3日(金) 第1回 13:00-14:20, 第2回 16:10-17:10 14:35-15:55, 実習 9月10日(金) 第3回 13:00-14:20, 第4回 14:35-15:55, 実習 16:10-17:10 9月17日(金) 第5回 13:00-14:20, 16:10-17:10 第6回 14:35-15:55, 実習 13:00-14:20. 9月24日(金) 第7回 第8回 14:35-15:55, 実習 16:10-17:00

講義の進め方

質問はZoomのチャットやslackに書き込んで下さい。途 中で質問時間を設け、そこで議論します。

講義中にランダムにこちらから質問することがあります。 分からない場合には分からないと仰って頂いて結構です。

式変形を詳細に追うことはしませんが、計算ノートを公 開しておりますので、そちらをご確認下さい。

毎回16:10-17:10の時間、OpenMXのhands-on講習会を実施します。ご自身のPC上で第一原理計算の習得することが出来ます。

時間外でも質問があればslackに書き込んで下さい。

想定する受講者

講義及びSlackの質問への回答を担当

尾崎泰助(東京大学物性研究所)

Slackの質問への回答を担当

河村光晶(東京大学物性研究所) 福田将大(東京大学物性研究所)

参考文献 #|

Electronic Structure: Basic Theory and Practical Methods, Richard M. Martin, Cambridge University Press. 日本語訳あり

固体 - 構造と物性、金森順次郎、米沢富美子、川村清、寺倉清之、 岩波書店.

多体問題特論 - 第一原理からの多電子問題、高田康民、朝倉書店. 量子化学入門(上・下)、米澤貞次郎等、化学同人. 遷移金属のバンド理論、小口多美夫、内田老鶴圃.

Density-Functional Theory of Atoms and Molecules, Robert G. <u>Parr, Weitao Yang, Oxford Univ</u>ersity Press USA. 日本語訳あり

Bonding and Structure of Molecules and Solids, David G. Pettifor, Oxford University Press. 日本語訳あり

参考文献 #2

Quantum Theory of Many-Particle Systems, Alexander L. Fetter, John Dirk Walecka, Dover Publications. 日本語訳あり

Solid State Physics, Giuseppe Grosso, Giuseppe Pastori Parravicini, Academic Press. 日本語訳あり

Band Theory and Electronic Properties of Solids, John Singleton, Oxford Master Series in Physics. 日本語訳あり

Magnetism in Condensed Matter, Stephen Blundell, Oxford Master Series in Physics.

Optical Properties of Solids, Mark Fox, Oxford Master Series in Physic.

WEB

https://t-ozaki.issp.u-tokyo.ac.jp/mpcoms2021_lectures.html

Slack

https://w1630025098-wjz691248.slack.com/

お願い

■ Zoomのマイクと画像はオフにして下さい。 発言される際にマイクをオンにして下さい。

 ■ Zoomのお名前はニックネームでなく、氏名 に変更して下さい。

講義

● 物質科学における計算科学 ● 密度汎関数理論 ● ビリアル定理の導出 水素分子の結合 ● 簡単な分子の計算事例 ● 遷移金属の凝集機構: Friedelモデル ● 軌道分解されたビリアル定理 ● 遷移金属表面における凝集

物質科学における計算の役割

- ▶ 楕円のサイズが現 状の研究状況を反 映
- > 今後は物質探索に おける計算の大き な役割を期待

材料の 分析評価

> 振動分光、磁気共鳴 幾何構造、安定性

理論的考察に 基づく機能創出

バンド構造のエンジニアリング スピン流、トポロジカル絶縁体

実験に先立つ新規結晶構造予測, 機能から構造へ(逆問題)

物質探索

第一原理電子状態計算の目指すところ

- Schrödinger(Dirac)方程式を現実に即した系に対して可能な限り精密に解いて分子や固体の化学的・物理的性質を理論的に解明すること(第一原理計算)。
- 2. 望みの性質を持つ物質を実験に先立って、 理論的に原子レベルから設計すること。
- 3. 設計した物質の合成方法やプロセス制御方 法を理論的に提案すること。

分子・固体の支配方程式は何か?

シュレディンガー方程式
$$i\hbar \frac{\partial}{\partial t} \Psi = \hat{H} \Psi$$

運動エネルギー 外部ポテンシャル 電子間相互作用 $\hat{H} = -\frac{1}{2} \sum_{i}^{N_{e}} \left(\frac{\partial^{2}}{\partial x_{i}^{2}} + \frac{\partial^{2}}{\partial y_{i}^{2}} + \frac{\partial^{2}}{\partial z_{i}^{2}} \right) + \sum_{i}^{N_{e}} \sum_{k}^{N_{e}} \frac{Z_{k}}{|\mathbf{R}_{k} - \mathbf{r}_{i}|} + \sum_{i < j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$

Erwin Schrodinger (1887-1961)

波動関数が有する性質 (1) 不可弁別性 (2) 反対称性(パウリの排他律) (3) 規格直交性(確率解釈)

第一原理計算手法の分類

波動関数理論	計算の複雑さ	特徴
e.g., 配置間相互作用法 (CI) $\Psi = \sum_{I=1} C_I \left \phi_{I1}(x_1) \phi_{I2}(x_2) \cdots \phi_{IN_e}(x_{N_e}) \right $) 0(e^N)	高精度 基底・励起状態 高コスト
密度汎関数理論 $E[ho] ho(\mathbf{r}) = \sum_{i=1}^{N_{e}} f(\varepsilon_{i}) \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r})$) 0(N³)	中精度 基底状態 低コスト
量子モンテカルロ法 $E = \frac{\left\langle \Psi_{\alpha} \middle \hat{H} \middle \Psi_{\alpha} \right\rangle}{\left\langle \Psi_{\alpha} \middle \Psi_{\alpha} \right\rangle}$	0(N ³ ~)	高精度 基底状態 高コスト 高並列性
多体グリーン関数法 $G = G_0 + G_0 \Delta G_0 + G_0 \Delta G_0 \Delta G_0 + \cdots$	0(N ³ ~)	中精度 基底・励起状態 高コスト

第一原理計算で用いられる原子単位

	a.u.	Expression	SI unit
Mass of electron	1	m	9.109384 × 10 ⁻³¹ kg
Elementary charge	1	е	1.602177 × 10 ⁻¹⁹ C
Reduced Plank's constant	1	$\hbar = h / 2\pi$	1.054572×10 ⁻³⁴ J ∙ s
Length	1	$a_0 = 4\pi\varepsilon_0\hbar^2 / (me^2)$	$5.291772 \times 10^{-11} \text{ m}$
Energy	1	$E_{\rm h} = m e^4 / \left(4\pi \varepsilon_0 \hbar\right)^2$	4.359745 × 10 ⁻¹⁸ J
Magnetic flux density	1	$\hbar/(ea_0^2)$	$2.350518 \times 10^5 \mathrm{T}$
Velocity	1	$\alpha c = \left(e^2 / (4\pi \varepsilon_0 \hbar c) \right) c$	$2.187691 \times 10^{6} \text{ m} \cdot \text{s}^{-1}$
Coulomb force constant	1	$k_e = 1/4\pi\varepsilon_0$	8.987552 × 10 ⁹ kg • m ³ • s ⁻² • C ⁻²
Magnetic dipole moment	1	$e\hbar / m = 2e\hbar / (2m) = 2\mu_B$	$18.5480202 \times 10^{-24} \text{ J T}^{-1}$

密度汎関数理論(DFT)とは

● 全エネルギーは密度の汎関数として表現可能である。
 Hohenberg-Kohn の定理

$$E[\rho] = \int dr^{3}\rho(\mathbf{r})v_{\text{ext}}(\mathbf{r}) + T[\rho] + J[\rho] + E_{\text{xc}}[\rho]$$

● 量子力学的多体効果を交換相関エネルギーに含める ことで、多体問題を見かけ上、一体問題として定式 化できる。 Kohn-Sham Ansatz (仮説)

$$\hat{H}_{\rm KS}\phi_i = \varepsilon_i\phi_i \qquad \hat{H}_{\rm KS} = -\frac{1}{2}\nabla^2 + v_{\rm eff}$$
$$v_{\rm eff}(\mathbf{r}) = v_{\rm ext}(\mathbf{r}) + v_{\rm Hartree}(\mathbf{r}) + \frac{\delta E_{xc}}{\delta\rho(\mathbf{r})}$$

水素分子における結合

H₂は二つのプロトンと二つの電子からなる最も単 純な分子である。

水素分子の結合メカニズムをビリアル定理を用い て理解する。

●ビリアル定理の導出
 ●水素分子のDFT計算

Virial定理 #I

N個の電子とM個の原子核で構成される系を断熱近似の下で考える。

$$\hat{H} = \hat{T} + \hat{U} \qquad \hat{T} = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_{i}^{2} \right)$$

$$\hat{U} = \sum_{i>j}^{N} \frac{1}{\left| \mathbf{r}_{i} - \mathbf{r}_{j} \right|} + \sum_{n>n'}^{M} \frac{Z_{n} Z_{n'}}{\left| \mathbf{R}_{n} - \mathbf{R}_{n'} \right|} + \sum_{i,n}^{N,M} \frac{1}{\left| \mathbf{r}_{i} - \mathbf{R}_{n'} \right|}$$

変数と基底状態の波動関数のスケーリングを考える。

$$\mathbf{r}_{i} = s^{-1} \left(s \mathbf{r}_{i} \right) = s^{-1} \left(\overline{\mathbf{r}}_{i} \right)$$
$$\Psi_{s} = s^{3N/2} \Psi \left(\overline{\mathbf{r}}_{1}, \overline{\mathbf{r}}_{2}, \cdots, \overline{\mathbf{r}}_{N} \right)$$

系のエネルギーはスケーリング係数sを含んだ形で書ける。 $E(s) = s^2 T(s) + s U(s)$

Per-Olov Loewdin, J. Mol. Spect. 3, 46 (1959).

Virial定理 #2

全エネルギーはs=Iで最小化されているので、次式が得られる。

$$\frac{\partial E}{\partial s} = 2s T(s) + U(s) + \sum_{n,p} \left(s^2 \frac{\partial T(s)}{\partial \overline{R}_{np}} + s \frac{\partial U(s)}{\partial \overline{R}_{np}} \right) R_{np} = 0$$

微分を取った後にs=lを代入し、0に等しいとする。

原子に働く力が次式で与えられることに注意して、

$$F_{np} = -\frac{\partial E}{\partial R_{np}} = s^{-1} \frac{\partial T}{\partial \overline{R}_{np}} + \frac{\partial U}{\partial \overline{R}_{np}}$$

次のvirial定理が得られる。

$$2T + U = \sum_{n} \mathbf{R}_{n} \cdot \mathbf{F}_{n}$$

Virial定理 #3

切断したバルク(最適化なし)において表面付近で原子間力 はゼロでない。

$$\sum_{\{d\mathbf{S}\}} \mathbf{R}_n \cdot \mathbf{F}_n \simeq \mathbf{R} \cdot \left(\sum_{\{d\mathbf{S}\}} \mathbf{F}_n\right) = \mathbf{R} \cdot (pd\mathbf{S})$$

Gaussの定理を用いて、面積分を体積積分に直すと、

$$\sum_{\{\mathbf{S}\}} \mathbf{R}_n \cdot \mathbf{F}_n \simeq p \int_{S} \mathbf{R} \cdot d\mathbf{S} = p \int (\nabla \cdot \mathbf{R}) dr^3 = 3 p V$$

ゆえにビリアル定理はバルクに対して次式で与えられる。

$$2T + U = 3pV$$

Virial定理による凝集エネルギーの解析

平衡状態と孤立原子状態では原子 に働く力はゼロである。それゆえ、 ビリアル定理から次式が得られる。

 $\overline{2T_{eq} + U_{eq}} = 0$ $2T_{at} + U_{at} = 0$

全エネルギーは運動エネルギーTとポ テンシャルエネルギーUの和である。

 $E_{eq} = T_{eq} + U_{eq} = -T_{eq} = 1/2U_{eq}$

凝集エネルギーは次式で 定義される。 $E_{at} = T_{at} + U_{at} = -T_{at} = 1/2U_{at}$ $E_{coh} = -(E_{eq} - E_{at}) = T_{eq} - T_{at} = \frac{1}{2}(U_{at} - U_{eq})$

 $|E_{coh}|$ は正であるべき。ゆえに次の一般的な帰結が得られる。

$$T_{eq} > T_{at}$$
, $U_{eq} < U_{at}$

密度汎関数理論によるH₂分子の解析

H₂ は二つのプロトンと二つの電子からなる最も単純な分子である。 ビリアル定理によれば結合の利得エネルギーは機構(a)で理解できる はずである。

DFT計算で確認できるだろうか?

	運動エネルギー	ポテンシャルコ	ニネルギー
(a)	不安定化	安定化	
(市市化	てやらん	

(c) 安定化	安定化
エネルギー	ビリアル定理

女儿儿

 $E(R_{\infty}) = T(R_{\infty}) + V(R_{\infty}) \qquad 2T(R_{\infty}) + V(R_{\infty}) = 0$ $E(R_{eq}) = T(R_{eq}) + V(R_{eq}) \qquad 2T(R_{eq}) + V(R_{eq}) = 0$

全エネルギーとビリアル定理 の4つの式から凝集エネル ギーD_{eo}は次式となる。

$$D_{\rm eq} = -\left(E\left(R_{\rm eq}\right) - E\left(R_{\infty}\right)\right)$$
$$= T\left(R_{\rm eq}\right) - T\left(R_{\infty}\right)$$

凝集エネルギーD_{eq}が 正であるためには、 運動エネルギーが増 加する必要である。

Hっ分子のエネルギー曲線

H₂分子の凝集エネルギー #|

全エネルギー 状態 (Hartree) -1.16581 H_2 H(非スピン分極) -0.45781H (スピン分極) -0.49914Spin polarization energy 0.04133 凝集エネルギー = 2 H - H₂ $= 2 \times (-0.49914) - (-1.16581)$ = 0.1675 (Hartree)

実験値

4.75 (eV)

計算値は実験値を0.19eVほど過小評価しているが、 一致は良いと言える。

H,分子の凝集エネルギー #2

運動エネルギー

ポテンシャルエネルギー

 $\frac{\Delta E_{kin} = 1.11582 - 0.98309}{\Delta E_{pot} = -2.28163 - (-1.98139) = -0.30024 \text{ (Hartree)} = -8.170 \text{ (eV)}}{\Delta E_{tot} = -4.56 \text{ (eV)}}$

凝集におけるエネルギー利得は確かにビリアル定理に従っている。

厳密に言えば、この議論は一部、修正されるべきである。Kohn-Sham法では相関エネルギー中に運動エネルギー の一部が含まれているためである。ただしその補正は小さく、上記の結論を変えるものではない。

H₂におけるKohn-Sham軌道の局在化

KS軌道は収縮し、結 合領域に局在する。 この結果、運動エネ ルギーが増加する。

結合領域では二つの 核ポテンシャルの重 ね合わせにより、よ り深い外部ポテン シャルが形成され、 その結果、ポテン シャルエネルギーが 大きく低下する。

⇒ エネルギー利得 を生み出す。

Red: 密度の増加 Blue: 密度の減少

確かに結合領域に 電子密度の増加が 見られる。

電子がポテンシャ ルの深い領域に局 在することでエネ ルギーが低下する。

差電子密度 = (H₂分子の電子密度) - (二つの水素原子の電子密度の重ね合わせ)

原子間距離が大きな領域での磁気分極

HOMOとLUMOの固有エネルギー

結合長の増大に伴い、 HOMO-LUMOギャップ が小さくなる。

5Å程度でほぼゼロ になる。

H₂分子の状態密度(r=3Å)

スピン非分極計算では upとdownスピンの固有 状態は縮退している。

スピン分極計算ではup とdownスピンの状態で 大きなエネルギー分裂 が見られる。2電子は upスピンの状態のみに 占有している。

Note: 化学ポテンシャ ルをゼロに設定。

二つのエネルギーの競合

3Åほど離れたH₂分子において、スピン非分極とスピン分極状態のエネルギーの寄与は以下の様に与えられる。

	非分極	分極	
Ekin	0.8231	0.9634	
E _{pot}	-1.7306	-1.9148	
Etot	-0.9076	-0.9514	• • •
			IN Hartree

分極状態において運動エネルギーの増加はクーロンエネ ルギーと交換相関エネルギーの和であるポテンシャルエ ネルギーによって大きく補償されていることが分かる。

これはなぜ起こるのだろうか?

HOMO とLUMOの分子軌道

平衡ボンド長におけるHOMOとLUMOの等値面図

HOMO

LUMO

LUMOは一つのノードを持っている。したがってLUMOに電子が 占有すれば運動エネルギーが大きくなることが分かる。

結合長が大きい時にスピン分極状態が安定な理由

電子がHOMOからLUMOに昇位する際に運動エネル ギーは増加する。なぜならLUMOは節を一つ持っ ているため。

しかし、昇位した電子はHOMOとは異なる軌道 LUMOを独り占め出来る。HOMOに残った電子も然 り。

したがって電子はお互いに避けあうことが出来 るので、ポテンシャルエネルギーは減少する。

全エネルギーは二つのエネルギーの和なので、 安定性は両者の競合で決まる。およそ2.5Å付 近でその境界値があることを計算は示している。

このメカニズムにより多くの磁気状態が理解で きる。例えば、遷移金属のStoner条件やジグザ ググラフェンナノリボンのエッジ状態など。

	NM	FM
E _{kin}	0.8231	0.9634
E _{pot}	-1.7306	-1.9148
Etot	-0.9076	-0.9514

さらなるエネルギー分解

電子が互いに避けあうことでポテンシャルエネルギーが減少する、という説 明には、電子間距離が増えたことでの電子どうしのクーロン相互作用の減少 のみによるものでしょうか? 電子が互いに避けあうことで各電子にはたらく 原子核引力の遮蔽のような効果が弱まり、原子核引力の増大によるポテン シャルエネルギーの減少もありそうに思えるのですが… こちらの誤解か、存 在しても無視できる程度の変化なのでしょうか?

in Hartree

	非分極	分極	
E _{kin}	0.8291	0.9873	
E _{pot}	-1.7682	-1.9855	エイルキーをさらに分解した結果が左表
E _{xc}	-0.4958	-0.6179	
E _{coulomb}	-1.2724	-1.3676	E _{xc} に加えてE _{na} +E _{n1} の低
$E_{na} + E_{nl}$	-0.6891	-0.7842	下が大きく、原子核と
E _{hart}	-0.7596	-0.7597	の相互作用で利得が生
E _{c-c}	0.1764	0.1764	している。
			r=3.0Åで計算、擬ポテンシャル等の
E _{tot}	-0.9390	-0.9982	ー 訂算来件が異なるため数値 (前のスラ イド中)が異なっていることに注意
tot			

電子密度の比較: 非分極 vs. 分極

良く知られた言及との矛盾について

疑問:しばしば結晶格子やπ共役系では電子が遍歴的になり運動エネルギー が低下することで、安定化すると述べられるがビリアル定理と矛盾するよう に思える。なぜか?

同じことがLoedin論文の脚注に述べられている。

Per-Olov Loewdin, J. Mol. Spect. 3, 46 (1959).の脚注1

¹ Dr. George Hall has kindly pointed out to me that this theorem strongly contradicts the so-called Hellman picture of molecular and solid-state binding (10). According to this picture, which is based on the idea that the fulfilment of the uncertainty principle plays a dominating rôle, the main cause of binding is the *reduction* of the kinetic energy and the better use of the attractive potential which appears when each electron of the atoms involved has the opportunity of spreading out into adjacent atoms, as these approach--unless such a spreading is limited by Pauli's exclusion principle, as in saturated atoms. Unfortunately, this simple and striking picture does not seem to be in agreement with the virial theorem.

ビリアルの関係は定理なので、 $E_{eq} = T_{eq} + U_{eq} = -T_{eq} = 1/2U_{eq}$ 動かしがたい事実である。

解釈としては「運動エネルギーを増加させることで、ポテンシャルエネル ギーを稼ぎ、結果として飛び移り積分を大きくさせている」と考えるのが 妥当だと思われる。

いくつの電子状態の解析事例

電子状態の解析に親しむために、簡単な 分子系のDFT計算を議論しよう。

メタン分子
 ベンゼン分子
 H₂0分子
 H₂0ダイマー

軌道混成と分子の形

sp₃ hybridized orbitals

$$\phi_{1} = \frac{1}{2} \chi_{s} + \frac{\sqrt{3}}{2} \chi_{p_{x}}$$

$$\phi_{2} = \frac{1}{2} \chi_{s} - \frac{1}{2\sqrt{3}} \chi_{p_{x}} + \sqrt{\frac{2}{3}} \chi_{p_{y}}$$

$$\phi_{3} = \frac{1}{2} \chi_{s} - \frac{1}{2\sqrt{3}} \chi_{p_{x}} - \frac{1}{\sqrt{6}} \chi_{p_{y}} + \frac{1}{\sqrt{2}} \chi_{p_{z}}$$

$$\phi_{4} = \frac{1}{2} \chi_{s} - \frac{1}{2\sqrt{3}} \chi_{p_{x}} - \frac{1}{\sqrt{6}} \chi_{p_{y}} - \frac{1}{\sqrt{2}} \chi_{p_{z}}$$

sp₂ hybridized orbitals

$$\phi_{1} = \frac{1}{2} \chi_{s} + \sqrt{\frac{2}{3}} \chi_{p_{x}}$$

$$\phi_{2} = \frac{1}{\sqrt{3}} \chi_{s} - \frac{1}{\sqrt{6}} \chi_{p_{x}} + \frac{1}{\sqrt{2}} \chi_{py}$$

$$\phi_{3} = \frac{1}{\sqrt{3}} \chi_{s} - \frac{1}{\sqrt{6}} \chi_{p_{x}} - \frac{1}{\sqrt{2}} \chi_{py}$$

sp hybridized orbitals

$$\phi_1 = \frac{1}{\sqrt{2}} \chi_s + \frac{1}{\sqrt{2}} \chi_{p_x}$$
$$\phi_2 = \frac{1}{\sqrt{2}} \chi_s - \frac{1}{\sqrt{2}} \chi_{p_x}$$

Methane

Benzene

Acetylene

メタン分子における教科書的な混成描像

メタン分子の状態密度

Bonding states

ベンゼン分子の状態密度

ベンゼン分子の分子軌道

ベンゼン分子の結合

H₂0分子の状態密度と分子軌道

H₂0ダイマーの状態密度と分子軌道

H,0ダイマーにおける水素結合

波動関数の対称性により相互 作用には制約がある。

H₂0ダイマーのHOMOは右分子 のHOMO、左分子のHOMO-2、 LUMO+1から構成。

H₂0ダイマーのHOMO-Iは左分 子のHOMO、HOMO-I、LUMO、右 分子のHOMO-I、HOMO-2、LUMO、 LUMO+Iから構成。

右分子のLUMO、LUMO+1は非局 在化した水素原子付近の波動 関数を介して左分子に強く相 互作用しており、左から右分 子へ電荷移動(0.1e程度)が生 じる。

単元素固体の凝集エネルギー

T7

1 9

1

1

						Та	ble	1 Co	ohesiv	ve er	nergies					F	ro	m ł	S 11	tte	ľS	te	xt	b	00
Li 158. 1.63 37.7	Be 320. 3.32 76.5	Energ state Brewe 3720	gy re from er in Rev.	equin the un:	red to f solid its kcal	orm at 0 1 per	sepa K at mol	rated 1 atm e, rev	neutr 1. The vised	al ate e dat to M	oms in a were lay 4, 1	their supp 1977,	grou plied afte	ind e by r LI	electi Prof. BL re	ronic Leo eport	B 56 51 13	C 1 7 81 7 4 1	11. . 37 70.	N 474 4.92 113	0 2 2 2 4	51. . 60 0.03	F 81. 0.8 19.	0 4 37	Ne 1.92 0.020 0.46
Na 107. 1.113 25.67	Mg 145. 1.51 34.7	• •						— k — el	J/mol //aton al/mo								AI 32 3. 78	7. 4 19 4 .1 1	i 46. 63 06.7	P 331 3.4 79.1	S 2 2 16 6	75. . 85 5.75	CI 135 1.4 32	5. 0 2	Ar 7.74 0.080 1.85
K 90.1 0.934 21.54	Ca 178. 1.84 42.5	Sc 376 3.90 89.9	Ti 46 4.8 11	8. 1 .8	v 512. 5.31 122.4	Cr 39 4.1 94	5. 0 .5	Mn 282. 2.92 67.4	Fe 41 4 : 98	3. 28 3.7	Co 424. 4.39 101.3	Ni 428 4,4 102	8. 1 4 2.4	Cu 336 3.4 80.4	6. 9 4	Zn 130 1.35 31.04	Ga 27 24 64	G 1. 3 31 3 .8 8	e 72. 85 8.8	As 285 2:96 68.2	3 2 2 5	e 37 .46 6.7	Br 118 1.2 28.	3. 2 18	Kr 11.2 0.116 2.68
Rb 82.2 0.852 19.64	Sr 166. 1.72 39.7	Y 422. 4.37 100.8	Zr 60 6 .2 14	3. 2 5 4.2	Nb 730. 7.57 174.5	65 65 68	9 8 1 2 7.2	Tc 661. 6.85 158.	Ru 65 6 15) 50. 74 55.4	Rh 554. 5.75 132.5	Pd 376 3.8 89	6. 19 .8	Ag 284 2.9 68.0	5 0	Cd 112. 1.16 26.73	In 24 21 58	3. 30 52 3 .1 7	n 03. . 14 2.4	Sb 265 2.75 63.4	T 2 2 5	e 11 . 19 0.34	l 107 11 25	7 1 62	Xe 15.9 0.16 3.80
Cs 77.6 0.804 18.54	Ba 183. 1.90 43.7	La 431. 4.47 103.1	Hf 62 6.4	1. 14 8.4	Ta 782. 8.10 186.9	W 859 8.9 209	9. 0 5.2	Re 775. 8.03 185.2	09 78 8. 2 18	s 38. 17 38.4	lr 670. 6.94 160.1	Pt 564 5.8 134	4. 1 4 4.7	Au 368 3.8 87.9	8. (1 (96	Hg 65. 3.67 15.5	TI 18 1.1 43	P 2. 19 38 2 .4 4	b 96. 03 6.78	Bi 210 2.18 50.2	P 1 1 3	o 44. 50 4.5	At		Rn 19.5 0.202 4.66
Fr	Ra 160. 1.66 38.2	Ac 410. 4.25 98.		Ce 413 4.3 99 Th 598	7. 3 12 3 .7 8 8.	r 57 70 5.3 a	Nd 32 3.4 78 U 53	I F 8. 10 .5	Pm Np 456	Sr 20 2 49 Pu 34	n E 16. 1 14 1 0.3 4 J A 17. 2	u 79. 86 2.8 m 64.	Gd 400 4,1 95 Cn 38	0. 4 .5 n 5	Tb 391 4.05 93.4 Bk	D 29 3 7(C	y 94. 04 0.2 f	Ho 302. 3.14 72.3 Es	Er 31 31 75 Fn	7. 29 8 n	Tm 233. 2.42 55.8 Md	YE 15 11 37 No	4. 50 7.1	Lu 428 4.43 102 Lr	.2
				6.2 14	2.9		5 .5 12	5 4 8.	4.73 109.	3 . 83	60 2 3.0 6	. 73 3.	3.9 92	9 .1									的增加		

遷移金属の凝集エネルギー

凝集エネルギー(eV/atom)

結晶構造

 凝集エネルギーの大きさは原子 あたり数eV程度であり、 3d<4d<5dの順番で大きくなる。

	1	2	3	4	5	6	7	8	9	10	11	12
	IA	IIA	IIIA	IVA	VA	VIA	VIIA		VIIIA		IB	IIB
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn
5	37 Rb	³⁸ Sr	³⁹	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	₄₅ Rh	⁴⁶ Pd	47 Ag	48 Cd
6	55 Cs	⁵⁶ Ba	LA	72 Hf	⁷³ Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg
	BCC	FCC	H	СР	B	CC	H	СР		FCC		HCP

- 3d, 4d, 5d遷移金属の凝集エ ネルギーはn_d=4~5付近にピー クを持った放物線状で変化す る。(Cr, Mnの異常性は磁気 構造の特異性に由来する)
- その結晶構造は基本的にd電 子数n_dの増加に伴い、HCP, BCC, HCP, FCCと変化する。

bcc Crのバンド構造と状態密度

Friedelモデル #1

Friedelモデルでは遷移金属の凝集エ ネルギーをd電子のバンドエネルギー のみで近似する。

下記に示す矩形のDOSを仮定してバンド エネルギーを計算する。

凝集エネルギーは次式で与えられる。

$$E_{coh} = \mathcal{E}_d n_d - \sum_n^{occ.} \mathcal{E}_n^{(solid)}$$
$$\sum_n^{occ.} \mathcal{E}_n^{(solid)} = \int^{E_F} D(E) E dE$$

$$E_{coh} = \frac{W}{20} n_d \left(10 - n_d \right)$$

J. Friedel, Theory of Magnetism of Transition Metals (Academic Press, 1967).

Friedelモデル #2

$$E_{coh} = \frac{W}{20} n_d \left(10 - n_d \right)$$

Friedelモデルは実験傾向を良 く再現している。

	W
3d	∼5 eV
4d	~7 eV
5d	∼l0 eV
1×1=1	

バンド幅Wの違いはd軌道 の空間的な拡がりの違い から生じる。

Friedelモデルの拡張 #I

dバンドのPDOSを以下の矩形型でモデル化する。

Friedelモデルの拡張 #2

矩形型PDOSを用いて、二つの構造のエネルギー差は次式で 見積もられる。

 $\Delta E_{ij} = \int^{E_F^{(i)}} D^{(i)}(E) E dE - \int^{E_F^{(j)}} D^{(j)}(E) E dE$

hcpのエネルギーを基準にとる。 $\Delta E_{fcc-hcp} = E^{(fcc)} - E^{(hcp)} \Delta E_{bcc-hcp} = E^{(bcc)} - E^{(hcp)}$

結晶構造(実験)

К 5к bcc 5.225	Ca fcc 5.58	Sc hcp 3.31 5.27	Ti hcp 2.95 4.68	V bcc 3.03	Cr bcc 2.88	Mn cubic complex	Fe bcc 2.87	Co hcp 2.51 4.07	Ni fcc 3.52	Cu fcc 3.61
Rb 5К bcc 5.585	Sr fcc 6.08	Y hcp 3.65 5.73	Zr hcp 3.23 5.15	Nb bcc 3.30	Mo bcc 3.15	Tc hcp 2.74 4.40	Ru hcp 2.71 4.28	Rh fec 3.80	Pd fcc 3.89	Ag fcc 4.09
Сз 5к bcc 6.045	Ba bcc 5.02	La hex. 3.77 ABAC	Hf hcp 3.19 5.05	Ta bcc 3.30	W bcc 3.16	Re hcp 2.76 4.46	Os hcp 2.74 4.32	lr fcc 3.84	Pt fcc 3.92	Au fcc 4.08

ほぼ実験の結晶構造を再現している。

エネルギー利得の機構

ディップ構造があると赤い領域の電 子が、低エネルギーの緑の領域に移 動。 エネルギー利得が生じる。BCC とHCPの安定化機構。 下限付近でDOSが大きくなると電子が赤から緑の領域に移動。上限ではホールが赤から緑の領域に移動。エネルギー利得が生じる。FCCの安定化機構。

3d遷移金属の状態密度

4d遷移金属の状態密度

5d遷移金属の状態密度

磁気構造と相関したFeとCoの安定性

										/			
	1	2	3	4	5	6	7	3	9	10	11	12	
	IA	IIA	IIIA	IVA	VA	VIA	VIIA		VII' A		IB	IIB	
4	19 K	²⁰ Ca	21 Sc	22 Ti	²³ V	²⁴ Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	
5	³⁷ Rb	³⁸ Sr	³⁹ Y	40 Zr	41 Nb	42 M O	43 TC	44 Ru	⁴⁵ Rh	46 Pd	47 Ag	48 Cd	
6	55 Cs	⁵⁶ Ba	LA	72 Hf	⁷³ Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	
	BCC	FCC	H	СР	B	CC	H	СР		FCC			

haa han

FeとCoの構造安定性は磁気構 造と強くカップルしている。 バンドにおけるスピン交換分 裂により、FeはbccをCoはhcp を選択している。フェルミエ ネルギーはDOSのディップに 位 置している。

高圧下でのFeの相転移

高圧下におい て鉄の強磁性 は消失し、非 磁性に転移す る。それと同 時に構造はBCC からHCPに転移 する。どちら の構造におい てもフェルミ レベルはDOSの ディップに位 置する。

ビリアルと全エネルギーの関係

ビリアル (3pV)は全エネルギーと直接的に関係づけることが可能。 簡単化のため、ユニットセルが立方体であるとし、その体積を V (=ゐ)とする。また変数xを次式で定義する。

 $x = \ln(a / a_{eq}) \longrightarrow \ln(V / V_{eq}) = \ln[(a / a_{eq})^3] = 3x$

両辺をVで微分し、pの表式のdx/dVに1/(3V)を代入すれば、次式が得られる。

$$3dx / dV = 1 / V \implies p = -\frac{dE}{dV} = -\frac{dE}{dx}\frac{dx}{dV} = -\frac{dE}{dx}\frac{1}{3V} \implies 3pV = -\frac{dE}{dx}\frac{1}{dx}$$

したがって、次の関係式を得る。 $\int_{0}^{\infty} 3pV dx = E(0) - E(\infty)$ $= -E_{coh}$

軌道分解されたビリアル

A.R. Williams et al., Theory of Alloy Formation (AIME, 1979).

表面近傍の凝集

表面近傍では配位数の低下により、 sp-電子の反発的な性質は緩和される。そのため、d-電子の引力的 相互作用により、格子は収縮する。 sp-電子は真空領域に非局在化し、 電気二重層を作る。

まとめ

物質の構造と凝集機構の理解は物質科学の基本である。 ここではビリアル定理とFriedelモデルを用いて、分子 及び遷移金属固体の凝集機構を議論した。また簡単な 分子の計算事例を通して電子状態の基本的な解析方法 を紹介した。

- 物質科学における計算科学
- 密度汎関数理論
- ビリアル定理の導出
- 水素分子の結合
- 簡単な分子の計算事例
- 遷移金属の凝集機構:Friedelモデル
- 軌道分解されたビリアル定理
- 遷移金属表面における凝集

