Generalization of scattering problem in a quasi: ID
We consider a device connected to the left and right leads as depicted below. (Lead L)
(Lead 2)

$$
\ldots \text { Lead I Device Lead Z ... }
$$

It is assumed that electrons flow steadily from the left to right. Then, the time-dependent Schrödinger equation can be reduced to the following form.

$$
\left(\begin{array}{ccc}
H_{1} & \tau_{1} & 0 \tag{1}\\
\tau_{1}^{+} & H_{D} & \tau_{2}^{+} \\
0 & \tau_{2} & H_{2}
\end{array}\right)\left(\begin{array}{l}
\left|\psi_{1}\right\rangle \\
\left|\psi_{d}\right\rangle \\
\left|\psi_{2}\right\rangle
\end{array}\right)=E\left(\begin{array}{l}
\left|\psi_{1}\right\rangle \\
\left|\psi_{d}\right\rangle \\
\left|\psi_{2}\right\rangle
\end{array}\right)
$$

$H_{1}, H_{d}, H_{2}, \tau_{1}, \tau_{2}$ are all matrices.
At the beginning. we assume that the schrödinger eq. of the isolated lead 1 is solved as

$$
\begin{equation*}
H_{1}\left|\phi_{l n}\right\rangle=E\left|\phi_{1 n}\right\rangle \tag{2}
\end{equation*}
$$

Then, we consider $\phi_{i n}$ as incident wave to the device region. In the steady state, ψ can be expressed by the sum of incident and reflected waves as

$$
|\psi\rangle=\left(\begin{array}{l}
\left|\psi_{1}\right\rangle \tag{3}\\
\left|\psi_{d}\right\rangle \\
\left|\psi_{2}\right\rangle
\end{array}\right)=\left|\phi_{\mid n}\right\rangle+|x\rangle=\left(\begin{array}{l}
\left|\phi_{\mid n}\right\rangle+\left|x_{1}\right\rangle \\
\left|x_{d}\right\rangle \\
\left|x_{2}\right\rangle
\end{array}\right)
$$

By inserting Eq. (3) into Eq. (1), we have

$$
\left(\begin{array}{ccc}
E-H_{1} & -\tau_{1} & 0 \tag{4}\\
-\tau_{1}^{+} & E-H_{d} & -\tau_{2}^{+} \\
0 & -\tau_{2} & E-H_{2}
\end{array}\right)\left(\begin{array}{l}
\left|\phi_{\mid n}\right\rangle+\left|x_{1}\right\rangle \\
\left|x_{d}\right\rangle \\
\left|x_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
E-H_{1} & -\tau_{1} & 0 \tag{5}\\
-\tau_{1}^{+} & E-H_{d} & -\tau_{2}^{+} \\
0 & -\tau_{2} & E-H_{2}
\end{array}\right)\left(\begin{array}{c}
\left|x_{1}\right\rangle \\
\left|x_{d}\right\rangle \\
\left|x_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{c}
-\left(E-H_{1}\right)\left|\phi_{1 n}\right\rangle \\
\tau_{1}^{+} \\
\left|\phi_{1 n}\right\rangle \\
0
\end{array}\right)
$$

From Eq. (2), we see $-\left(E-H_{1}\right)\left|\phi_{i n}\right\rangle=-(E-E)\left|\phi_{i n}\right\rangle=0$.
So. we have

$$
\begin{align*}
& \left(\begin{array}{c}
\left|x_{1}\right\rangle \\
\left|x_{d}\right\rangle \\
\left|x_{2}\right\rangle
\end{array}\right)=G\left(\begin{array}{c}
0 \\
\tau_{1}^{+}\left|\phi_{1 n}\right\rangle \\
0
\end{array}\right) \tag{6}\\
& G=\left(\begin{array}{ccc}
E-H_{1} & -\tau_{1} & 0 \\
-\tau_{1}^{+} & E-H_{d} & -\tau_{2}^{+} \\
0 & -\tau_{2} & E-H_{2}
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
G_{1} & G_{1 d} & G_{12} \\
G_{d 1} & G_{d} & G_{d 2} \\
G_{21} & G_{2 d} & G_{2}
\end{array}\right) \tag{7}
\end{align*}
$$

From the second row in Eq. (6), we obtain

$$
\begin{equation*}
\left|x_{d}\right\rangle=G_{d} \tau_{1}^{+}\left|\phi_{i n}\right\rangle=\left|\psi_{d}\right\rangle \tag{8}
\end{equation*}
$$

From the third row of Eq. (4). we have

$$
\begin{gather*}
\left(E-H_{2}\right)\left|x_{2}\right\rangle=\tau_{2}\left|x_{d}\right\rangle \quad \text { Note } g_{2} \neq G_{2} . \\
\left|x_{2}\right\rangle=\left(E-H_{2}\right)^{-1} \tau_{2}\left|x_{d}\right\rangle=g_{2} \tau_{2}\left|x_{d}\right\rangle \tag{9}
\end{gather*}
$$

Inserting Eq. (8) into Eq. (9). we obtain

$$
\begin{equation*}
\left|x_{2}\right\rangle=g_{2} \tau_{2} G_{d} \tau_{1}^{+}\left|\phi_{1 n}\right\rangle=\left|\psi_{2}\right\rangle \tag{10}
\end{equation*}
$$

From the first row of Ea. (5), we have

$$
\begin{array}{rlr}
\left(E-H_{1}\right)\left|x_{1}\right\rangle & =\tau_{1}\left|x_{d}\right\rangle & g_{1}=\left(E-H H_{2}\right)^{-1} \\
\left|x_{1}\right\rangle & =\left(E-H_{1}\right)^{-1} \tau_{1}\left|x_{d}\right\rangle=g_{1} \tau_{1}\left|x_{d}\right\rangle
\end{array}
$$

Inserting Eq. (8) into Eq. (11) yields the following relation.

$$
\left|x_{1}\right\rangle=g_{1} \tau_{1} G_{d} \tau_{1}^{+}\left|\phi_{1 n}\right\rangle \quad \cdots \cdot(12)
$$

From Eggs. (8), (10) and (12), we obtain

$$
\begin{align*}
& \left|\psi_{1}\right\rangle=\left(1+g_{1} \tau_{1} G_{d} \tau_{1}^{+}\right)\left|\phi_{1 n}\right\rangle \\
& \left|\psi_{d}\right\rangle=G_{d} \tau_{1}^{+}\left|\phi_{1 n}\right\rangle \tag{13}\\
& \left|\psi_{2}\right\rangle=g_{2} \tau_{2} G_{d} \tau_{1}^{+}\left|\phi_{1 n}\right\rangle
\end{align*}
$$

We see that ψ can be expressed by the incident wave $\phi_{\text {in }}$.
If the scattering process occurs independly, we should consider the scattering process from the lead 2 to lead I equally.

Charge density in the device
From Eq. (13), we see that the wave function $\psi_{d, n}^{(1)}\left(=\psi_{d}\right)$ is contributed by the incident wave $\phi_{\text {in }}$ from the lead l.

So, the density operator of the device region can be defined by

$$
\begin{align*}
& \hat{\rho}_{d}^{(1)}=\int_{-\infty}^{\infty} d E \sum_{n} f\left(E, \mu_{1}\right) \delta\left(E-E_{n}\right)\left|\psi_{d, n}^{(1)}\right\rangle\left\langle\psi_{d, n}^{(1)}\right| \\
= & \int_{-\infty}^{\infty} d E f\left(E, \mu_{1}\right) \sum_{n} \delta\left(E-E_{n}\right) G_{d} \tau_{1}^{+}\left|\phi_{1 n}\right\rangle\left\langle\phi_{i n}\right| \tau_{1} G_{d}^{+} \\
= & \int_{-\infty}^{\infty} d E f\left(E, \mu_{1}\right) G_{d} \tau_{1}^{+} \overline{\left[\sum_{n} \delta\left(E-E_{n}\right)\left|\phi_{1 n}\right\rangle\left\langle\phi_{1 n}\right|\right] \tau_{1} G_{d}^{+}} \frac{a_{1}}{2 \pi} \\
= & \int_{-\infty}^{\infty} d E f\left(E, \mu_{1}\right) G_{d} \tau_{1}^{+} \frac{a_{1}}{2 \pi} \tau_{1} G_{d}^{+}
\end{align*}
$$

By defining

$$
\Gamma_{1}=\tau_{1}^{+} a_{1} \tau_{1}
$$

we rewrite Eq. (14) as

$$
\begin{gather*}
\frac{\text { Green's Function }}{(N E G F) .} \tag{16}\\
\ldots(16)
\end{gather*}
$$

The matrix elements of $\hat{\rho}_{d}^{(1)}$ are evaluated by $\langle l| \hat{\rho}_{d}^{(1)}|m\rangle$ where $\mid \ell$ and $|m\rangle$ are basis functions in the device region.
By considering all the contributions from all the leads connected to the device. we obtain

$$
\begin{equation*}
\text { Spin } \hat{\rho}=\frac{2}{2 \pi} \int_{-\infty}^{\infty} d E\left[\sum_{i} f\left(E, u_{i}\right) G_{d} \Gamma_{i} G_{d}^{+}\right] \tag{17}
\end{equation*}
$$

Current through the device
In the non-equilibrium steady state the probability density of the device region is conserved. We evaluate the flux of the probability density using the time-dependent schrödinger equation as

$$
i \hbar \frac{\partial}{\partial t}\left(\begin{array}{l}
\left|\psi_{1}\right\rangle \\
\left|\psi_{d}\right\rangle \\
\left|\psi_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{ccc}
H_{1} & \tau_{1} & 0 \\
\tau_{1}^{+} & H_{d} & \tau_{2}^{+} \\
0 & \tau_{2} & H_{2}
\end{array}\right)\left(\begin{array}{l}
\left|\psi_{1}\right\rangle \\
\left|\psi_{d}\right\rangle \\
\left|\psi_{2}\right\rangle
\end{array}\right)
$$

The time evolution of the integrated probability density is given by

$$
\begin{aligned}
\frac{\partial}{\partial e} & \left\langle\psi_{d} \mid \psi_{d}\right\rangle=\frac{\partial\left\langle\psi_{d}\right|}{\partial t}\left|\psi_{d}\right\rangle+\left\langle\psi_{d}\right| \frac{\partial\left|\psi_{d}\right\rangle}{\partial t} \\
= & \frac{i}{\hbar}\left[\left\langle\psi_{2}\right| \tau_{2}+\left\langle\psi_{d}\right| H_{d}+\left\langle\psi_{1}\right| \tau_{1}\right]\left|\psi_{d}\right\rangle \\
& -\frac{i}{\hbar}\left\langle\psi_{d}\right|\left[\tau_{1}^{+}\left|\psi_{i}\right\rangle+H_{d}\left|\psi_{d}\right\rangle+\tau_{2}^{+}\left|\psi_{2}\right\rangle\right] \\
= & \frac{i}{\hbar}\left[\left(\left\langle\psi_{1}\right| \tau_{1}\left|\psi_{d}\right\rangle-\left\langle\psi_{d}\right| \tau_{1}^{+}\left|\psi_{1}\right\rangle\right)+\left(\left\langle\psi_{2}\right| \tau_{2}\left|\psi_{d}\right\rangle-\left\langle\psi_{d}\right| \tau_{2}^{+}\left|\psi_{2}\right\rangle\right)\right]
\end{aligned}
$$

Each term in Eq. (19) can be regarded as the contribution from each lead h.

This is purely
The flow of $\left.i_{h}=-\frac{i e}{\hbar}\left(\psi_{h}\left|\tau_{h}\right| \psi_{d}\right\rangle-\left\langle\psi_{d}\right| \tau_{h}^{+}\left|\psi_{h}\right\rangle\right)$
current is
opposite to
that of \quad Because of conservation of probability density, electron we have

$$
\begin{equation*}
\bar{L}_{h} i_{h}=0 \tag{21}
\end{equation*}
$$

From the condition of Eq. (21) for the steady state. we obtain

$$
i_{2}=-i_{1} \quad \cdots \cdot(22)
$$

so, the current from the lead 1 to the lead 2 Can be calculated from i_{2}. $\underbrace{\text { lead } 1}_{i 2} \underbrace{\text { device le }}_{\underset{i 2}{ }}$

$$
i_{1 \rightarrow 2}=i_{2}=-\frac{i e}{\hbar}\left(\left\langle\psi_{2}\right| \tau_{2}\left|\psi_{d}\right\rangle-\left\langle\psi_{d}\right| \tau_{2}^{\dagger}\left|\psi_{2}\right\rangle\right) \quad \cdots(23)
$$

Using Eq. (13), one can calculate as

$$
\begin{aligned}
i_{1 \rightarrow 2} & =-\frac{i e}{\hbar}\left(\left\langle\phi_{1 n}\right| \tau_{1} G_{d}^{+} \tau_{2}^{+} g_{2}^{+} \tau_{2} G_{d} \tau_{1}^{+}\left|\phi_{1 n}\right\rangle-\left\langle\phi_{1 n}\right| \tau_{1} G_{d}^{+} \tau_{2}^{+} g_{2} \tau_{2} G_{d} \tau_{1}^{+}\left|\phi_{1 n}\right\rangle\right) \\
& =-\frac{i e}{\hbar}\left\langle\phi_{1 n}\right| \tau_{1} G_{d}^{+} \tau_{2}^{+}\left(g_{2}^{+}-g_{2}\right) \tau_{2} G_{d} \tau_{1}^{+}\left|\phi_{1 n}\right\rangle \ldots(24)
\end{aligned}
$$

By defining

$$
\Gamma_{2}=-i \tau_{2}^{+}\left(g_{2}^{+}-g_{2}\right) \tau_{2} \quad \cdots .(25)
$$

Eq. (24) can be rewritten as

$$
i_{1 \rightarrow 2}=\frac{e}{\hbar}\left\langle\phi_{i n}\right| \tau_{1} G_{d}^{+} P_{2} G_{d} \tau_{1}^{+}\left|\phi_{1 n}\right\rangle \quad \ldots .(26)
$$

Equivalence of Eggs. (15) and (25).
Noting $\quad g_{k}(E)=\sum_{n} \frac{\left|\phi_{k_{n}}\right\rangle\left\langle\phi_{k n}\right|}{E-E_{n}} \cdots(27)$

$$
\begin{aligned}
& \partial_{h}(E)-g_{h}^{\dagger}(E)=\sum_{n}\left|\phi_{k_{n}}\right\rangle\left\langle\phi_{k_{n}}\right|\left(\frac{1}{E-E_{n}+i \eta}-\frac{1}{E-E_{n}-i \eta}\right) \\
& \quad=\sum_{n}\left|\phi_{k_{n}}\right\rangle\left\langle\phi_{\ln }\right|\left(\frac{-2 i \eta}{\left(E-E_{n}\right)^{2}+\eta^{2}}\right)=\sum_{n}\left|\phi_{k_{n}}\right\rangle\left\langle\phi_{k_{n}}\right|\left(-2 i \pi \delta\left(E-E_{n}\right)\right) \\
& \text { calculate as }
\end{aligned}
$$

So, one can calculate as

$$
\Gamma_{h}=-i \tau_{h}^{+}\left(g_{h}^{+}-g_{h}\right) \tau_{h}=\tau_{h}^{+}\left(\sum_{h} 2 \pi \delta\left(E-E_{n}\right)\left|\phi_{h n}\right\rangle\left\langle\phi_{h n}\right|\right) \tau_{h}
$$

Thus, we see the definion of Eq. (25) is equivalent to Eq. (15).

Now we consider all the contributions from the incident wave $\phi_{\text {in }}$ to the current.

$$
\begin{aligned}
& I_{1 \rightarrow 2}=2 \frac{e}{\hbar} \int_{-\infty}^{\infty} d E f\left(E, \mu_{1}\right) \sum_{n} \delta\left(E-E_{n}\right)\left\langle\phi_{1 n}\right| \tau_{1} G_{d}^{+} \Gamma_{2} G_{d} \tau_{1}^{+}\left|\phi_{1 n}\right\rangle \\
& \text { spinmultiplicity Identity operator in the device region } \\
& =\frac{2 e}{\hbar} \int_{-\infty}^{\infty} d E f\left(E, \mu_{1}\right) \sum_{n} \sum_{m} \delta\left(E-E_{n}\right)\left\langle\phi_{1 n}\right| \tau_{1}|m\rangle\langle m| G_{d}^{+} \Gamma_{2} G_{d} \tau_{1}^{+}\left|\phi_{1 n}\right\rangle \\
& =\frac{2 e}{\hbar} \int_{-\infty}^{\infty} d E f\left(E, \mu_{1}\right) \underset{m}{\sum}\langle m| G_{d}^{+} \Gamma_{2} G_{d} \tau_{1}^{+}\left(\sum_{n} \delta\left(E-E_{n}\right)\left|\phi_{1 n}\right\rangle\left\langle\phi_{1 n}\right|\right) \tau_{1}|m\rangle \\
& =\frac{2 e}{\hbar} \int_{-\infty}^{\infty} d E f\left(E, \mu_{1}\right) \sum_{m}\langle m| G_{d}^{t} \Gamma_{2} G_{d} \tau_{1}^{+\tau_{1} \frac{a_{1}}{2 \pi} \tau_{1}}|m\rangle \\
& =\frac{e}{\pi \hbar} \int_{-\infty}^{\infty} d E f\left(E, \mu_{1}\right) \operatorname{Tr}\left(G_{d}^{+} \Gamma_{2} G_{d} \Gamma_{1}\right) \ldots(28) \\
& \text { no } \frac{2 e}{h}
\end{aligned}
$$

By considering the following situation:

Lead
三
device

Transmission

$$
\begin{equation*}
T(E)=\operatorname{Tr}\left(G_{d}^{t} \Gamma_{2} G_{d} \Gamma_{1}\right) \tag{30}
\end{equation*}
$$

The expressions of Eqs. (29) and (30) are called Landauer formura.
it is found that $I_{1 \rightarrow 2}$ is regarded the current from the lead I to the lead 2. As well we need to take account of the current from the lead 2 to lead I. Since we assume the steady state of Eq. (22), we have the Total current as

$$
I=\frac{2 e}{h} \int_{-\infty}^{\infty} d E\left(f\left(E u_{1}\right)-f\left(E, u_{2}\right)\right) \operatorname{Tr}_{-\infty}\left(G_{d}^{+} \Gamma_{2} G_{d} \Gamma_{1}\right) \cdots(z q)
$$

Evaluation of G_{d}
The Green's function G_{d} of the device region is evaluated by Eq. (7). By definition, we have

$$
\left(\begin{array}{ccc}
E-H_{1}-\tau_{1} & 0 \tag{31}\\
-\tau_{1}^{+} & E-H_{d} & -\tau_{2}^{+} \\
0 & -\tau_{2} & E-H_{2}
\end{array}\right)\left(\begin{array}{ccc}
G_{1} & G_{1 d} & G_{12} \\
G_{d_{1}} & G_{d} & G_{d 2} \\
G_{21} & G_{2 d} & G_{2}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

row $1 \times$ column 2

$$
\begin{equation*}
\left(E-H_{1}\right) G_{I d}-\tau_{1} G_{d}=0 \tag{32}
\end{equation*}
$$

row $2 \times$ column 2

$$
\begin{equation*}
-\tau_{1}^{+} G_{1 d}+\left(E-H_{d}\right) G_{d}-\tau_{2}^{+} G_{2 d}=1 \tag{33}
\end{equation*}
$$

row $3 \times$ column 2

$$
\begin{equation*}
-\tau_{2} G_{d}+\left(E-H_{2}\right) G_{2 d}=0 \tag{34}
\end{equation*}
$$

From (32), we have

$$
\begin{equation*}
G_{I d}=\left(E-H_{1}\right)^{-1} \tau_{1} G_{d}=g_{1} \tau_{1} G_{d} \tag{35}
\end{equation*}
$$

From (34), we have

$$
\begin{equation*}
G_{2 d}=\left(E-H_{2}\right)^{-1} \tau_{2} G_{d}=g_{2} \tau_{2} G_{d} \tag{36}
\end{equation*}
$$

Inserting Ens. (35) and (36) into Eq. (33), we obtain

$$
\begin{aligned}
& -\tau_{1}^{t} g_{1} \tau_{1} G_{d}+\left(E-H_{d}\right) G_{d}-\tau_{2}^{t} g_{2} \tau_{2} G_{d}=1 \\
& \left(E-H_{d}-\Sigma_{1}-\Sigma_{2}\right) G_{d}=1 \\
& G_{d}=\left(E-H_{d}-\Sigma_{1}-\Sigma_{2}\right)^{-1} \ldots(37)
\end{aligned}
$$

where

$$
\begin{align*}
& \Sigma_{1}=\tau_{1}^{+} g_{1} \tau_{1} \tag{38}\\
& \Sigma_{2}=\tau_{2}^{+} g_{2} \tau_{2} \tag{39}
\end{align*}
$$

g_{1} and g_{2} are called surface Green's function.
Σ_{1} and Σ_{2} are called self-energy.

An example: linear chain model
Let's consider a linear chain model as shown below.

To calculate the surface Green functions of the leads I and 2 . we employ the recursion method discussed in "Recursion-method.potf"

From the page 13 in the lecture notes, we have

$$
\begin{equation*}
g_{1}(z)=g_{2}(z)=\frac{z-\varepsilon_{0}-\sqrt{\left(z-\varepsilon_{0}\right)^{2}-4 b_{0}^{2}}}{2 b_{0}^{2}} \tag{40}
\end{equation*}
$$

The self-energies of Eqs. (38) and (39) are given by

$$
\begin{equation*}
\Sigma_{1}(z)=\bar{L}_{2}(z)=b^{2} g_{1}(z)=\frac{b^{2}}{2 b_{0}^{2}}\left(z-\varepsilon_{0}-\sqrt{\left(z-\varepsilon_{0}\right)^{2}-4 b_{0}^{2}}\right) \tag{41}
\end{equation*}
$$

The Green function of Eq. (37) is found to be

$$
\begin{equation*}
G_{d}(z)=\left[z-\varepsilon-\frac{b^{2}}{b_{0}^{2}}\left(z-\varepsilon_{0}-\sqrt{\left(z-\varepsilon_{0}\right)^{2}-4 b_{0}^{2}}\right)\right]^{-1} \tag{42}
\end{equation*}
$$

Also, Γ_{1} and Γ_{2} are calculated as

$$
\begin{equation*}
\Gamma_{1}=\Gamma_{2}=i b\left(g_{1}-g_{1}^{+}\right) b=\frac{i b^{2}}{2 b_{0}^{2}}\left(z-q_{0}-\sqrt{\left(z-\varepsilon_{0}\right)^{2}-4 b_{0}^{2}}-z^{*}+\xi_{0}+\sqrt{\left(z^{*}-\varepsilon_{0}\right)^{2}-4 b_{0}^{2}}\right) \tag{43}
\end{equation*}
$$

Thus. the transmission is given $b y$

$$
\begin{gathered}
T(E)=\operatorname{Tr}\left(G_{d}^{+} \Gamma_{2} G_{d} \Gamma_{1}\right) \\
4<\phi \quad \phi \quad 4 \\
(42)(43)(42) \quad(43)
\end{gathered}
$$

In case that $\varepsilon=\varepsilon_{0}$ and $h=h_{0}$, we have

$$
G_{d}(z)=\frac{1}{\sqrt{\left(z-\varepsilon_{0}\right)^{2}-4 b^{2}}} \quad \ldots(45)
$$

This is equivalent to Eq. (28) in the page 16 of lecture notes 2. Taking $Z=E+i \eta(\eta \rightarrow 0)$, Gd becomes

$$
G_{d}(E+i \eta)=\frac{1}{\sqrt{\left(E-E_{0}\right)^{2}-\eta^{2}+2 i \eta\left(E-E_{0}\right)-4 b_{0}^{2}}}
$$

For $\left(E-E_{0}\right)^{2}-4 b_{0}^{2}<0 \rightarrow \varepsilon_{0}-2\left|b_{0}\right|<E<\varepsilon_{0}+2\left|b_{0}\right|$

$$
\begin{equation*}
\operatorname{Im} G d=-\frac{1}{\sqrt{4 b_{0}^{2}-\left(E-E_{0}\right)^{2}}}, \quad \operatorname{Re} G_{d}=0 \tag{46}
\end{equation*}
$$

For $\quad E<\varepsilon_{0}-2\left|b_{0}\right|, \quad \varepsilon_{0}+2\left|b_{0}\right|<E$

$$
\begin{equation*}
\operatorname{Im} G d=0, \quad \operatorname{ReGd}=\frac{1}{\sqrt{\left(E-E_{0}\right)^{2}-4 b_{0}^{2}}} \tag{47}
\end{equation*}
$$

Noting for $\eta \rightarrow 0$

$$
\begin{align*}
\Gamma_{1} & =\Gamma_{2} \\
& \left.=i b^{2}\left(g_{1}-g_{1}^{+}\right)=-2 b^{2} i_{m} g_{1}=\left\{\begin{array}{cl}
\sqrt{4 b_{0}^{2}-\left(E-\varepsilon_{0}\right)^{2}} & \varepsilon_{0}-2\left|b_{0}\right|<E<\varepsilon_{0}+2\left|b_{0}\right| \\
0 & e \mid s e
\end{array}\right] . \begin{array}{cl}
\end{array}\right] \tag{48}
\end{align*}
$$

From Eggs. (46) - (48), we obtain the transmission.

$$
\begin{aligned}
& T(E)= \\
& T_{r}\left(G_{d}^{+} \Gamma_{z} G_{d} \Gamma_{1}\right) \\
&=(-i) \times i\left(\frac{1}{\sqrt{4 b_{0}^{2}-\left(E-\varepsilon_{0}\right)^{2}}}\right)^{2} \times\left(\sqrt{4 b_{0}^{2}-\left(E-\varepsilon_{0}\right)^{2}}\right)^{2}=1
\end{aligned}
$$

for $\varepsilon_{0}-2\left|b_{0}\right|<E<\varepsilon_{0}+2\left|b_{0}\right|$
Other wise
$\ldots(49)$

$$
T(E)=0
$$

Conductance quant tum
Let us start Eq. (29).

$$
I=\frac{2 e}{h} \int_{-\infty}^{\infty} d E T(E)\left[f\left(E-\mu_{1}\right)-f\left(E-\mu_{2}\right)\right] \ldots(2 q)
$$

Our purpuse here is to find a relation

$$
I=\frac{V}{R}=V G \ldots(50)
$$

where V is the source-drain bias voltage, R registance, and $G \equiv \frac{1}{R}$ conductance. To derive E a. (50) based on E_{9} (29), we consider a case that $\mu_{1}=\mu_{2}+e v=\mu+e v$ with a tiny v.

Then. Eq. (29) can be approximated by

$$
\begin{aligned}
I & \simeq \frac{2 e}{h} \int_{-\infty}^{\infty} d E\left[T(\mu)+\left.\frac{\partial T(E)}{\partial E}\right|_{E=\mu}(E-\mu)\right]\left[f(E-\mu)+\left.\frac{\partial f(E-(\mu+e v))}{\partial V}\right|_{V=0} V-f(E-\mu)\right] \\
& =\frac{2 e}{h}\left[\int_{-\infty}^{\infty} d E T(\mu) \frac{\partial f(E-(\mu+e v))}{\partial V} V+\int_{-\infty}^{\infty} d E \frac{\partial T(E)}{\partial E}(E-\mu) \frac{\partial f(E-(\mu+e v)}{\partial V} V\right]
\end{aligned}
$$

$$
\begin{equation*}
\text { Noting } \frac{\partial f(E-(\mu+e v))}{\partial V}=-e \frac{\partial f(E-(\mu+e v))}{\partial E} \xrightarrow{v \rightarrow 0} e \delta(E-\mu) \tag{51}
\end{equation*}
$$

Eq. (51) becomes

$$
I=\frac{2 e^{2}}{h} T(\mu) V \int_{-\infty}^{\infty} d_{E} \delta(E-\mu)=V\left(T(\mu) \frac{2 e^{2}}{h}\right) \ldots(52)
$$

Compared to Eq. (50), we obatin
Go is culled

$$
G=T(\mu) G_{0} \quad \cdots(53)
$$

conductance quantum

$$
G_{0}=\frac{2 e^{2}}{h} \quad \cdots(54)
$$

Conductance of series and parallel circuits
(a) series circuit lead device lead
 $\varepsilon_{0}=0$

As well as the lecture notes 2 and 13 . the surface Green functions are given by

$$
\begin{equation*}
g_{1}(z)=g_{2}(z)=\frac{z-\sqrt{z^{2}-4 b^{2}}}{2 b^{2}} \tag{1}
\end{equation*}
$$

The self-energies can be calculated as

$$
\begin{align*}
& \Sigma_{1}(z)=\binom{b}{0} g_{1}(z)(b, 0)=\left(\begin{array}{cc}
b^{2} g_{1}(z) & 0 \\
0 & 0
\end{array}\right) \tag{2}\\
& \Sigma_{2}(z)=\binom{0}{b} g_{2}(z)(0 b)=\left(\begin{array}{cc}
0 & 0 \\
0 & b^{2} g_{2}(z)
\end{array}\right) \tag{3}
\end{align*}
$$

The Green function of the device region is given by

$$
\begin{align*}
& G_{d}(z)=\left(z-H_{d}-\Sigma_{1}(z)-\Sigma_{2}(z)\right)^{-1} \\
& =\left(\begin{array}{cc}
z-\varepsilon-\frac{1}{2}\left(z-\sqrt{z^{2}-4 b^{2}}\right) & -b \\
-b & z-\varepsilon-\frac{1}{2}\left(z-\sqrt{z^{2}-4 b^{2}}\right)
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A & B \\
B & A
\end{array}\right)^{-1}=\frac{1}{A^{2}-B^{2}}\left(\begin{array}{cc}
A & -B \\
-B & A
\end{array}\right) \\
& =\frac{1}{c}\left(\begin{array}{cc}
z-\varepsilon-\frac{1}{2}\left(z-\sqrt{z^{2}-4 b^{2}}\right) & b \\
b & z-\varepsilon-\frac{1}{2}\left(z-\sqrt{b^{2}-4 b^{2}}\right)
\end{array}\right) \quad c=\left[z-\varepsilon-\frac{1}{2}\left(z-\sqrt{z^{2}-4 b^{2}}\right)\right]^{2}-b^{2} \\
& =\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right) \tag{4}
\end{align*}
$$

Γ_{1} and Γ_{2} can be calculated as

$$
\begin{align*}
\Gamma_{1} & =i \tau_{1}^{+}\left(g_{1}-g_{1}^{+}\right) \tau_{1}=i\binom{b}{0} 2 i \operatorname{Im} g_{1}\left(\begin{array}{ll}
b & 0
\end{array}\right) \\
& =-2 b^{2} I_{m} g_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\sqrt{4 b^{2}-E^{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
\Gamma_{2} & =i \tau_{2}^{+}\left(g_{2}-g_{2}^{+}\right) \tau_{1}=i\binom{0}{b} 2 i I_{m} g_{2}\left(\begin{array}{ll}
0 & b
\end{array}\right) \\
& =-2 b^{2} \operatorname{Im} g_{2}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\sqrt{4 b^{2}-E^{2}}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \tag{6}
\end{align*}
$$

for $\quad-2|b|<E<2|b|$
otherwise, they are zero.
Then, one can calculate the transmission as

$$
\begin{aligned}
& T(E)=\operatorname{Tr}\left(G_{d}^{*} \Gamma_{2} G_{d} \Gamma_{1}\right) \\
& =\left(4 b^{2}-E^{2}\right) \operatorname{Tr}\left[\left(\begin{array}{cc}
\alpha^{*} & \beta^{*} \\
B^{*} & \alpha^{*}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\alpha & \beta \\
\beta & \alpha
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right] \\
& =\left(4 b^{2}-E^{2}\right) \operatorname{Tr}\left[\left(\begin{array}{ll}
0 & B^{*} \\
0 & \alpha^{*}
\end{array}\right)\left(\begin{array}{ll}
\alpha & 0 \\
B & 0
\end{array}\right)\right]=\left(4 b^{2}-E^{2}\right) \operatorname{Tr}\left(\begin{array}{cc}
B^{*} B & 0 \\
\alpha^{*} B & 0
\end{array}\right) \\
& =\left(4 b^{2}-E^{2}\right) B^{*} B \\
& =\left(4 b^{2}-E^{2}\right) \times b^{2} \times \frac{1}{c^{*} c} \\
& b=1 \\
& \varepsilon=0 \quad \Delta T(E) \\
& b=1
\end{aligned}
$$

Noting that $T(E)$ at $E=0$ is the conductance, we have $c^{*} c$ at $E=0$ as

$$
\begin{align*}
c^{*} c(E=0) & =\left[(-\varepsilon+i b)^{2}-b^{2}\right]\left[(-\varepsilon-i b)^{2}-b^{2}\right] \\
& =4 b^{4}+\varepsilon^{4} \tag{8}
\end{align*}
$$

Thus, we obtain from Ens. (7) and (8)

$$
\begin{aligned}
G & =4 b^{2} \times b^{2} \times \frac{1}{c^{*} c(E=0)} \\
& =\frac{4 b^{4}}{4 b^{4}+\varepsilon^{4}} \quad \text { in } G_{0}
\end{aligned}
$$

(b) Parallel circuit

The surface Green functions are given by Eqs. (1).
The self-energies can be calculated as

$$
\begin{aligned}
& \Sigma_{1}(z)=\binom{b}{b} g_{1}(z)\left(\begin{array}{ll}
b & b
\end{array}\right)=b^{2} g_{1}(z)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \cdots(10) \\
& \Sigma_{2}(z)=\binom{b}{b} g_{2}(z)(b b)=b^{2} g_{2}(z)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \cdots(11)
\end{aligned}
$$

The Green function of the device region is given by

$$
\begin{aligned}
& G d(z)=\left(z I-H d-Z_{1}-Z_{2}\right)^{-1} \\
& =\left(\begin{array}{cc}
z-\varepsilon-z+\sqrt{z^{2}-4 b^{2}} & -z+\sqrt{z^{2}-4 b^{2}} \\
-z+\sqrt{z^{2}-4 b^{2}} & z-\varepsilon-z+\sqrt{z^{2}-4 b^{2}}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A & B \\
B & A
\end{array}\right)^{-1}=\frac{1}{A^{2}-B^{2}}\left(\begin{array}{cc}
A & -B \\
-B & A
\end{array}\right) \\
& \cdots(12)
\end{aligned}
$$

$$
\begin{align*}
& G d(z)=\frac{1}{c}\left(\begin{array}{cc}
-\varepsilon+\sqrt{z^{2}-4 b^{2}} & z-\sqrt{z^{2}-4 b^{2}} \\
z-\sqrt{z^{2}-4 b^{2}} & -\varepsilon+\sqrt{z^{2}-4 b^{2}}
\end{array}\right) \tag{13}\\
& C=\left(-\varepsilon+\sqrt{z^{2}-4 b^{2}}\right)^{2}-\left(z-\sqrt{z^{2}-4 b^{2}}\right)^{2} \tag{14}
\end{align*}
$$

Γ_{1} and Γ_{2} car be calculated as

$$
\begin{aligned}
& \Gamma_{1}=i \tau_{1}^{+}\left(g_{1}-g_{1}^{+}\right) \tau_{1} \\
&= i\binom{b}{b} 2 i I_{m} g_{1}\left(\begin{array}{ll}
b & b
\end{array}\right) \\
&=-2 b^{2} \operatorname{I} I_{m} g_{1}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
&=\sqrt{4 b^{2}-E^{2}}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \cdots(15) \\
& \Gamma_{2}= i \tau_{2}^{+}\left(g_{2}-g_{2}^{+}\right) \tau_{2}
\end{aligned}=-2 b^{2} \operatorname{Im} g_{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

for $-2|b|<E<2|b|$
otherwise, they are zero.
So, the transmission are given by

$$
\begin{aligned}
& T(E)=\operatorname{Tr}\left(G_{d}^{+} \Gamma_{2} G_{d} \Gamma_{1}\right) \\
& =\frac{1}{C^{*} C}\left(4 b^{2}-E^{2}\right) \operatorname{Tr}\left[\left(\begin{array}{cc}
-\varepsilon+\sqrt{z^{2}-4 b^{2}} & z^{*}-\sqrt{z^{*}-4 b^{2}} \\
Z^{*}-\sqrt{z^{2}-4 b^{2}} & -\varepsilon+\sqrt{z^{2}-4 b^{2}}
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right. \\
& \left.\times\left(\begin{array}{cc}
-\varepsilon+\sqrt{z^{2}-4 b^{2}} & z-\sqrt{z^{2}-4 b^{2}} \\
z-\sqrt{z^{2}-4 b^{2}} & -\varepsilon+\sqrt{z^{2}-4 b^{2}}
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
T(E)=\frac{-4 E^{2}+16 b^{2}}{\left(\varepsilon+z-2 \sqrt{Z^{2}-4 b^{2}}\right)\left(\varepsilon+z^{*}-2 \sqrt{Z^{*}-4 b^{2}}\right)} \tag{17}
\end{equation*}
$$

From Eq. (17) at $E=0$, we obtain the conductance

$$
\begin{equation*}
G=\frac{16 b^{2}}{(\varepsilon-2 \times 2 b i)(\varepsilon+2 \times 2 b i)}=\frac{16 b^{2}}{\varepsilon^{2}+16 b^{2}} \tag{18}
\end{equation*}
$$

in G 。
Conductance of

$$
\frac{4 b^{2}}{(-\varepsilon+2 b)^{2}} \quad \cdots(19)
$$

Comparing with Eggs. (9) (18) and (19), we see that Ohm' law is not valid anymore.

