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Chapter 1

Basic issues

1.1 Time evolution operator

The time evolution operator Ûs(t, t0) in the Schrodinger representation is defined by

|Ψs(t)⟩ = Ûs(t, t0)|Ψs(t0)⟩, (1.1)

where |Ψs(t)⟩ and |Ψs(t0)⟩ are the ket vectors of the states in the Schrodinger representation at time t

and t0, respectively. The time evolution operator Ûs(t, t0) must satisfy the following three conditions:

(1) Unitarity

Consider the conservation of the probability:

⟨Ψs(t0)|Ψs(t0)⟩ = ⟨Ψs(t)|Ψs(t)⟩ = ⟨Ψs(t0)|Û †
s (t, t0)Ûs(t, t0)|Ψs(t0)⟩. (1.2)

This is assured by imposing the unitarity of Ûs(t, t0):

Û †
s (t, t0)Ûs(t, t0) = Ûs(t, t0)Û

†
s (t, t0) = 1, (1.3)

where 1 is the identity operator. If the inverse operator Û−1
s (t, t0) of Ûs(t, t0) can be defined, by

multiplying both the sides by Û−1
s (t, t0), we obtain

Û †
s (t, t0) = Û−1

s (t, t0). (1.4)

Also, if the time evolution of Ψs in the reverse time

|Ψs(t0)⟩ = Ûs(t0, t)|Ψs(t)⟩ (1.5)

is defined, by putting Eq. (1.1) into Eq. (1.5) we get

|Ψs(t0)⟩ = Ûs(t0, t)Ûs(t, t0)|Ψs(t0)⟩. (1.6)

Since it is expected to be Ûs(t0, t)Ûs(t, t0) = 1, by noting Eqs. (1.3) and (1.4), we conclude

Ûs(t0, t) = Û †
s (t, t0) = Û−1

s (t, t0). (1.7)

(2) Associativity
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It is natural to consider that the time evolution of |Ψs(t0)⟩ from t0 to t2 coincides with that from t0

to t1 and subsequently from t1 to t2, where t0 < t1 < t2. That is,

Ûs(t2, t0) = Ûs(t2, t1)Ûs(t1, t0). (1.8)

(3) Continuity

It is assumed that the state changes continously as a function of time:

|Ψs(t0 + dt)⟩ = Ûs(t0 + dt, t0)|Ψs(t0)⟩. (1.9)

Thus,

lim
dt→0

Ûs(t0 + dt, t0) = 1. (1.10)

Let us now look for an expression satisfying above three conditions. An expression for Ûs(t0+dt, t0)

which satisfies above three conditions approximately within small time interval dt is given by

Ûs(t0 + dt, t0) = 1− i

h̄
Ĥs(t0)dt. (1.11)

The unitarity is confirmed as:

Û †
s (t0 + dt, t0)Ûs(t0 + dt, t0) = (1 +

i

h̄
Ĥs(t0)dt)(1−

i

h̄
Ĥs(t0)dt),

= 1 +
Ĥs(t0)

h̄
dt2,

≃ 1. (1.12)

The associativity is confirmed as:

Ûs(t0 + dt1 + dt2, t0 + dt1)Ûs(t0 + dt1, t0) = (1− i

h̄
Ĥs(t0 + dt1)dt2)(1−

i

h̄
Ĥs(t0)dt1),

=

(
1− i

h̄

(
Ĥs(t0) +

∂Ĥs(t0)

∂t
dt1 + · · ·

)
dt2

)(
1− i

h̄
Ĥs(t0)dt1

)
,

= 1− i

h̄
Ĥs(t0)(dt1 + dt2) +O(dt2),

≃ Ûs(t0 + dt1 + dt2, t0). (1.13)

The continuity is confirmed as:

lim
dt→0

(
1− i

h̄
Ĥs(t0)dt

)
= 1. (1.14)

Thus, we have confirmed that the expression Eq. (1.11) surely satisfies the three conditions mentioned

above within small time interval. Using the expression Eq. (1.11), we now derive an equation governing

the time evolution of the time evolution operator. Considering the associativity, we can write

Ûs(t+ dt, t0) = Ûs(t+ dt, t)Ûs(t, t0),

≃
(
1− i

h̄
Ĥs(t)dt

)
Ûs(t, t0). (1.15)

Rearranging the above equation gives

Ûs(t+ dt, t0)− Ûs(t, t0)

dt
= − i

h̄
Ĥs(t)Ûs(t, t0). (1.16)
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So, we get the equation:

ih̄
∂

∂t
Ûs(t, t0) = Ĥs(t)Ûs(t, t0). (1.17)

This is the equation governing the time evolution of the time evolution operator in the Schrodinger

representation. By differentiating both the sides of Eq. (1.1) with respect to time t and mutiplying

ih̄, we obtain

ih̄
∂

∂t
|Ψs(t)⟩ =

(
ih̄

∂

∂t
Ûs(t, t0)

)
|Ψs(t0)⟩. (1.18)

Replacing the time derivarive in the parenthesis of the right hand side by Eq. (1.17), the time dependent

Schrodinger equation can be obtained as:

ih̄
∂

∂t
|Ψs(t)⟩ = Ĥs(t)|Ψs(t)⟩. (1.19)

1.2 Density matrix

Let us consider a mixed ensemble that electrons populate states Ψs,k where each proportion is wk(k =

1, 2, · · ·). The sum of the proportions in the population is unity:∑
k

wk = 1. (1.20)

The ensemble average of an operator Â(t) is defined by

[A(t)] =
∑
k

wk⟨Ψs,k|Âs(t)|Ψs,k⟩,

=
∑
i,j

∑
k

wk⟨Ψs,k|χi⟩⟨χi|Âs(t)|χj⟩⟨χj |Ψs,k⟩,

=
∑
i,j

⟨χj |
[∑

k

wk|Ψs,k⟩⟨Ψs,k|
]
|χi⟩⟨χi|Âs(t)|χj⟩,

=
∑
i,j

⟨χj |ρ̂s(t)|χi⟩⟨χi|Âs(t)|χj⟩,

= tr(ρ̂s(t)Âs(t)). (1.21)

with the definition of the density matrix operator:

ρ̂s(t) =
∑
k

wk|Ψs,k(t)⟩⟨Ψs,k(t)|, (1.22)

where the trace in Eq. (1.21) is interpreted as the trace for the matrix form of the operators us-

ing certain complete basis set. Considering that Ψs,k follows Eq. (1.19) and assuming that wk is

independent of time, the time derivative of Eq. (1.22) leads to

ih̄
∂

∂t
ρ̂s(t) =

∑
k

wk

[(
ih̄

∂

∂t
|Ψs,k⟩

)
⟨Ψs,k|+ |Ψs,k⟩

(
ih̄

∂

∂t
⟨Ψs,k|

)]
,

=
∑
k

wk

[
Ĥs|Ψs,k⟩⟨Ψs,k| − |Ψs,k⟩⟨Ψs,k|Ĥs

]
,

= −[ρ̂s(t), Ĥs(t)]. (1.23)
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In the thermal equilibrium, it can be considered to be ∂
∂t ρ̂s(t) = 0. This leads to [ρ̂s, Ĥs] = 0,

and means that ρ̂s and Ĥs can be simultaneously diagonalized using the eigenstates of Ĥs. Using the

eigenstates a quantity σ, related to the entropy S = kBσ, can be written as

σ = −tr(ρ̂s ln(ρ̂s)),

= −
∑
k

ρkk ln(ρkk), (1.24)

where ρkk is the diagonal term of the matrix form, and equl to wk in Eq. (1.20). In the complete

random ensemble, the σ takes the maximum, and it turns out to be σ = ln(N), since ρkk = 1
N where

N is the number of states. On the other hand for the pure ensemble σ takes the minimum, and σ = 0.

In the thermal equilibrium, it can be considered that σ may take a maximum under two conditions:∑
k

ρs,kk = 1 (1.25)

and

[Ĥs] = tr(ρ̂sĤs),

=
∑
k

ρkkEk ≡ U, (1.26)

where Ek is the eigenenergy of Ĥs, and U is a constant. The density matrix, giving the maximum,

can be found by minimizing the following function F using Lagrange’s multiplier method:

F = −σ + γ

(∑
k

ρkk − 1

)
+ β

(∑
k

ρkkEk − U

)
, (1.27)

where γ and β are the multipliers. F
ρii

= 0 gives

ρii =
exp(−βEi)

exp(γ + 1)
. (1.28)

F
γ = 0 gives ∑

k

ρkk = 1. (1.29)

Putting Eq. (1.28) into Eq. (1.29) yields

exp(γ + 1) =
∑
k

exp(−βEk). (1.30)

Replacing exp(γ + 1) by Eq. (1.30), we obtain

ρii =
exp(−βEi)∑
k exp(−βEk)

. (1.31)

Noting that
∑

k exp(−βEk) = tr(exp(−βHd)) = tr(exp(−βV HdV
†)) = tr(exp(−βĤs)), V ρdV

† = ρs,

and V exp(−βHd)V
† = exp(−βHs), where V is the unitary matrix which diagonalizes Hs, and Hd is

a matrix of which diagonal terms are Ek, and ρd a matrix of which diagonal terms are ρkk, we can

write the density matrix in the thermal equilibrium as

ρs =
exp(−βHs)

tr(exp(−βĤs))
. (1.32)
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1.3 Field operator

A creation operator â† and destruction operator â defined for the Fermion satisfy the following anti-

commutation relations:

{âs,i, â†s,j} = δij , (1.33)

{âs,i, âs,j} = {â†s,i, â
†
s,j} = 0, (1.34)

where {â, b̂} ≡ âb̂+ b̂â. Using the operators, a field operator Ψ̂s(r) is defined by

Ψ̂s(r) =
∑
i

Ψs,i(r, t0)âs,i,

Ψ̂†
s(r) =

∑
i

Ψ†
s,i(r, t0)â

†
s,i, (1.35)

where we considered Ψs,i(r, t0) being eigenstates of Hs(t0) as one-particle wave functions. The anti-

commutation relation for the field operator can be found as:

Ψ̂s(r)Ψ̂
†
s(r

′) + Ψ̂†
s(r

′)Ψ̂s(r) =
∑
i,j

Ψs,i(r, t0)Ψ
†
s,j(r

′, t0)
(
âs,iâ

†
s,j + â†s,j âs,i

)
,

=
∑
ij

Ψs,i(r, t0)Ψ
†
s,j(r

′, t0){âs,i, â†s,j},

=
∑
i

Ψs,i(r, t0)Ψ
†
s,i(r

′, t0),

= δ(r− r′). (1.36)

Therefore,

{Ψ̂s,i(r, t0), Ψ̂
†
s,i(r

′, t0)} = δ(r− r′). (1.37)

The similar analysis leads to

{Ψ̂s,i(r, t0), Ψ̂s,i(r
′, t0)} = {Ψ̂†

s,i(r, t0), Ψ̂
†
s,i(r

′, t0)} = 0. (1.38)

It is also noted that the second quantized Hamiltonian Ĥ using the operators â† and â can be rewritten

by the field operators as follows:

Ĥs =
∑
ij

â†s,i

[∫
drΨ†

s,i(r, t0)v̂1(r, t)Ψs,j(r, t0)

]
âs,j

+
1

2

∑
ijkl

â†s,iâ
†
s,j

[∫ ∫
drdr′Ψ†

s,i(r, t0)Ψ
†
s,j(r

′, t0)v̂2(r, r
′, t)Ψs,k(r

′, t0)Ψs,l(r, t0)

]
âs,kâs,l,(1.39)

=

∫
drΨ̂†

s(r, t0)v̂1(r, t)Ψ̂s(r, t0)

+
1

2

∫ ∫
drdr′Ψ̂†

s(r, t0)Ψ̂
†
s(r

′, t0)v̂2(r, r
′, t)Ψ̂s(r

′, t0)Ψ̂s(r, t0), (1.40)

where v̂1 and v̂2 are one- and two-particle time dependent operators. In the Schrodinger representa-

tionm, the field operator is not time dependent, while v̂1 and v̂2 can be time dependent. Thus, we

see

∂

∂t
Ψ̂s(r) = 0,

∂

∂t
Ψ̂†

s(r) = 0, (1.41)
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1.4 Representation

We discuss three kind of representations: Schrodinger, Heisenberg, and interaction representations. To

avoid confusion, the representation is denoted by a subscript, i.e., s, h, and i stand for the Schrodinger,

Heisenberg, and interaction representations, respectively.

(1) Schrodinger representation

In the Schrodinger representation, the expectation value of an operator Âs(t) is given by

⟨Ψs(t)|Âs(t)|Ψs(t)⟩ = ⟨Ψs(t0)|Û †
s (t, t0)Âs(t)Ûs(t, t0)|Ψs(t0)⟩. (1.42)

If Âs(t) is time dependent, the time derivative of the operator Âs(t) can be considered:

∂

∂t
Âs(t) =

∂

∂t
Âs(t). (1.43)

(2) Heisenberg representation

In the right hand side of the Eq. (1.42), it is possible to consider that the operator Âs(t) is evolved

by the time evolution operator Ûs instead of the wave function. This change of view defines the

Heisenberg representation of Â as:

Âh(t) = Û †
s (t, t0)Âs(t)Ûs(t, t0). (1.44)

In this Heisenberg representation, the wave function, Ψh(t) ≡ Ψs(t0), is clearly independent of time.

Thus we see

ih̄
∂

∂t
Ψh(t) = 0. (1.45)

So, Uh(t, t0) = 1, and

ih̄
∂

∂t
Uh(t, t0) = 0. (1.46)

Differentiating Âh(t) and multiplying ih̄, and utilizing Eq. (1.17), we find

ih̄
∂

∂t
Âh(t) =

(
ih̄

∂

∂t
Û†
s (t, t0)

)
Âs(t)Ûs(t, t0) + Û†

s (t, t0)

(
ih̄

∂

∂t
Âs(t)

)
Ûs(t, t0) + Û†

s (t, t0)Âs(t)

(
ih̄

∂

∂t
Ûs(t, t0)

)
,

= −Û†
s (t, t0)Ĥs(t)Âs(t)Ûs(t, t0) + Û†

s (t, t0)Âs(t)Ĥs(t)Ûs(t, t0) + Û†
s (t, t0)

(
ih̄

∂

∂t
Âs(t)

)
Ûs(t, t0),

= −Ĥh(t)Âh(t) + Âh(t)Ĥh(t) + Û†
s (t, t0)

(
ih̄

∂

∂t
Âs(t)

)
Ûs(t, t0),

= [Âh(t), Ĥh(t)] + Û†
s (t, t0)

(
ih̄

∂

∂t
Âs(t)

)
Ûs(t, t0). (1.47)

If Âs is independent of time, Eq. (1.47) is simplified as

ih̄
∂

∂t
Âh(t) = [Âh(t), Ĥh(t)]. (1.48)
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Let us consider to write Ĥ in the Heisenberg representation. The first term in the right side of

Eq. (1.39) is transformed using Eq. (1.44) as

Û †
s (t, t0)

∑
ij

â†s,i

[∫
drΨ†

s,i(r, t0)v̂1(r, t)Ψs,i(r, t0)

]
âs,j

 Ûs(t, t0)

=
∑
ij

Û †
s (t, t0)â

†
s,iÛs(t, t0)Û

†
s (t, t0)

[∫
drΨ†

s,i(r, t0)v̂1(r, t)Ψs,i(r, t0)

]
Ûs(t, t0)Û

†
s (t, t0)âs,jÛs(t, t0),

=
∑
i,j

â†h,i(t)

[∫
drΨ†

s,i(r, t0)v̂1(r, t)Ψs,i(r, t0)

]
âh,j(t),

=

∫
drΨ̂†

h(t)(r, t)v̂1(r, t)Ψ̂h(r, t),

where we defined

â†h,i(t) = Û †
s (t, t0)â

†
s,iÛs(t, t0),

âh,i(t) = Û †
s (t, t0)âs,iÛs(t, t0), (1.49)

and

Ψ̂h(r, t) =
∑
i

Ψs,i(r, t0)âh,i(t),

Ψ̂†
h(r, t) =

∑
i

Ψ†
s,i(r, t0)â

†
h,i(t). (1.50)

By doing the same analysis for the second term in the right side of Eq. (1.39), the total Hamiltonian

in the Heisenberg representation is written by

Ĥh = Ĥh,1 + Ĥh,2, (1.51)

where Ĥh,1 and Ĥh,2 are one- and two-particle Hamiltonians in the Heisenberg representation defined

by

Ĥh,1 =

∫
drΨ̂†

h(r, t)v̂1(r, t)Ψ̂h(r, t) (1.52)

and

Ĥh,2 =
1

2

∫ ∫
drdr′Ψ̂†

h(r, t)Ψ̂
†
h(r

′, t)v̂2(r, r
′, t)Ψ̂h(r

′, t)Ψ̂h(r, t). (1.53)

The anticommutation relations for â†h,i and âh,i are confirmed as follows:

{âh,i, â†h,j} = âh,iâ
†
h,j + â†h,j âh,i,

= Û †
s (t, t0)âs,iÛs(t, t0)Û

†
s (t, t0)â

†
s,jÛs(t, t0) + Û †

s (t, t0)â
†
s,jÛs(t, t0)Û

†
s (t, t0)âs,iÛs(t, t0),

= Û †
s (t, t0){âs,i, â

†
s,j}Ûs(t, t0),

= δij . (1.54)

As well,

{âh,i, âh,j} = {â†h,i, â
†
h,j} = 0. (1.55)
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The anticommutation relation for Ψ̂†
h,i and Ψ̂h,i is confirmed using Eq. (1.54) as follows:

{Ψ̂h(r, t), Ψ̂
†
h(r

′, t)} =
∑
i,j

Ψs,i(r, t0)Ψ
†
s,j(r

′, t0)
(
âh,iâ

†
h,j + â†h,j âh,i

)
,

=
∑
i

Ψs,i(r, t0)Ψ
†
s,i(r

′, t0)

= δ(r− r′). (1.56)

As well,

{Ψ̂h(r, t), Ψ̂h(r
′, t)} = {Ψ̂†

h(r, t), Ψ̂
†
h(r

′, t)} = 0. (1.57)

The time derivative of the field operator given by Eq. (1.50) can be obtained by making use of

Eq. (1.47). So, first let us consider [Ψ̂h(r
′′, t), Ĥh(r, t)]. Noting that v1 and v2 are Hermitian so that∫

drΨ̂†
s(r, t0)v̂1(r, t)Ψ̂s(r, t0) =

∫
dr
(
v̂1(r, t)Ψ̂

†
s(r, t0)

)
Ψ̂s(r, t0) (1.58)

and ∫ ∫
drdr′Ψ̂†

s(r, t0)Ψ̂
†
s(r

′, t0)v̂2(r, r
′, t)Ψ̂s(r

′, t0)Ψ̂s(r, t0) =∫ ∫
drdr′

(
v̂2(r, r

′, t)Ψ̂†
s(r, t0)Ψ̂

†
s(r

′, t0)
)
Ψ̂s(r

′, t0)Ψ̂s(r, t0), (1.59)

we can evaluate [Ψ̂h(r
′′, t), Ĥh(r, t)] as follows:[

Ψ̂h(r
′′, t), Ĥh(t)

]
=

∫
drv̂1(r, t)

[
Ψ̂h(r

′′, t), Ψ̂†
h(t)(r, t)Ψ̂h(r, t)

]
+
1

2

∫ ∫
drdr′v̂2(r, r

′, t)
[
Ψ̂h(r

′′, t), Ψ̂†
h(r, t)Ψ̂

†
h(r

′, t)Ψ̂h(r
′, t)Ψ̂h(r, t)

]
,

= v̂1(r
′′, t)Ψ̂h(r

′′, t) +
1

2

{∫
dr′v̂2(r

′′, r′, t)Ψ̂†
h(r

′, t)Ψ̂h(r
′, t)

}
Ψ̂h(r

′′, t)

+
1

2

{∫
drv̂2(r, r

′′, t)Ψ̂†
h(r, t)Ψ̂h(r, t)

}
Ψ̂h(r

′′, t),

=

{
v̂1(r

′′, t) +

∫
dr′v̂2(r

′′, r′, t)Ψ̂†
h(r

′, t)Ψ̂h(r
′, t)

}
Ψ̂h(r

′′, t), (1.60)

where for the above derivation from the first to second lines we utilized Eqs. (1.56) and (1.57), and

the following relations:[
Â, B̂Ĉ

]
=

{
Â, B̂

}
Ĉ − B̂

{
Â, Ĉ

}
, (1.61)[

Â, B̂ĈD̂Ê
]

=
{
Â, B̂

}
ĈD̂Ê − B̂

{
Â, Ĉ

}
D̂Ê − B̂Ĉ

{
Â, D̂

}
Ê + B̂ĈD̂

{
Â, Ê

}
. (1.62)

The contribution to the time derivative of the field operator in the Heisenberg representation, cor-

responding to the second term in Eq. (1.48), is strictly zero because of Eq. (1.41). Therefore, the

first term only survives in Eq. (1.48), and consequently the time derivative of field operator in the

Heisenberg representation is given by

ih̄
∂

∂t
Ψ̂h(r, t) =

{
v̂1(r, t) +

∫
dr′v̂2(r, r

′, t)Ψ̂†
h(r

′, t)Ψ̂h(r
′, t)

}
Ψ̂h(r, t). (1.63)
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The ensemble average of an operator Â(t) is written by the density matrix in the Heisenberg

representation as:

[A(t)] =
∑
k

wk⟨Ψs,k(t0)|Û †
s (t, t0)Âs(t)Ûs(t, t0)|Ψs,k(t0)⟩,

=
∑
k

wk⟨Ψs,k(t0)|Âh(t)|Ψs,k(t0)⟩,

=
∑
i,j

∑
k

wk⟨Ψs,k(t0)|χi⟩⟨χi|Âh(t)|χj⟩⟨χj |Ψs,k(t0)⟩,

=
∑
i,j

⟨χj |
[∑

k

wk|Ψs,k(t0)⟩⟨Ψs,k(t0)|
]
|χi⟩⟨χi|Âh(t)|χj⟩,

=
∑
i,j

⟨χj |ρ̂h(t)|χi⟩⟨χi|Âh(t)|χj⟩,

= tr(ρA) (1.64)

with the definition of the density matrix operator in the Heisenberg representation:

ρ̂h(t) =
∑
k

wk|Ψs,k(t0)⟩⟨Ψs,k(t0)|. (1.65)

Thus, we see that the the density matrix operator in the Heisenberg representation is independent of

time:
∂

∂t
ρ̂h(t) = 0. (1.66)

(3) Interaction representation

Suppose that the Hamiltonian Ĥs is decomposed into a time independent part Ĥs,0 and a time de-

pendent part Ĥs,1.

Ĥs = Ĥs,0 + Ĥs,1(t). (1.67)

In this case, let us consider to express the expectation value in a interaction representation:

⟨Ψs(t)|Âs(t)|Ψs(t)⟩ = ⟨Ψs(t)|e−
i
h̄
Ĥs,0te

i
h̄
Ĥs,0tÂs(t)e

− i
h̄
Ĥs,0te

i
h̄
Ĥs,0t|Ψs(t)⟩,

= ⟨Ψi(t)|Âi(t)|Ψi(t)⟩, (1.68)

where we defined the wave function Ψi(t) and the operator Âi(t) in the interaction representation as:

|Ψi(t)⟩ = e
i
h̄
Ĥs,0t|Ψs(t)⟩, (1.69)

Âi(t) = e
i
h̄
Ĥs,0tÂs(t)e

− i
h̄
Ĥs,0t. (1.70)

The equations (1.69) and (1.70) present the relation between the Schrodinger and interaction represen-

tations for the state vector and the operator. Differentiating the wave function defined by Eq. (1.69)

with respect to time, and multiplying it by ih̄, we obtain

ih̄
∂

∂t
|Ψi(t)⟩ = ih̄

∂

∂t

(
e

i
h̄
Ĥs,0t|Ψs(t)⟩

)
,

= −Ĥs,0e
i
h̄
Ĥs,0t|Ψs(t)⟩+ e

i
h̄
Ĥs,0t

[
ih̄

∂

∂t
Ûs(t, t0)

]
|Ψs(t0)⟩,

= −Ĥs,0e
i
h̄
Ĥs,0t|Ψs(t)⟩+ e

i
h̄
Ĥs,0tĤsÛs(t, t0)|Ψs(t0)⟩,

= e
i
h̄
Ĥs,0tĤs,1(t)|Ψs(t)⟩,

= e
i
h̄
Ĥs,0tĤs,1(t)e

− i
h̄
Ĥs,0te

i
h̄
Ĥs,0t|Ψs(t)⟩,

= Ĥi,1(t)|Ψi(t)⟩, (1.71)
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where we defined

Ĥi,1(t) = e
i
h̄
Ĥs,0tĤs,1(t)e

− i
h̄
Ĥs,0t. (1.72)

In the derivation of Eq. (1.71), we used Ĥs,0e
i
h̄
Ĥs,0t = e

i
h̄
Ĥs,0tĤs,0. This is a consequence of the fact

that if a function can be Taylor expanded, the following commutation relation is proven:

Âf(Â) = f(Â)Â. (1.73)

Differentiating the operator defined by Eq. (1.70) with respect to time, and multiplying it by ih̄, we

obtain

ih̄
∂

∂t
Âi(t) = −Ĥs,0e

i
h̄
Ĥs,0tÂs(t)e

− i
h̄
Ĥs,0t + e

i
h̄
Ĥs,0t

(
ih̄

∂

∂t
Âs(t)

)
e−

i
h̄
Ĥs,0t + e

i
h̄
Ĥs,0tÂs(t)e

− i
h̄
Ĥs,0tĤs,0,

= Âi(t)Ĥs,0 − Ĥs,0Âi(t) + e
i
h̄
Ĥs,0t

(
ih̄

∂

∂t
Âs(t)

)
e−

i
h̄
Ĥs,0t,

= [Âi(t), Ĥs,0] + e
i
h̄
Ĥs,0t

(
ih̄

∂

∂t
Âs(t)

)
e−

i
h̄
Ĥs,0t. (1.74)

By doing the same analysis as for the Heisenberg representation, we can define the creation, destruc-

tion, and field operators as follows:

â†i,i(t) = e
i
h̄
Ĥs,0tâ†s,ie

− i
h̄
Ĥs,0t,

âi,i(t) = e
i
h̄
Ĥs,0tâs,ie

− i
h̄
Ĥs,0t, (1.75)

Ψ̂†
i (r, t) =

∑
i

Ψ†
s,i(r, t0)â

†
i,i(t),

Ψ̂i(r, t) =
∑
i

Ψs,i(r, t0)âi,i(t). (1.76)

{âi,i, â†i,j} = δij ,

{âi,i, âi,j} = {â†i,i, â
†
i,j} = 0, (1.77)

{Ψ̂i(r, t), Ψ̂
†
i (r

′, t)} = δ(r− r′),

{Ψ̂i(r, t), Ψ̂i(r
′, t)} = {Ψ̂†

i (r, t), Ψ̂
†
i (r

′, t)} = 0. (1.78)

Using the field operator in the interaction representation, we can write the Hamiltonian as:

Ĥi = Ĥi,0 + Ĥi,1 (1.79)

with

Ĥi,0 =

∫
drΨ̂†

i (r, t)v̂1,0(r)Ψ̂i(r, t)

+
1

2

∫ ∫
drdr′Ψ̂†

i (r, t)Ψ̂
†
i (r

′, t)v̂2,0(r, r
′)Ψ̂i(r

′, t)Ψ̂i(r, t), (1.80)

Ĥi,1 =

∫
drΨ̂†

i (r, t)v̂1,1(r, t)Ψ̂i(r, t)

+
1

2

∫ ∫
drdr′Ψ̂†

i (r, t)Ψ̂
†
i (r

′, t)v̂2,1(r, r
′, t)Ψ̂i(r

′, t)Ψ̂i(r, t), (1.81)
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where v̂1,0 and v̂2,0 are time independent one-particle and two-particle potentials, respectively, and

v̂1,1 and v̂2,1 are time dependent one-particle and two-particle potentials, respectively.

The time derivative of the field operator given by Eq. (1.76) can be obtained by making use of

Eq. (1.74). Since in this case the second term in Eq. (1.74) is zero due to Eq. (1.41), we only have to

consider [Ψ̂i(r
′′, t), Ĥs,0(r, t)]. Noting that

Ĥi,0(t) = e
i
h̄
Ĥs,0tĤs,0(t)e

− i
h̄
Ĥs,0t = Ĥs,0(t)e

i
h̄
Ĥs,0te−

i
h̄
Ĥs,0t = Ĥs,0(t), (1.82)

and using Eqs. (1.61) and (1.62), we can evaluate [Ψ̂i(r
′′, t), Ĥs,0(r, t)] as follows:

[Ψ̂i(r
′′, t), Ĥs,0(r, t)] = [Ψ̂i(r

′′, t), Ĥi,0(r, t)],

=

∫
drv̂1,0(r)

[
Ψ̂i(r

′′, t), Ψ̂†
i (r, t)Ψ̂i(r, t)

]
+
1

2

∫ ∫
drdr′v̂2,0(r, r

′)
[
Ψ̂i(r

′′, t), Ψ̂†
i (r, t)Ψ̂

†
i (r

′, t)Ψ̂i(r
′, t)Ψ̂i(r, t)

]
,

=

{
v̂1,0(r

′′, t) +

∫
dr′v̂2,0(r

′′, r′, t)Ψ̂†
i (r

′, t)Ψ̂i(r
′, t)

}
Ψ̂i(r

′′, t). (1.83)

Thus, we can write

ih̄
∂Ψ̂i(r, t)

∂t
=

{
v̂1,0(r

′′, t) +

∫
dr′v̂2,0(r

′′, r′, t)Ψ̂†
i (r

′, t)Ψ̂i(r
′, t)

}
Ψ̂i(r

′′, t). (1.84)

Using Eq. (1.68), the ensemble average of an operator Â(t) is written by the density matrix in the

interaction representation as:

[A(t)] =
∑
k

wk⟨Ψs,k(t)|Âs(t)|Ψs,k(t)⟩,

=
∑
k

wk⟨Ψi,k(t)|Âi(t)|Ψi,k(t)⟩,

=
∑
i,j

∑
k

wk⟨Ψi,k(t)|χi⟩⟨χi|Âi(t)|χj⟩⟨χj |Ψi,k(t)⟩,

=
∑
i,j

⟨χj |
[∑

k

wk|Ψi,k(t)⟩⟨Ψi,k(t)|
]
|χi⟩⟨χi|Âi(t)|χj⟩,

=
∑
i,j

⟨χj |ρ̂i(t)|χi⟩⟨χi|Âi(t)|χj⟩,

= tr(ρA) (1.85)

with the definition of the density matrix operator in the interaction representation:

ρ̂i(t) =
∑
k

wk|Ψi,k(t)⟩⟨Ψi,k(t)|. (1.86)

Noting that Ψi,k obeys Eq. (1.74) and assuming that wk is independent of time, the time derivative

of Eq. (1.86) leads to

ih̄
∂

∂t
ρ̂i(t) =

∑
k

wk

[(
ih̄

∂

∂t
|Ψi,k⟩

)
⟨Ψi,k|+ |Ψi,k⟩

(
ih̄

∂

∂t
⟨Ψi,k|

)]
,

=
∑
k

wk

[
Ĥi,1|Ψi,k⟩⟨Ψi,k| − |Ψi,k⟩⟨Ψi,k|Ĥi,1

]
,

= −[ρ̂i(t), Ĥi,1(t)]. (1.87)
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The time evolution operator in the interaction representation can be found by starting from

Eq. (1.69)

|Ψi(t)⟩ = e
i
h̄
Ĥs,0t|Ψs(t)⟩,

= e
i
h̄
Ĥs,0tÛs(t, t0)e

− i
h̄
Ĥs,0t0

(
e

i
h̄
Ĥs,0t0 |Ψs(t0)⟩

)
,

= Ûi(t, t0)|Ψi(t0)⟩

with the definion:

Ûi(t, t0) = e
i
h̄
Ĥs,0tÛs(t, t0)e

− i
h̄
Ĥs,0t0 . (1.88)

Differentiating Eq. (1.88) with respect to time, and multiplying it by ih̄, we obtain the equation

govering the time evoultion of the time evoultion operator in the interaction representation:

ih̄
∂

∂t
Ûi(t, t0) = −Ĥs,0e

i
h̄
Ĥs,0tÛs(t, t0)e

− i
h̄
Ĥs,0t0 + e

i
h̄
Ĥs,0t

(
ih̄

∂

∂t
Ûs(t, t0)

)
e−

i
h̄
Ĥs,0t0 ,

= −Ĥs,0Ûi(t, t0) + e
i
h̄
Ĥs,0tHsÛs(t, t0)e

− i
h̄
Ĥs,0t0 ,

= −
(
e

i
h̄
Ĥs,0tĤs,0e

− i
h̄
Ĥs,0t

)
Ûi(t, t0) +

(
e

i
h̄
Ĥs,0tHse

− i
h̄
Ĥs,0t

) (
e

i
h̄
Ĥs,0tÛs(t, t0)e

− i
h̄
Ĥs,0t0

)
,

= Ĥi,1(t)Ûi(t, t0). (1.89)

Also, using Eqs. (1.1), (1.44), (1.69), (1.70), and (1.88), the relations between the Heisenberg and

interaction representations can be expressed for the state vector and the operator as:

|Ψh⟩ = Ûs(0, t)e
− i

h̄
Ĥs,0t|Ψi(t)⟩ = Ûi(0, t)|Ψi(t)⟩, (1.90)

Âh(t) = Ûi(0, t)Âi(t)Ûi(t, 0). (1.91)

1.5 Formal solution of the time evolution operator

The formal expression is derived for the time evolution operator Ûi in the interaction representation.

Starting from the differential equation Eq. (1.89), we formally integrate the equation as:

∫ Ûi(t,t0)

Ûi(t0,t0)
dÛi = − i

h̄

∫ t

t0
dt1Ĥi,1(t1)Ûi(t1, t0),

Ûi(t, t0)− Ûi(t0, t0) = − i

h̄

∫ t

t0
dt1Ĥi,1(t1)Ûi(t1, t0), (1.92)

Noting Ûi(t0, t0) = 1 leads to

Ûi(t, t0) = 1− i

h̄

∫ t

t0
dt1Ĥi,1(t1)Ûi(t1, t0). (1.93)

As well, the time evolution operator Ûi(t1, t0) in the right hand side of Eq. (1.93) can also be expressed

by

Ûi(t1, t0) = 1− i

h̄

∫ t1

t0
dt2Ĥi,1(t2)Ûi(t2, t0), (1.94)
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where t1 > t2. Putting Eq. (1.94) into Eq. (1.93) gives

Ûi(t, t0) = 1 +

(
− i

h̄

)∫ t

t0
dt1Ĥi,1(t1) +

(
− i

h̄

)2 ∫ t

t0
dt1

∫ t1

t0
dt2Ĥi,1(t1)Ĥi,1(t2)Ûi(t2, t0).

(1.95)

By applying the same procedure repeatedly, we obtain the formal solution of the time evolution

operator as:

Ûi(t, t0) =
∞∑
n=0

(
− i

h̄

)n ∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn−1

t0
dtnĤi,1(t1)Ĥi,1(t2) · · · Ĥi,1(tn), (1.96)

where t1 > t2 > · · · > tn−1 > tn, and the term for n = 0 in the summation means the identity

operator. It is noted that Ĥi,1 with later time are ordered in the left side in the product of Ĥi,1 being

the integrand in the integration. Let us consider to make the integration range unique, i.e., from t0 to

t. When we simply change the integration range into that from t0 to t for every integration, the time

ordering that later time are placed at the left side cannot be preserved. However, by noting that t1,

t2, · · ·, tn are just arbitrary variables, we can permutate the variables t1, t2, · · ·, tn so that the time

ordering can be kept. Moreover, considering that the number of permutation for the variables is n!,

Eq. (1.96) can be eventually rewritten by

Ûi(t, t0) =
∞∑
n=0

(
− i

h̄

)n 1

n!

∫ t

t0
dt1

∫ t

t0
dt2 · · ·

∫ t

t0
dtnT [Ĥi,1(t1)Ĥi,1(t2) · · · Ĥi,1(tn)], (1.97)

where T [· · ·] is a time ordering operator which orders operators in the parenthesis in order of a rule

that one with later time is put to the left side. Since the expansion given by Eq. (1.97) can be formally

regarded as the Taylor expansion of the exponential funtion, sometimes, Eq. (1.97) is written as

Ûi(t, t0) = T

[
exp

(
− i

h̄

∫ t

t0
dt′Ĥi,1(t

′)]

)]
. (1.98)

Although the entity of Eq. (1.98) is not so clear at glance, it just means Eq. (1.97).

Time ordering operator

Let us reconsider the time ordering operator T [· · ·] appearing in Eq. (1.97). The precise definition

of the time ordering operator is that T [· · ·] orders field operators in the parenthesis in order of a rule

that one with later time is put to the left side. In addition, if the field operators are for Fermion, a

factor (−1)P is attached, where P is the number of permutation. For example, if Ψ̂i(ti) (i = 1 − 4)

are Fermion field operators and t3 > t4 > t1 > t2, then

T
[
Ψ̂1(t1)Ψ̂2(t2)Ψ̂3(t3)Ψ̂4(t4)

]
= (−1)4Ψ̂3(t3)Ψ̂4(t4)Ψ̂1(t1)Ψ̂2(t2),

= Ψ̂3(t3)Ψ̂4(t4)Ψ̂1(t1)Ψ̂2(t2), (1.99)

In Eq. (1.97), we did not consider the factor (−1)P in the time ordering operator. This is because

Ĥi,1 consists of an even number of field operators. As shown above, for example, it is found that

the following permutation (Ψ̂1(t1)Ψ̂2(t2))(Ψ̂3(t3)Ψ̂4(t4)) → (Ψ̂3(t3)Ψ̂4(t4))(Ψ̂1(t1)Ψ̂2(t2)) is made by

permutating the operators four times. Thus, we find that the factor alway cancels in the time ordering

14



operator in Eq. (1.97). Also, it is noted how the case with t1 = t2 should be treated. In our treatment,

we define for Fermion as

T [Â(t)B̂(t′)] = θ(t− t′)Â(t)B̂(t′)− θ̄(t′ − t)B̂(t′)Â(t), (1.100)

where two kinds of step functions θ(x) and θ̄(x) are defined by

θ(x) =

{
1 for x ≥ 0

0 for 0 > x
, (1.101)

θ̄(x) =

{
1 for x > 0

0 for 0 ≥ x
, (1.102)
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Chapter 2

Equilibrium Green functions (EGF)

2.1 Definition

In this section, we discuss equilibrium Green functions. First, let us define1 the one particle causal

Green function Gc(rt, r′t′) as:

Gc(rt, r′t′) = −i

(
θ(t− t′)

⟨Ψh|Ψ̂h(rt)Ψ̂
†
h(r

′t′)|Ψh⟩
⟨Ψh|Ψh⟩

∓ θ̄(t′ − t)
⟨Ψh|Ψ̂†

h(r
′t′)Ψ̂h(rt)|Ψh⟩

⟨Ψh|Ψh⟩

)
,

= −i
⟨Ψh|T [Ψ̂h(rt)Ψ̂

†
h(r

′t′)]|Ψh⟩
⟨Ψh|Ψh⟩

(2.1)

with the definition of T [· · ·], so called the time-ordering operator:

T [Â(t)B̂(t′)] = θ(t− t′)Â(t)B̂(t′)∓ θ̄(t′ − t)B̂(t′)Â(t), (2.2)

where Â and B̂ are field operators, and the upper and lower signs are for Fermion and Boson,

respectively.2 In Eq. (2.1), Ψh is the ground state of an interacting system in the Heisenberg repre-

sentation, and satisfies the following time independent Schrodinger equation:

Ĥh|Ψh⟩ = E|Ψh⟩. (2.3)

Note that the suffix for time is dropped in the notation, because of the time independence of Ψh.

Since the notation of Eq. (2.1) is too weighty, let us introduce a simplified notation as follows:

⟨T [Ψ̂h(rt)Ψ̂
†
h(r

′t′)]⟩ ≡
⟨Ψh|T [Ψ̂h(rt)Ψ̂

†
h(r

′t′)]|Ψh⟩
⟨Ψh|Ψh⟩

. (2.4)

Then, we can simply write the causal Green function as:

Gc(rt, r′t′) = −i⟨T [Ψ̂h(rt)Ψ̂
†
h(r

′t′)]⟩ (2.5)

Considering Eq. (1.63), the time derivative of Gc(rt, r′t′) with respect to the time t becomes:

ih̄
∂

∂t
Gc(rt, r′t′) = −i

(
ih̄δ(t− t′)⟨Ψ̂h(rt)Ψ̂

†
h(r

′t′)⟩ ± ih̄δ(t− t′)⟨Ψ̂†
h(r

′t′)Ψ̂h(rt)⟩

1 Green functions defined in many particle physics are not those defined in a mathematical sense.
2 The time ordering operator is just same as that discussed in the previous section
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+⟨T
[(

ih̄
∂

∂t
Ψ̂h(rt)

)
Ψ̂†

h(r
′t′)

]
⟩
)
,

= −i
(
ih̄δ(t− t′)⟨[Ψ̂h(rt), Ψ̂

†
h(r

′t)]±⟩+ ⟨T [v̂1(r, t)Ψ̂h(rt)Ψ̂
†
h(r

′t′)]⟩

+⟨v̂′2(r, t)Ψ̂h(rt)Ψ̂
†
h(r

′t′)⟩ − ⟨Ψ̂†
h(r

′t′)v̂′2(r, t)Ψ̂h(rt)⟩
)
,

= h̄δ(t− t′)δ(r− r′) + v̂1(r, t)
(
−i⟨T [Ψ̂h(rt)Ψ̂

†
h(r

′t′)]⟩
)

+⟨v̂′2(r, t)Ψ̂h(rt)Ψ̂
†
h(r

′t′)⟩ − ⟨Ψ̂†
h(r

′t′)v̂′2(r, t)Ψ̂h(rt)⟩,
= h̄δ(t− t′)δ(r− r′) + v̂1(r, t)G

c(rt, r′t′)

+⟨v̂′2(r, t)Ψ̂h(rt)Ψ̂
†
h(r

′t′)⟩ − ⟨Ψ̂†
h(r

′t′)v̂′2(r, t)Ψ̂h(rt)⟩, (2.6)

where v̂′2(r, t) is a potential related to the two particle operator in Eq. (1.63), and given by

v̂′2(r, t) =

∫
dr′′v̂2(r, r

′′, t)Ψ̂†
h(r

′′, t)Ψ̂h(r
′′, t). (2.7)

Putting Eq. (2.7) into the third and fourth terms in the right hand side of the final line of Eq. (2.6),

we find

⟨v̂′2(rt)Ψ̂h(rt)Ψ̂
†
h(r

′t′)⟩ =

∫
dr′′v̂2(r, r

′′, t)⟨Ψ̂†
h(r

′′t)Ψ̂h(r
′′t)Ψ̂h(rt)Ψ̂

†
h(r

′t′)⟩, (2.8)

⟨Ψ̂†
h(r

′t′)v̂′2(rt)Ψ̂h(rt)⟩, =

∫
dr′′v̂2(r, r

′′, t)⟨Ψ̂†
h(r

′t′)Ψ̂†
h(r

′′t)Ψ̂h(r
′′t)Ψ̂h(rt)⟩. (2.9)

The third and fourth terms can be written by a two-particle Green function, although we do not

discuss about it here. If the Hamiltonian does not contain the two particle operator, Eq. (2.6) recovers

a differential equation determing the Green function in a mathematical sense as follows:(
ih̄

∂

∂t
− v̂1(r, t)

)
Gc(rt, r′t′) = h̄δ(t− t′)δ(r− r′). (2.10)

The problem is how one can relate the causal Green function with physical quantities. Like the

derivation of Eq. (1.52), in general, the one particle operator Ôh in the second quantized Heisenberg

representation is given by

Ôh(rt) =

∫
dr′Ψ̂†

h(r
′t)ô(rt, r′)Ψ̂h(r

′t). (2.11)

The expection value of the one particle operator is evaluated by

⟨Ôh(rt)⟩ =
⟨Ψh|

∫
dr′Ψ̂†

h(r
′t)ô(rt, r′)Ψ̂h(r

′t)|Ψh⟩
⟨Ψh|Ψh⟩

, (2.12)

=

∫
dr′⟨Ψ̂†

h(r
′t)ô(rt, r′)Ψ̂h(r

′t)⟩,

= lim
t′→t+

lim
r′′→r′

∫
dr′ô(rt, r′)⟨Ψ̂†

h(r
′′t)Ψ̂h(r

′t′)⟩,

= ∓i lim
t′→t+

lim
r′′→r′

∫
dr′ô(rt, r′)

(
±i⟨Ψ̂†

h(r
′′t)Ψ̂h(r

′t′)⟩
)
,

= ∓i lim
t′→t+

lim
r′′→r′

∫
dr′ô(rt, r′)Gc(r′′t, r′t′),

= ∓i lim
r′′→r′

∫
dr′ô(rt, r′)Gc(r′′t, r′t+), (2.13)
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where t+ stands for the time positively infinitely later than the time t, and in the final line limt′→t+

is simplified by just putting t+ into t′. For example, when we consider the number density operator,

the operator ô(rt, r′) is replaced by n̂(r) defined by

n̂(r) = δ(r− r′). (2.14)

Note that this is the definition of the number density operator in the second quantization, since we

do not need to consider the summation over the index of particle in this case. Putting Eq. (2.14) into

Eq. (2.13), we get the number density as:

⟨n̂(r)⟩ = ∓iGc(rt, rt+). (2.15)

Also, it is convenient for later discussion to define four Green functions:

Retarded Green function:

Gr(rt, r′t′) = −iθ(t− t′)⟨{Ψ̂h(rt), Ψ̂
†
h(r

′t′)}⟩,
= −iθ(t− t′)⟨Ψ̂h(rt)Ψ̂

†
h(r

′t′)⟩ − iθ(t− t′)⟨Ψ̂†
h(r

′t′)Ψ̂h(rt)⟩. (2.16)

Advanced Green function:

Ga(rt, r′t′) = iθ̄(t′ − t)⟨{Ψ̂h(rt), Ψ̂
†
h(r

′t′)}⟩,
= iθ̄(t′ − t)⟨Ψ̂h(rt)Ψ̂

†
h(r

′t′)⟩+ iθ̄(t′ − t)⟨Ψ̂†
h(r

′t′)Ψ̂h(rt)⟩. (2.17)

Lesser Green function:

G<(rt, r′t′) = i⟨Ψ̂†
h(r

′t′)Ψ̂h(rt)⟩ (2.18)

Greater Green function:

G>(rt, r′t′) = −i⟨Ψ̂h(rt)Ψ̂
†
h(r

′t′)⟩ (2.19)

They are not independent of each other, including the causal Green function. Several relations can be

found as:

Gr(rt, r′t′)−Ga(rt, r′t′) = −i
(
θ(t− t′) + θ̄(t′ − t)

)
⟨Ψ̂h(rt)Ψ̂

†
h(r

′t′)⟩+ ⟨Ψ̂†
h(r

′t′)Ψ̂h(rt)⟩,
= G>(rt, r′t′)−G<(rt, r′t′). (2.20)

Gc(rt, r′t′) = −iθ(t− t′)⟨Ψ̂h(rt)Ψ̂
†
h(r

′t′)⟩ ± iθ̄(t′ − t)⟨Ψ̂†
h(r

′t′)Ψ̂h(rt)⟩,
= θ(t− t′)G>(rt, r′t′)± θ̄(t′ − t)G<(rt, r′t′). (2.21)

Gr(rt, r′t′) = −iθ(t− t′)⟨Ψ̂h(rt)Ψ̂
†
h(r

′t′)⟩ − iθ(t− t′)⟨Ψ̂†
h(r

′t′)Ψ̂h(rt)⟩,
= θ(t− t′)G>(rt, r′t′)− θ(t− t′)G<(rt, r′t′). (2.22)

Ga(rt, r′t′) = iθ̄(t′ − t)⟨Ψ̂h(rt)Ψ̂
†
h(r

′t′)⟩+ iθ̄(t′ − t)⟨Ψ̂†
h(r

′t′)Ψ̂h(rt)⟩,
= −θ̄(t′ − t)G>(rt, r′t′) + θ̄(t′ − t)G<(rt, r′t′). (2.23)

In addition, it is possible to express the physical quantities using G> or G< such as

⟨n̂(r)⟩ = ∓iG<(rt, rt).
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2.2 Gell-Mann and Low theorem

2.3 Perturbation expansion

We now consider the perturbation expansion of the causal Green function. The purpose of the per-

turbation expansion is to develop a way of evaluating the Green function by using the ground state

of a non-interacting system. Let us start our discussion by expressing the expectation values in the

right hand side of the first line of Eq. (2.1) in the interaction represenation. Putting Eqs. (1.90) and

(1.91) into the expectation values in Eq. (2.1), we obtain

In case of t > t′,

⟨Ψh|Ψ̂h(rt)Ψ̂
†
h(r

′t′)|Ψh⟩
⟨Ψh|Ψh⟩

=
⟨Ψi(t)|Ûi(t, 0)Ûi(0, t)Ψ̂i(rt)Ûi(t, 0)Ûi(0, t

′)Ψ̂†
i (r

′t′)Ûi(t
′, 0)Ûi(0, t

′)|Ψi(t
′)⟩

⟨Ψi(t)|Ûi(t, 0)Ûi(0, t)Ψi(t)⟩
,

=
⟨Ψi(t)|Ψ̂i(rt)Ûi(t, t

′)Ψ̂†
i (r

′t′)|Ψi(t
′)⟩

⟨Ψi(t)|Ψi(t)⟩
,

=

(
⟨Φi|Ûi(+∞,0)

⟨Φi|Ûi(+∞,0)|Φi⟩

)
Ûi(0, t)Ψ̂i(rt)Ûi(t, t

′)Ψ̂†
i (r

′t′)Ûi(t
′, 0)

(
Ûi(0,−∞)|Φi⟩

⟨Φi|Ûi(0,−∞)|Φi⟩

)
(

⟨Φi|Ûi(+∞,0)

⟨Φi|Ûi(+∞,0)|Φi⟩

)
Ûi(0, t)Ûi(t, 0)

(
Ûi(0,−∞)|Φi⟩

⟨Φi|Ûi(0,−∞)|Φi⟩

) ,

=
⟨Φi|T [Ûi(+∞, t)Ûi(t, t

′)Ûi(t
′,−∞)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩
⟨Φi|Ŝi|Φi⟩

,

=
⟨Φi|T [ŜiΨ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩
⟨Φi|Ŝi|Φi⟩

, (2.24)

In case of t′ > t,

⟨Ψh|Ψ̂†
h(r

′t′)Ψ̂h(rt)|Ψh⟩
⟨Ψh|Ψh⟩

=
⟨Ψi(t

′)|Ûi(t
′, 0)Ûi(0, t

′)Ψ̂†
i (r

′t′)Ûi(t
′, 0)Ûi(0, t)Ψ̂i(rt)Ûi(t, 0)Ûi(0, t)|Ψi(t)⟩

⟨Ψi(t)|Ûi(t, 0)Ûi(0, t)Ψi(t)⟩
,

=
⟨Ψi(t

′)|Ψ̂†
i (r

′t′)Ûi(t
′, t)Ψ̂i(rt)|Ψi(t)⟩

⟨Ψi(t)|Ψi(t)⟩
,

=

(
⟨Φi|Ûi(+∞,0)

⟨Φi|Ûi(+∞,0)|Φi⟩

)
Ûi(0, t

′)Ψ̂i(r
′t′)Ûi(t

′, t)Ψ̂†
i (rt)Ûi(t, 0)

(
Ûi(0,−∞)|Φi⟩

⟨Φi|Ûi(0,−∞)|Φi⟩

)
(

⟨Φi|Ûi(+∞,0)

⟨Φi|Ûi(+∞,0)|Φi⟩

)
Ûi(0, t)Ûi(t, 0)

(
Ûi(0,−∞)|Φi⟩

⟨Φi|Ûi(0,−∞)|Φi⟩

) ,

=
⟨Φi|T [Ûi(+∞, t′)Ûi(t

′, t)Ûi(t,−∞)Ψ̂†
i (r

′t′)Ψ̂i(rt)]|Φi⟩
⟨Φi|Ŝi|Φi⟩

,

= ∓
⟨Φi|T [ŜiΨ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩
⟨Φi|Ŝi|Φi⟩

, (2.25)

where Si is the S-matrix defined by

Ŝi = Ûi(+∞,−∞). (2.26)

It should be noted that the permutation on Ûi does not change the sign, since Ĥi, being the component

of Ûi, consists of an even number of field operators as mentioned before. As a result, one can see that
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the both cases, t > t′ and t′ > t, give the same expression, while the sign is different. By inserting

these expressions into Eq. (2.1), we can express the causal Green function as

Gc(rt, r′t′) = −i
⟨Φi|T [ŜiΨ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩
⟨Φi|Ŝi|Φi⟩

. (2.27)

Furthermore, as discussed before, Ŝi can be expanded using Eq. (1.97). So, putting Eq. (1.97) into

Eq. (2.27), we obtain the perturbation expansion of the Green function as:

Gc(rt, r′t′) = −i

∑∞
n=0

(
− i

h̄

)n
1
n!

∫∞
−∞ dt1 · · ·

∫∞
−∞ dtn⟨Φi|T [Ĥi,1(t1) · · · Ĥi,1(tn)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩∑∞
n=0

(
− i

h̄

)n
1
n!

∫∞
−∞ dt1 · · ·

∫∞
−∞ dtn⟨Φi|T [Ĥi,1(t1) · · · Ĥi,1(tn)]|Φi⟩

.

(2.28)

If Ĥi,1 contains just the one-particle interaction in Eq. (1.80) such as

Ĥi,1 =

∫
drΨ̂†

i (rt)v̂1,1(rt)Ψ̂i(rt), (2.29)

then the numerator in Eq. (2.28) can be explicitly expanded, by letting it iG̃c, as

iG̃c(rt, r′t′) = iGc
0(rt, r

′t′)

+

(
− i

h̄

)∫
dt1

∫
dr1v̂1,1(r1t1)⟨Φi|T [Ψ̂†

i (r1t1)Ψ̂i(r1t1)Ψ̂i(rt)Ψ̂
†
i (r

′t′)]|Φi⟩,

+
1

2

(
− i

h̄

)2 ∫
dt1

∫
dr1v̂1,1(r1t1)

∫
dt2

∫
dr2v̂1,1(r2t2)

×⟨Φi|T [Ψ̂†
i (r1t1)Ψ̂i(r1t1)Ψ̂

†
i (r2t2)Ψ̂i(r2t2)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩+ · · · ,
(2.30)

where Gc
0(rt, r

′t′) is the Green function of the non-interacting system given by Ĥi,0, and defined by

iGc
0(rt, r

′t′) = ⟨Φi|T [Ψ̂i(rt)Ψ̂
†
i (r

′t′)]|Φi⟩. (2.31)

2.4 The Wick theorem

A systematic way of evaluating the higher order terms in Eq. (2.30) is discussed in this section. The

idea is to express the time ordering operator (or T-product) T [· · ·] by using the normal ordering

operator (or N-product) N [· · ·], where, for example, N [· · ·] operates such as

N [Ψ̂uΨ̂
†
oΨ̂u] = −Ψ̂†

oΨ̂uΨ̂u. (2.32)

The operator N [· · ·] permutates the destruction and creation field operators so that all the destruction

operators can be arranged to the right hand side of the creation operator, and a factor (−1)P with

the number of permutations P is attached in case of Fermion. The field operators such as Ψ̂u and Ψ̂o

in Eq. (2.32) will be discussed later. The systematic way is based on the Wick theorem which is the

subject of this section.

If the reference Hamiltonian given by Eq. (1.80) consists of only the time-independent one-particle

contribution, one can write it in the Schrodinger representation as:

Ĥs,0 =

∫
drΨ̂†

s(r)v̂1,0(r)Ψ̂s(r),
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=

∫
drΨ†

s,i(r)v̂1,0(r)Ψs,j(r)â
†
s,iâs,j ,

=
∞∑
i=1

h̄wiâ
†
s,iâs,i, (2.33)

where Ψs,i(r) obeys

v̂1,0(r)Ψs,i(r) = h̄wiΨs,i(r). (2.34)

It is noted that only the diagonal terms survive due to the orthonormality of {Ψ} in Eq. (2.33). Then,

the destruction operator â can be expressed using Eq. (1.70) in the interaction representation as:

âi,i = e
i
h̄
Ĥs,0tâs,ie

− i
h̄
Ĥs,0t,

=

( ∞∏
k=1

eitwkâ
†
s,k

âs,k

)
âs,i

( ∞∏
k′=1

e
−itwk′ â

†
s,k′ âs,k′

)
,

=

(
eitwiâ

†
s,iâs,i

)
âs,i

(
e−itwiâ

†
s,iâs,i

)
,

= e−itwi âs,i. (2.35)

where we used the following relations for i ̸= j, being the consequence of the anticommutation relations,

Eqs. (1.34) and (1.35):

â†s,iâs,iâ
†
s,j âs,j = −â†s,iâ

†
s,j âs,iâs,j = â†s,j â

†
s,iâs,iâs,j = −â†s,j â

†
s,iâs,j âs,i = â†s,j âs,j â

†
s,iâs,i, (2.36)

â†s,j âs,j âs,i = −â†s,j âs,iâs,j = âs,iâ
†
s,j âs,j . (2.37)

The equivalence of the two expressions given in the third and fourth lines of Eq. (2.35) can be confirmed

by applying those to arbitrary abstarct state3 The similar analysis leads to

â†i,i = eitwi â†s,i. (2.38)

Using Eqs. (2.35) and (2.38), the Fermion field operators can be written in the interaction represen-

tation as:

Ψ̂i = Ψ̂u + Ψ̂†
o (2.39)

with the definitions:

Ψ̂u =
∑

i∈unocc
Ψs,i(r)âi,i, (2.40)

Ψ̂†
o =

∑
i∈occ

Ψs,i(r)âi,i. (2.41)

3 By applying âi,i to |Φi⟩ step by step, one can confirm Eq. (2.35) as follows:

âi,i|Φi⟩ = âi,ie
i
h̄
Ĥs,0t|Φs⟩ = âi,i

(∏∞
k=1

e
itwkâ

†
s,k

âs,k

)
|Φs⟩ =

(∏∞
k=1

eitwknk
)(

e
itwiâ

†
s,i

âs,i

)
âs,i

(
e
−itwiâ

†
s,i

âs,i

)
|Φs⟩ =

e−itwini
(∏∞

k=1
eitwknk

)(
e
itwiâ

†
s,i

âs,i

)
âs,i|Φs⟩ = e−itwini

(∏∞
k=1

eitwknk
) (

1 + itwiâ
†
s,iâs,i + · · ·

)
âs,i|Φs⟩ =(∏∞

k=1
eitwknk

)
e−itwini âs,i|Φs⟩, where |Φs⟩ is the abstract state vector in the Schrodinger representation, and nk is

the occupation number of the one-particle state k in |Φs⟩. The factor
(∏∞

k=1
eitwknk

)
in the final expression is implicitly

ignored since the factor cancels out when the expectation value ⟨Φi|Âi|Φi⟩ is considered. Also, ni is 0 or 1 for Fermion,

which allows us to write Eq. (2.35).
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satisfying

Ψ̂uΦi = 0, Ψ̂oΦi = 0. (2.42)

where i ∈ unocc and i ∈ occ stand for the summations over unoccupied and occupied states, respec-

tively, and Φi is the abstract representation of the ground state for the Hamiltonian given by Eq. (2.33).

Since one cannot destruct (create) the unoccuied (occupied) states in Φi anymore, Eq. (2.42) can be

confirmed.

Using Eq. (2.39), the Green function of the non-interacting system Eq. (2.31) can be evaluated

explicitly.

iGc
0(rt, r

′t′) = ⟨Φi|T [Ψ̂i(rt)Ψ̂
†
i (r

′t′)]|Φi⟩,
= ⟨Φi|T [Ψ̂u(rt)Ψ̂

†
u(r

′t′)]|Φi⟩+ ⟨Φi|T [Ψ̂u(rt)Ψ̂o(r
′t′)]|Φi⟩

+⟨Φi|T [Ψ̂†
o(rt)Ψ̂

†
u(r

′t′)]|Φi⟩+ ⟨Φi|T [Ψ̂†
o(rt)Ψ̂o(r

′t′)]|Φi⟩,
= ⟨Φi|T [Ψ̂u(rt)Ψ̂

†
u(r

′t′)]|Φi⟩+ ⟨Φi|T [Ψ̂†
o(rt)Ψ̂o(r

′t′)]|Φi⟩, (2.43)

where the first and fourth terms in the second lind of the right hand side only survive due to Eq. (2.42)

and the absence of a couple of a destruction and the same kind of creation operators. By noting that4

⟨Φi|T [Ψ̂u(rt)Ψ̂
†
u(r

′t′)]|Φi⟩ = ⟨Φi|T

( ∑
i∈unocc

Ψs,i(r)âi,i

) ∑
j∈unocc

Ψ†
s,j(r

′)â†i,j

 |Φi⟩,

=
∑

i,j∈unocc
Ψs,i(r)Ψ

†
s,j(r

′)⟨Φi|T [âi,i(t)â†i,j(t
′)]|Φi⟩,

=
∑

i,j∈unocc
Ψs,i(r)Ψ

†
s,j(r

′)e−itwieit
′wj ⟨Φi|T [âs,iâ†s,j ]|Φi⟩,

=


∑

i∈unocc
Ψs,i(r)Ψ

†
s,i(r

′)e−i(t−t′)wi for t ≥ t′

0 for t′ > t
(2.44)

and

⟨Φi|T [Ψ̂†
o(rt)Ψ̂o(r

′t′)]|Φi⟩ = ⟨Φi|T

(∑
i∈occ

Ψs,i(r)âi,i

) ∑
j∈occ

Ψ†
s,j(r

′)â†i,j

 |Φi⟩,

=
∑

i,j∈occ
Ψs,i(r)Ψ

†
s,j(r

′)e−itwieit
′wj ⟨Φi|T [âs,iâ†s,j ]|Φi⟩,

=


0 for t ≥ t′

−
∑
i∈occ

Ψs,i(r)Ψ
†
s,i(r

′)e−i(t−t′)wi for t′ > t , (2.45)

iGc
0(rt, r

′t′) is explicitly written by

iGc
0(rt, r

′t′) =


∑

i∈unocc
Ψs,i(r)Ψ

†
s,i(r

′)e−i(t−t′)wi for t ≥ t′

−
∑
i∈occ

Ψs,i(r)Ψ
†
s,i(r

′)e−i(t−t′)wi for t′ > t
. (2.46)

4 Since |Φi⟩ = e
i
h̄
Ĥs,0t|Φs⟩ =

∏∞
k=1

e
itwkâ

†
s,k

âs,k |Φs⟩ =
∏∞

k=1
eitwknk |Φs⟩, where Eq. (2.33) is used for Ĥs,0, |Φs⟩ is the

abstract state vector in the Schrodinger representation, and nk is the occupation number of the one-particle state k in

|Φs⟩, the expectation value ⟨Φi|T [âi,i(t)â
†
i,j(t

′)]|Φi⟩ can be evaluated as ⟨Φs|T [âi,i(t)â
†
i,j(t

′)]|Φs⟩.
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When we transform T [· · ·] into N [· · ·], it is important to know the difference between them. Thus,

we now define the contraction defined by

Â.B̂. = T [AB]−N [AB]. (2.47)

The contraction has the following properties:

Â.B̂. = −B̂.Â., (2.48)

(Â. + B̂.)Ĉ . = Â.B̂. + Â.Ĉ ., (2.49)

Â.B̂. = 0 if Â and B̂ are anticommutable. (2.50)

Eqs. (2.48) and (2.49) are trivial from the definition, and Eq. (2.50) can be confirmed by noting that

T [ÂB̂] = θ(tA − tB)ÂB̂ − θ̄(tB − tA)B̂Â = ÂB̂ and N [ÂB̂] = ÂB̂ or − B̂Â = ÂB̂. Due to Eq. (2.50),

the following contractions become zero:

Ψ̂.
uΨ̂

.
u = 0, Ψ̂†.

u Ψ̂
†.
u = 0,

Ψ̂.
oΨ̂

.
o = 0, Ψ̂†.

o Ψ̂
†.
o = 0,

Ψ̂.
uΨ̂

†.
o = 0, Ψ̂†.

o Ψ̂
.
u = 0,

Ψ̂.
oΨ̂

†.
u = 0, Ψ̂†.

u Ψ̂
.
o = 0,

Ψ̂.
oΨ̂

.
u = 0, Ψ̂†.

o Ψ̂
†.
u = 0,

Ψ̂.
uΨ̂

.
o = 0, Ψ̂†.

u Ψ̂
†.
o = 0. (2.51)

For example Ψ̂.
uΨ̂

.
u = 0 is confirmed using the distributive properties of the time and normal ordering

operators and Eq. (2.50) as follows:

Ψ̂.
u(t1)Ψ̂

.
u(t2) =

T

( ∑
i∈unocc

Ψs,i(r)âi,i

) ∑
j∈unocc

Ψs,j(r)âi,j

−N

( ∑
i∈unocc

Ψs,i(r)âi,i

) ∑
j∈unocc

Ψs,j(r)âi,j

 ,
=

∑
i,j∈unocc

Ψs,i(r)Ψs,j(r)T [âi,i(t1)âi,j(t2)]−
∑

i,j∈unocc
Ψs,i(r)Ψs,j(r)N [âi,i(t1)âi,j(t2)],

=
∑

i,j∈unocc
Ψs,i(r)Ψs,j(r)e

−it1wie−it2wjT [âs,iâs,j ]−
∑

i,j∈unocc
Ψs,i(r)Ψs,j(r)e

−it1wie−it2wjN [âs,iâs,j ],

=
∑

i,j∈unocc
Ψs,i(r)Ψs,j(r)e

−it1wie−it2wj â.s,iâ
.
s,j ,

= 0. (2.52)

As well, the other relations can be easily confirmed. A little contractions are not zero, and we find

the non-zero ones as follows:

Ψ̂.
u(r1t1)Ψ̂

†.
u (r2t2) =

∑
i,j∈unocc

Ψs,i(r1)Ψ
†
s,j(r2)e

−it1wieit2wj â.s,iâ
†.
s,j ,

=
∑

i ̸=j∈unocc
Ψs,i(r1)Ψ

†
s,j(r2)e

−it1wieit2wj â.s,iâ
†.
s,j

+
∑

i∈unocc
Ψs,i(r1)Ψ

†
s,i(r2)e

−i(t1−t2)wi â.s,iâ
†.
s,i,

=
∑

i∈unocc
Ψs,i(r1)Ψ

†
s,i(r2)e

−i(t1−t2)wi â.s,iâ
†.
s,i,
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=


∑

i∈unocc
Ψs,i(r1)Ψ

†
s,i(r2)e

−i(t1−t2)wi for t1 ≥ t2

0 for t2 > t1

,

=

{
iGc

0(r1t1, r2t2) for t1 ≥ t2

0 for t2 > t1
, (2.53)

Ψ̂†.
o (r1t1)Ψ̂

.
o(r2t2) =

∑
i,j∈occ

Ψs,i(r1)Ψ
†
s,j(r2)e

−it1wieit2wj â.s,iâ
†.
s,j ,

=
∑

i ̸=j∈occ
Ψs,i(r1)Ψ

†
s,j(r2)e

−it1wieit2wj â.s,iâ
†.
s,j

+
∑
i∈occ

Ψs,i(r1)Ψ
†
s,i(r2)e

−i(t1−t2)wi â.s,iâ
†.
s,i,

=
∑
i∈occ

Ψs,i(r1)Ψ
†
s,i(r2)e

−i(t1−t2)wi â.s,iâ
†.
s,i,

=


0 for t1 ≥ t2

−
∑
i∈occ

Ψs,i(r1)Ψ
†
s,i(r2)e

−i(t1−t2)wi for t2 > t1 ,

=

{
0 for t1 ≥ t2

iGc
0(r1t1, r2t2) for t2 > t1

, (2.54)

It should be noted that the normal ordering operator in the derivation of Eqs. (2.53) and (2.54)

operates on not â, but the field operators. Also, it is important that the resultant contractions are

not the operator anymore, and they are just a c-number. Now we can evaluate the contractions of the

field operators itself using Eqs. (2.51), (2.53), and (2.54) as follows:

Ψ̂.
i(rt)Ψ̂

.
i(r

′t′) = (Ψ̂.
u(rt) + Ψ̂†.

o (rt))(Ψ̂
.
u(r

′t′) + Ψ̂†.
o (r

′t′)),

= Ψ̂.
u(rt)Ψ̂

.
u(r

′t′) + Ψ̂.
u(rt)Ψ̂

†.
o (r

′t′) + Ψ̂†.
o (rt)Ψ̂

.
u(r

′t′) + Ψ̂†.
o (rt)Ψ̂

†.
o (r

′t′),

= 0, (2.55)

Ψ̂†.
i (rt)Ψ̂

†.
i (r

′t′) = (Ψ̂†.
u (rt) + Ψ̂.

o(rt))(Ψ̂
†.
u (r

′t′) + Ψ̂.
o(r

′t′)),

= Ψ̂†.
u (rt)Ψ̂

†.
u (r

′t′) + Ψ̂†.
u (rt)Ψ̂

.
o(r

′t′) + Ψ̂.
o(rt)Ψ̂

†.
u (r

′t′) + Ψ̂.
o(rt)Ψ̂

.
o(r

′t′),

= 0, (2.56)

Ψ̂.
i(rt)Ψ̂

†.
i (r

′t′) = (Ψ̂.
u(rt) + Ψ̂†.

o (rt))(Ψ̂
†.
u (r

′t′) + Ψ̂.
o(r

′t′)),

= Ψ̂.
u(rt)Ψ̂

†.
u (r

′t′) + Ψ̂.
u(rt)Ψ̂

.
o(r

′t′) + Ψ̂†.
o (rt)Ψ̂

†.
u (r

′t′) + Ψ̂†.
o (rt)Ψ̂

.
o(r

′t′),

= Ψ̂.
u(rt)Ψ̂

†.
u (r

′t′) + Ψ̂†.
o (rt)Ψ̂

.
o(r

′t′),

= iGc
0(rt, r

′t′). (2.57)

Based on the above discussion, we proceed to the Wick theorem.
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The Wick theorem

The Wick theorem transforms the T-product of field operators Â1 · · · Ân into the sum of N-products

of those as follows:

T [Â1 · · · Ân] = N [Â1 · · · Ân]

+
∑
i,j

(−1)P Â.
iÂ

.
jN [Â1 · · · (ij) · · · Ân]

+
∑
i,j,k,l

(−1)P Â.
iÂ

.
jÂ

.
kÂ

.
lN [Â1 · · · (ijkl) · · · Ân]

+ · · ·
+
∑

(−1)P Â.
iÂ

.
jÂ

.
kÂ

.
l · · · , (2.58)

where N [Â1 · · · (ij) · · · Ân] is the N-product of the remaining field operators after elimination of Âi and

Âj , and P is the number of permutations from Â1 · · · Â1 to ÂiÂjÂ1 · · · (ij) · · · Â1. Also, the last term

means the product of paired contractions of which number is n/2 when n is even, and the product of

paired contractions of which number is (n− 1)/2 and a remaining operator when n is odd.

To prove Eq. (2.58), first let us prove the following lemma:

Lemma 1

If the time associated with B̂ is earliest compared to all the times associated with Â1, · · · , Ân, then

N [Â1 · · · Ân]B̂ = N [Â1 · · · Ân−1]Â
.
nB̂

. + (−1)N [Â1 · · · Ân−2Ân]Â
.
n−1B̂

. + · · ·
+(−1)n−kN [Â1 · · · Ân−(k+1)Ân−(k−1) · · · Ân]Â

.
kB̂

. + · · ·
+(−1)n−1N [Â2 · · · Ân]Â

.
1B̂

. +N [Â1 · · · ÂnB̂] (2.59)

Proof of the lemma 1

(i) If B̂ is the destruction operator, then Â.
kB

. = 0. Also, indeed N [Â1 · · · Ân]B̂ = N [Â1 · · · ÂnB̂] due

to the definition of the N-product. Thus, the lemma is accepted.

(ii) If B̂ is the creation operator, it is possible to assume that Â1, · · · , and Ân are all the destruction

operators. Arbitrary case can be generated by multiplying the both sides by a creation operator Â

from the left side repeatedly and by permutating the order of field operators in the N-product, since

ÂN [Â1 · · ·] = N [ÂÂ1 · · ·] and the changes of sign due to the permutation of the field operators to get

the case in the N-product cancel out.

In this case that B̂ is the creation operator and that Â1, · · · , Ân are all the destruction operators,

the lemma can be proved by the principle of induction. For n = 1, we obtain Â1B̂ = T [Â1B̂] =

A.
1B̂

. +N [A1B̂]. This is the definition of the contaction. Thus, the lemma is accepted. Next, let us

assume that the lemma is accepted for n = m. Letting Â be a destruction operator, we have

N [ÂÂ1 · · · Âm]B̂ = ÂN [Â1 · · · Âm]B̂,

= Â
(
N [Â1 · · · Âm−1]Â

.
mB̂. + (−1)N [Â1 · · · Âm−2Âm]Â.

m−1B̂
. + · · ·

+(−1)m−kN [Â1 · · · Âm−(k+1)Âm−(k−1) · · · Âm]Â.
kB̂

. + · · ·

+(−1)m−1N [Â2 · · · Âm]Â.
1B̂

. +N [Â1 · · · ÂmB̂]
)
,
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= N [ÂÂ1 · · · Âm−1]Â
.
mB̂. + (−1)N [ÂÂ1 · · · Âm−2Âm]Â.

m−1B̂
. + · · ·

+(−1)m−kN [ÂÂ1 · · · Âm−(k+1)Âm−(k−1) · · · Âm]Â.
kB̂

. + · · ·
+(−1)m−1N [ÂÂ2 · · · Âm]Â.

1B̂
. + ÂN [Â1 · · · ÂmB̂], (2.60)

where the last term of the final line in the right hand side is evaluated as:

ÂN [Â1 · · · ÂmB̂] = (−1)mÂB̂Â1 · · · Âm,

= (−1)mT̃ [ÂB̂]Â1 · · · Âm,

= (−1)m(Â.B̂. +N [ÂB̂])Â1 · · · Âm,

= (−1)mN [Â1 · · · Âm]Â.B̂. + (−1)m+1B̂ÂÂ1 · · · Âm,

= (−1)mN [Â1 · · · Âm]Â.B̂. +N [ÂÂ1 · · · ÂmB̂]. (2.61)

By putting Eq. (2.61) into Eq. (2.57), we can get the lemma for n = m + 1. Thus, the lemma is

proven.

Proof of the Wick theorem

The theorem is proven by the principle of induction. For n = 1, we obtain T [Â1Â2] = N [Â1Â2] +

Â.
1Â

.
2. This is the definition of the contaction. Thus, the theorem is accepted. Next, let us assume

that the theorem is accepted for n = m. Letting Âm+1 be a field operator at the earliest time among

Â1, · · · , Âm+1, then

T [Â1 · · · ÂmÂm+1] = T [Â1 · · · Âm]Âm+1

=
(
N [Â1 · · · Âm]

+
∑
i,j

(−1)P Â.
iÂ

.
jN [Â1 · · · (ij) · · · Âm]

+
∑
i,j,k,l

(−1)P Â.
iÂ

.
jÂ

.
kÂ

.
lN [Â1 · · · (ijkl) · · · Âm]

+ · · ·
+
∑

(−1)P Â.
iÂ

.
jÂ

.
kÂ

.
l · · ·

)
Âm+1,

= N [Â1 · · · Âm]Âm+1

+
∑
i,j

(−1)P Â.
iÂ

.
jN [Â1 · · · (ij) · · · Âm]Âm+1

+
∑
i,j,k,l

(−1)P Â.
iÂ

.
jÂ

.
kÂ

.
lN [Â1 · · · (ijkl) · · · Âm]Âm+1

+ · · ·
+
∑

(−1)P Â.
iÂ

.
jÂ

.
kÂ

.
l · · · Âm+1,

=
∑
i

(−1)P Â.
iÂ

.
m+1N [Â1 · · · (im+ 1) · · · Âm+1] +N [Â1 · · · Âm+1]

+
∑
i,j,k,l

(−1)P Â.
iÂ

.
jÂ

.
kÂ

.
m+1N [Â1 · · · (ijk(m+ 1)) · · · Âm+1]

+
∑
i,j

(−1)P Â.
iÂ

.
jN [Â1 · · · (ij) · · · Âm+1]
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+
∑
i,j,k,l

(−1)P Â.
iÂ

.
jÂ

.
kÂ

.
lN [Â1 · · · (ijkl) · · · Âm+1]

+ · · ·
+
∑

(−1)P Â.
iÂ

.
jÂ

.
kÂ

.
l · · · Âm+1

= N [Â1 · · · Âm+1]

+
∑
i,j

(−1)P Â.
iÂ

.
jN [Â1 · · · (ij) · · · Âm+1]

+
∑
i,j,k,l

(−1)P Â.
iÂ

.
jÂ

.
kÂ

.
lN [Â1 · · · (ijkl) · · · Âm+1]

+ · · · (2.62)

+
∑

(−1)P Â.
iÂ

.
jÂ

.
kÂ

.
l · · · ,

where the lemma 1 is used for the derivation. So, we can reproduce the theorem for n = m + 1.

The assumption that Âm+1 is a field operator associated with the earliest time among Â1, · · · , Âm+1

can be eliminated by permutating the field operators in the T- and N-products for arbitrary case of

Eq. (2.63) so that the operator associated with the earliest time can be located at the most right side.

The changes of sign due to the permutation for both the sides in Eq. (2.63) cancel each other. Thus,

the theorem is proven. It is also noted that the Wick theorem can be applied to the field operator Ψ̂i

itself as a consequence of the distributive properties of the T - and N -products.5 Although we have

proved the Wick theorem, the meaning of the summations in Eq. (2.58) is not so clear. Let us see the

formulas upto n = 4 below:

For n = 2

T [Â1Â2] = Â.
1Â

.
2 +N [Â1Â2], (2.63)

For n = 3

T [Â1Â2Â3] = T [Â1Â2]Â3,

= (Â.
1Â

.
2 +N [Â1Â2])Â3,

= N [Â1Â2]Â3 +N [Â3]Â
.
1Â

.
2,

= N [Â1]Â
.
2Â

.
3 −N [Â2]Â

.
1Â

.
3 +N [Â3]Â

.
1Â

.
2 +N [Â1Â2Â3], (2.64)

For n = 4

T [Â1Â2Â3Â4] = T [Â1Â2Â3]Â4,

= (N [Â1]Â
.
2Â

.
3 −N [Â2]Â

.
1Â

.
3 +N [Â3]Â

.
1Â

.
2 +N [Â1Â2Â3])Â4,

= N [Â1]Â4Â
.
2Â

.
3 −N [Â2]Â4Â

.
1Â

.
3 +N [Â3]Â4Â

.
1Â

.
2 +N [Â1Â2Â3]Â4,

= (Â.
1Â

.
4 +N [Â1Â4])Â

.
2Â

.
3 − (Â.

2Â
.
4 +N [Â2Â4])Â

.
1Â

.
3 + (Â.

3Â
.
4 +N [Â3Â4])Â

.
1Â

.
2

+N [Â1Â2]Â
.
3Â

.
4 −N [Â1Â3]Â

.
2Â

.
4 +N [Â2Â3]Â

.
1Â

.
4 +N [Â1Â2Â3Â4],

5 This statement tends to cause a misunderstanding for the treatment of the N -product. Although the Wick theorem

is valid for the field operator Ψ̂i itself, it should be noted that N [Ψ̂iΨ̂
†
i ] ̸= Ψ̂†

i Ψ̂i. This can be easily confirmed as:

N [Ψ̂iΨ̂
†
i ] = N [Ψ̂uΨ̂

†
u] +N [Ψ̂uΨ̂o] +N [Ψ̂†

oΨ̂
†
u] +N [Ψ̂†

oΨ̂o] = Ψ̂†
uΨ̂u + Ψ̂uΨ̂o + Ψ̂†

oΨ̂
†
u + Ψ̂†

oΨ̂o, on the other hand, Ψ̂†
i Ψ̂i =

Ψ̂†
uΨ̂u + Ψ̂oΨ̂u + Ψ̂†

uΨ̂
†
o + Ψ̂oΨ̂

†
o. Therefore, after transforming the T -product using the Wick theorem, the resultant

N -products have to be evaluated based on the field operators Ψ̂o and Ψ̂u.
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= N [Â1Â2Â3Â4] + Â.
1Â

.
2N [Â3Â4]− Â.

1Â
.
3N [Â2Â4] + Â.

1Â
.
4N [Â2Â3]

+Â.
2Â

.
3N [Â1Â4]− Â.

2Â
.
4N [Â1Â3] + Â.

3Â
.
4N [Â1Â2]

+Â.
1Â

.
2Â

.
3Â

.
4 − Â.

1Â
.
3Â

.
2Â

.
4 + Â.

2Â
.
3Â

.
1Â

.
4. (2.65)

As shown above, the T-product of field oprators can be transformed into the sum of the N-products

and a term consisting of the product of contranctions. The expectation values of the N-products for

the ground state Ψi are all zero due to Eq. (2.42). Thus, the last term in Eq. (2.58) only contributes

to the expecation value of the T-product. This is the usefulness of the Wick theorem.

2.5 Dyson’s equation

As discussed in the previous section, by making use of the Wick theorem one can evaluate the expec-

tation value in the second term of Eq. (2.42) as:

⟨Φi|T [Ψ̂†
i (r1t1)Ψ̂i(r1t1)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩ = (Ψ̂†.
i (r1t1)Ψ̂

.
i(r1t1))(Ψ̂

.
i(rt)Ψ̂

†.
i (r

′t′))

−(Ψ̂†.
i (r1t1)Ψ̂

.
i(rt))(Ψ̂

.
i(r1t1)Ψ̂

†.
i (r

′t′))

= −i2Gc
0(r1t1, r1t1)G

c
0(rt, r

′t′) + i2Gc
0(rt, r1t1)G

c
0(r1t1, r

′t′).

(2.66)

Putting Eq. (2.66) into Eq. (2.30) yields

iG̃c(rt, r′t′) = iGc
0(rt, r

′t′)

−
(
− i

h̄

)
iGc

0(rt, r
′t′)

∫
dt1

∫
dr1v̂1,1(r1t1)iG

c
0(r1t1, r1t1)

+

(
− i

h̄

)∫
dt1

∫
dr1iG

c
0(rt, r1t1)v̂1,1(r1t1)iG

c
0(r1t1, r

′t′) + · · · ,

=

(
1−

(
− i

h̄

)∫
dt1

∫
dr1v̂1,1(r1t1)iG

c
0(r1t1, r1t1) + · · ·

)
×
(
iGc

0(rt, r
′t′) +

(
− i

h̄

)∫
dt1

∫
dr1iG

c
0(rt, r1t1)v̂1,1(r1t1)iG

c
0(r1t1, r

′t′) + · · ·
)
,

(2.67)

where the factorized final form can be practically confirmed by expanding higher order terms. Also,

the denominator of Eq. (2.28) can be evaluated using the Wick theorem as:

∞∑
n=0

(
− i

h̄

)n 1

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn⟨Φi|T [Ĥi,1(t1) · · · Ĥi,1(tn)]|Φi⟩

=

(
1−

(
− i

h̄

)∫
dt1

∫
dr1v̂1,1(r1t1)iG

c
0(r1t1, r1t1) + · · ·

)
. (2.68)

Thus, we find that the terms in the first parenthesis in Eq. (2.67) cancel by the denominator. Noting

−i(−i
h̄ )nin+1 = 1

h̄n , finally Eq. (2.28) can be written by

Gc(rt, r′t′) = Gc
0(rt, r

′t′) +
1

h̄

∫
dt1

∫
dr1G

c
0(rt, r1t1)v̂1,1(r1t1)G

c
0(r1t1, r

′t′)

+
1

h̄2

∫
dt1

∫
dr1

∫
dt2

∫
dr2G

c
0(rt, r1t1)v̂1,1(r1t1)G

c
0(r1t1, r2t2)v̂1,1(r2t2)G

c
0(r2t2, r

′t′)

+higher order terms,
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= Gc
0(rt, r

′t′) +
1

h̄

∫
dt1

∫
dr1G

c
0(rt, r1t1)v̂1,1(r1t1)

×
(
Gc

0(r1t1, r
′t′) +

1

h̄

∫
dt2

∫
dr2G

c
0(r1t1, r2t2)v̂1,1(r2t2)G

c
0(r2t2, r

′t′) + · · ·
)

= Gc
0(rt, r

′t′) +
1

h̄

∫
dt1

∫
dr1G

c
0(rt, r1t1)v̂1,1(r1t1)G

c(r1t1, r
′t′). (2.69)

The final result of Eq. (2.69) is called Dyson’s equation for the case that Eq. (2.29) is assumed.
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Chapter 3

Non-equilibrium Green functions

(NEGF)

3.1 Definition

For the equilibrium Green function, the perturbation expansion of the Green function is made through

the Gell-Mann-Low theorem by using the ground state of the non-interacting system. On the other

hand, for the non-equilibrium Green function, the reference state used for the expansion can be

arbitrary state as long as the state is given by the one-particle Hamiltonian. For example, starting

from a state that a conductor is disconnected from infinite leads, where each part is at thermal

equilibrium with each chemical potential, and switching on the interaction between the conductor

and the leads on adiabatically, then the evolving state cannot return to the starting state even if the

interaction is adiabatically switched off. This can be understood by a fact that the state, initially

associated with the conductor, disappear somewhere in the lead at the time when the connection is

fully switched on. In other words, one cannot specify the final state, while one can specify the initial

state. Thus, we expand the non-equilibrium Green function perturbatively using only the initial state.

The Green function defined by Eq. (2.1) in the Heisenberg representation is transformed by an initial

state Φi, which can be related a mixed ensemble, in the interaction representation as:

In case of t > t′,

⟨Ψh|Ψ̂h(rt)Ψ̂
†
h(r

′t′)|Ψh⟩
⟨Ψh|Ψh⟩

=
⟨Φi|Ûi(−∞, 0)Ûi(0, t)Ψ̂i(rt)Ûi(t, t

′)Ψ̂†
i (r

′t′)Ûi(t
′, 0)Ûi(0,−∞)|Φi⟩

⟨Φi|Ûi(−∞, 0)Ûi(0, t)Ûi(t, 0)Ûi(0,−∞)|Φi⟩
,

=
⟨Φi|Ûi(−∞, t)Ψ̂i(rt)Ûi(t, t

′)Ψ̂†
i (r

′t′)Ûi(t
′,−∞)|Φi⟩

⟨Φi|Φi⟩
,

= ⟨Φi|Ûi(−∞,+∞)Ûi(+∞, t)Ψ̂i(rt)Ûi(t, t
′)Ψ̂†

i (r
′t′)Ûi(t

′,−∞)|Φi⟩,
= ⟨Φi|Ûi(−∞,+∞)T [Ûi(+∞, t)Ûi(t, t

′)Ûi(t
′,−∞)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩,
= ⟨Φi|Ŝ†

i T [ŜiΨ̂i(rt)Ψ̂
†
i (r

′t′)]|Φi⟩. (3.1)

In case of t′ > t,

⟨Ψh|Ψ̂†
h(r

′t′)Ψ̂h(rt)|Ψh⟩
⟨Ψh|Ψh⟩

=
⟨Φi|Ûi(−∞, 0)Ûi(0, t

′)Ψ̂i(r
′t′)Ûi(t

′, t)Ψ̂†
i (rt)Ûi(t, 0)Ûi(0,−∞)|Φi⟩

⟨Φi|Ûi(−∞, 0)Ûi(0, t)Ûi(t, 0)Ûi(0,−∞)|Φi⟩
,
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=
⟨Φi|Ûi(−∞, t′)Ψ̂†

i (r
′t′)Ûi(t

′, t)Ψ̂i(rt)Ûi(t,−∞)|Φi⟩
⟨Φi|Φi⟩

,

= ⟨Φi|Ûi(−∞,+∞)Ûi(+∞, t′)Ψ̂†
i (r

′t′)Ûi(t
′, t)Ψ̂i(rt)Ûi(t,−∞)|Φi⟩,

= ⟨Φi|Ûi(−∞,+∞)T [Ûi(+∞, t′)Ûi(t
′, t)Ûi(t,−∞)Ψ̂†

i (r
′t′)Ψ̂i(rt)]|Φi⟩,

= ∓⟨Φi|Ŝ†
i T [ŜiΨ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩. (3.2)

As a result, one can see that the both cases, t > t′ and t′ > t, give the same expression, while the sign

is different. By inserting these expressions into Eq. (2.1), we can express the causal Green function as

Gc(rt, r′t′) = −i⟨Φi|Ŝ†
i T [ŜiΨ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩. (3.3)

It can be seen that the expression is different from the Green function for the equilibrium state

Eq. (2.27). Henceforth, the Green function given by Eq. (3.3) is refered to as the non-equilibrium

Green function. Let us consider the perturbation expansion of Eq. (3.3) by expanding both the Ŝ†
i

and Ŝi. Considering Eqs. (1.97) and (2.26), Ŝ†
i is given by

Ŝ†
i =

∞∑
n=0

(
i

h̄

)n 1

n!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 · · ·

∫ ∞

−∞
dtn

{
T [Ĥi,1(t1)Ĥi,1(t2) · · · Ĥi,1(tn)]

}†
,

=
∞∑
n=0

(
i

h̄

)n 1

n!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 · · ·

∫ ∞

−∞
dtnT̃ [Ĥi,1(t1)Ĥi,1(t2) · · · Ĥi,1(tn)], (3.4)

where it is assumed that Ĥi,1 is Helmitian, and T̃ is the anti-time ordering operator which orders

field operators in the parenthesis in order of a rule that one with early time is put to the left side.

Considering the definition of the time ordering operator by Eq. (1.100), it should be noted that the

step functions in the anti-time ordering operator appear in a different way compared to the time

ordering operator as shown below:

T̃ [Ĥi,1(t1)Ĥi,1(t2)] =
{
T [Ĥi,1(t1)Ĥi,1(t2)]

}†
, (3.5)

=
{
θ(t1 − t2)Ĥi,1(t1)Ĥi,1(t2) + θ̄(t2 − t1)Ĥi,1(t2)Ĥi,1(t1)

}†
,

= θ̄(t2 − t1)Ĥi,1(t1)Ĥi,1(t2) + θ(t1 − t2)Ĥi,1(t2)Ĥi,1(t1).

One can find the anti-time ordering operator permutates the field operators for the case with t1 = t2,

while the time ordering operator does not.

In this section, the Hamiltonian is supporsed to be

Ĥi = Ĥi,0 + Ĥi,1(t) (3.6)

with

Ĥi,0 =

∫
drΨ̂†

i (rt)v̂1,0(r)Ψ̂i(rt),

Ĥi,1(t) =

∫
drΨ̂†

i (rt)v̂1,1(rt)Ψ̂i(rt). (3.7)

From above expressions, it is found that the two-particle operator is excluded. Then, one can write

Ŝ†
i and T [ŜiΨ̂i(rt)Ψ̂

†
i (r

′t′)], which are the constitutents in Eq. (3.3), as

Ŝ†
i = 1 +

(
i

h̄

)∫
dt1

∫
r1v̂1,1(r1t1)T̃ [Ψ̂

†
i (r1t1)Ψ̂i(r1t1)]

+
1

2

(
i

h̄

)2 ∫
dt1

∫
r1v̂1,1(r1t1)

∫
dt2

∫
r2v̂1,1(r2t2)T̃ [Ψ̂

†
i (r1t1)Ψ̂i(r1t1)Ψ̂

†
i (r2t2)Ψ̂i(r2t2)] + · · · ,

(3.8)
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T [ŜiΨ̂i(rt)Ψ̂
†
i (r

′t′)] = T [Ψ̂i(rt)Ψ̂
†
i (r

′t′)]

+

(−i

h̄

)∫
dt1

∫
r1v̂1,1(r1t1)T [Ψ̂

†
i (r1t1)Ψ̂i(r1t1)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]

+
1

2

(
− i

h̄

)2 ∫
dt1

∫
dr1v̂1,1(r1t1)

∫
dt2

∫
dr2v̂1,1(r2t2)

×⟨Φi|T [Ψ̂†
i (r1t1)Ψ̂i(r1t1)Ψ̂

†
i (r2t2)Ψ̂i(r2t2)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩
+ · · · . (3.9)

By multiplying Eq. (3.8) by Eq. (3.9), we can obtain its expectation value as:

⟨Φi|Ŝ†
i T [ŜiΨ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩ = ⟨Φi|T [Ψ̂i(rt)Ψ̂
†
i (r

′t′)]|Φi⟩

+

(−i

h̄

)∫
dt1

∫
r1v̂1,1(r1t1)⟨Φi|T [Ψ̂†

i (r1t1)Ψ̂i(r1t1)Ψ̂i(rt)Ψ̂
†
i (r

′t′)]|Φi⟩

+

(
i

h̄

)∫
dt1

∫
r1v̂1,1(r1t1)⟨Φi|T̃ [Ψ̂†

i (r1t1)Ψ̂i(r1t1)]T [Ψ̂i(rt)Ψ̂
†
i (r

′t′)]|Φi⟩

+
1

2

(
− i

h̄

)2 ∫
dt1

∫
dr1v̂1,1(r1t1)

∫
dt2

∫
dr2v̂1,1(r2t2)

×⟨Φi|T [Ψ̂†
i (r1t1)Ψ̂i(r1t1)Ψ̂

†
i (r2t2)Ψ̂i(r2t2)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩

+

(
i

h̄

)(−i

h̄

)∫
dt1

∫
r1v̂1,1(r1t1)

∫
dt′1

∫
r′1v̂1,1(r

′
1t

′
1)

×T̃ [Ψ̂†
i (r1t1)Ψ̂i(r1t1)]T [Ψ̂

†
i (r

′
1t

′
1)Ψ̂i(r

′
1t

′
1)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]

+
1

2

(
i

h̄

)2 ∫
dt1

∫
r1v̂1,1(r1t1)

∫
dt2

∫
r2v̂1,1(r2t2)

×T̃ [Ψ̂†
i (r1t1)Ψ̂i(r1t1)Ψ̂

†
i (r2t2)Ψ̂i(r2t2)]T [Ψ̂i(rt)Ψ̂

†
i (r

′t′)]

+ · · · (3.10)

The first, second, and fourth terms have been already discussed in the chapter for the equilibrium

Green function. After investigating the properties of the second Wick theorem, we will analyze the

third, fifth, sixth terms in Eq. (3.10) in later section.

3.2 The second Wick theorem

We define Â;B̂; as an analog of the contraction defined by Eq. (2.47) as follows:

Â;B̂; = T̃ [ÂB̂]−N [ÂB̂]. (3.11)

Hereafter the contractions defined by Eqs. (2.47) and (3.11) will be refered to as first and second

contractions, respectively. The second contraction has the following properties:

Â;B̂; = −B̂;Â;, (3.12)

(Â; + B̂;)Ĉ ; = Â;B̂; + Â;Ĉ ;, (3.13)

Â;B̂; = 0 if Â and B̂ are anticommutable. (3.14)

Eqs. (3.12) and (3.13) are trivial from the definition, and Eq. (3.14) can be confirmed by noting that

T̃ [ÂB̂] = θ(tB − tA)ÂB̂ − θ̄(tA − tB)B̂Â = ÂB̂ and N [ÂB̂] = ÂB̂ or − B̂Â = ÂB̂. Due to Eq. (3.14),
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the following contractions become zero:

Ψ̂;
uΨ̂

;
u = 0, Ψ̂†;

u Ψ̂
†;
u = 0,

Ψ̂;
oΨ̂

;
o = 0, Ψ̂†;

o Ψ̂
†;
o = 0,

Ψ̂;
uΨ̂

†;
o = 0, Ψ̂†;

o Ψ̂
;
u = 0,

Ψ̂;
oΨ̂

†;
u = 0, Ψ̂†;

u Ψ̂
;
o = 0,

Ψ̂;
oΨ̂

;
u = 0, Ψ̂†;

o Ψ̂
†;
u = 0,

Ψ̂;
uΨ̂

;
o = 0, Ψ̂†;

u Ψ̂
†;
o = 0. (3.15)

The proof for above relations is same as for the first contraction. A little contractions are not zero,

and they are given by

Ψ̂†;
u (r1t1)Ψ̂

;
u(r2t2) =

∑
i,j∈unocc

Ψ†
s,i(r1)Ψs,j(r2)e

it1wie−it2wj â†;s,iâ
;
s,j ,

=
∑

i ̸=j∈unocc
Ψ†

s,i(r1)Ψs,j(r2)e
it1wie−it2wj â†;s,iâ

;
s,j

+
∑

i∈unocc
Ψ†

s,i(r1)Ψs,i(r2)e
−i(t2−t1)wi â†;s,iâ

;
s,i,

=
∑

i∈unocc
Ψ†

s,i(r1)Ψs,i(r2)e
−i(t2−t1)wi â†;s,iâ

;
s,i,

=


−

∑
i∈unocc

Ψ†
s,i(r1)Ψs,i(r2)e

−i(t2−t1)wi for t1 ≥ t2

0 for t2 > t1

,

=

{
iGc,∗

0 (r1t1, r2t2) for t1 ≥ t2

0 for t2 > t1
, (3.16)

Ψ̂;
o(r1t1)Ψ̂

†;
o (r2t2) =

∑
i,j∈occ

Ψ†
s,i(r1)Ψs,j(r2)e

it1wie−it2wj â†;s,iâ
;
s,j ,

=
∑

i ̸=j∈occ
Ψ†

s,i(r1)Ψs,j(r2)e
it1wie−it2wj â†;s,iâ

;
s,j

+
∑
i∈occ

Ψ†
s,i(r1)Ψs,i(r2)e

−i(t2−t1)wi â†;s,iâ
;
s,i,

=
∑
i∈occ

Ψ†
s,i(r1)Ψs,i(r2)e

−i(t2−t1)wi â†;s,iâ
;
s,i,

=


0 for t1 ≥ t2∑
i∈occ

Ψ†
s,i(r1)Ψs,i(r2)e

−i(t2−t1)wi for t2 > t1 ,

=

{
0 for t1 ≥ t2

iGc,∗
0 (r1t1, r2t2) for t2 > t1

, (3.17)

where Gc,∗
0 (r1t1, r2t2) is the conjugate complex of Gc

0(r1t1, r2t2). As mentioned in the chapter for the

equilibrium Green function, note that the normal ordering operator in the derivation of Eqs. (3.16)

and (3.17) operates on not â, but the field operators. Using Eqs. (3.15), (3.16), and (3.17), the second

contraction can be obtained as follows:

Ψ̂;
i(rt)Ψ̂

;
i(r

′t′) = (Ψ̂;
u(rt) + Ψ̂†;

o (rt))(Ψ̂
;
u(r

′t′) + Ψ̂†;
o (r

′t′)),
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= Ψ̂;
u(rt)Ψ̂

;
u(r

′t′) + Ψ̂;
u(rt)Ψ̂

†;
o (r

′t′) + Ψ̂†;
o (rt)Ψ̂

;
u(r

′t′) + Ψ̂†;
o (rt)Ψ̂

†;
o (r

′t′),

= 0, (3.18)

Ψ̂†;
i (rt)Ψ̂

†;
i (r

′t′) = (Ψ̂†;
u (rt) + Ψ̂;

o(rt))(Ψ̂
†;
u (r

′t′) + Ψ̂;
o(r

′t′)),

= Ψ̂†;
u (rt)Ψ̂

†;
u (r

′t′) + Ψ̂†;
u (rt)Ψ̂

;
o(r

′t′) + Ψ̂;
o(rt)Ψ̂

†;
u (r

′t′) + Ψ̂;
o(rt)Ψ̂

;
o(r

′t′),

= 0, (3.19)

Ψ̂†;
i (rt)Ψ̂

;
i(r

′t′) = (Ψ̂†;
u (r

′t′) + Ψ̂;
o(r

′t′))(Ψ̂;
u(rt) + Ψ̂†;

o (rt)),

= Ψ̂†;
u (rt)Ψ̂

;
u(r

′t′) + Ψ̂†;
u (rt)Ψ̂

†;
o (r

′t′) + Ψ̂;
o(rt)Ψ̂

;
u(r

′t′) + Ψ̂;
o(rt)Ψ̂

†;
o (r

′t′),

= Ψ̂†;
u (rt)Ψ̂

;
u(r

′t′) + Ψ̂;
o(rt)Ψ̂

†;
o (r

′t′),

= iGc,∗
0 (rt, r′t′). (3.20)

The second Wick theorem

The second Wick theorem transforms the T̃ -product of field operators Â1 · · · Ân into the sum of

N-products of those plus a product of the second contraction as follows:

T̃ [Â1 · · · Ân] = N [Â1 · · · Ân]

+
∑
i,j

(−1)P Â;
iÂ

;
jN [Â1 · · · (ij) · · · Ân]

+
∑
i,j,k,l

(−1)P Â;
iÂ

;
jÂ

;
kÂ

;
lN [Â1 · · · (ijkl) · · · Ân]

+ · · ·
+
∑

(−1)P Â;
iÂ

;
jÂ

;
kÂ

;
l · · · , (3.21)

where N [Â1 · · · (ij) · · · Ân] is the N-product of the remaining field operators after elimination of Âi

and Âj , and P is the number of permutations from Â1 · · · Â1 to ÂiÂjÂ1 · · · (ij) · · · Â1. Also, the last

term means the product of paired second contractions of which number is n/2 when n is even, and

the product of paired contractions of which number is (n− 1)/2 and a remaining operator when n is

odd.

Although the proof of the theorem is very similar to that of the first Wick theorem, for completeness

the proof is shown below. To prove Eq. (3.21), first let us prove the following lemma:

Lemma 2

If the time associated with B̂ is latest compared to all the times associated with Â1, · · · , Ân, then

N [Â1 · · · Ân]B̂ = N [Â1 · · · Ân−1]Â
;
nB̂

; + (−1)N [Â1 · · · Ân−2Ân]Â
;
n−1B̂

; + · · ·
+(−1)n−kN [Â1 · · · Ân−(k+1)Ân−(k−1) · · · Ân]Â

;
kB̂

; + · · ·
+(−1)n−1N [Â2 · · · Ân]Â

;
1B̂

; +N [Â1 · · · ÂnB̂] (3.22)

This proof is similar to that of the lemma 1 which is discussed in the chapter for the equilibrium Green

function.
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Proof of the lemma 2

(i) If B̂ is the destruction operator, then Â;
kB̂

; = 0. Also, indeed N [Â1 · · · Ân]B̂ = N [Â1 · · · ÂnB̂] due

to the definition of the N-product. Thus, the lemma is accepted.

(ii) If B̂ is the creation operator, it is possible to assume that Â1, · · ·, and Ân are all the destruction

operators. Arbitrary case can be generated by multiplying the both sides by a creation operator Â

from the left side repeatedly and by permutating the order of field operators in the N-product, since

ÂN [Â1 · · ·] = N [ÂÂ1 · · ·] and the changes of sign due to the permutation of the field operators to get

the case in the N-product cancel out.

In this case that B̂ is the creation operator and that Â1, · · · , Ân are all the destruction operators,

the lemma can be proved by the principle of induction. For n = 1, we obtain Â1B̂ = T̃ [Â1B̂] =

A;
1B̂

; +N [A1B̂]. This is the definition of the contaction. Thus, the lemma is accepted. Next, let us

assume that the lemma is accepted for n = m. Letting Â be a destruction operator, we have

N [ÂÂ1 · · · Âm]B̂ = ÂN [Â1 · · · Âm]B̂,

= Â
(
N [Â1 · · · Âm−1]Â

;
mB̂; + (−1)N [Â1 · · · Âm−2Âm]Â;

m−1B̂
; + · · ·

+(−1)m−kN [Â1 · · · Âm−(k+1)Âm−(k−1) · · · Âm]Â;
kB̂

; + · · ·

+(−1)m−1N [Â2 · · · Âm]Â;
1B̂

; +N [Â1 · · · ÂmB̂]
)
,

= N [ÂÂ1 · · · Âm−1]Â
;
mB̂; + (−1)N [ÂÂ1 · · · Âm−2Âm]Â;

m−1B̂
; + · · ·

+(−1)m−kN [ÂÂ1 · · · Âm−(k+1)Âm−(k−1) · · · Âm]Â;
kB̂

; + · · ·
+(−1)m−1N [ÂÂ2 · · · Âm]Â;

1B̂
; + ÂN [Â1 · · · ÂmB̂], (3.23)

where the last term of the final line in the right hand side is evaluated as:

ÂN [Â1 · · · ÂmB̂] = (−1)mÂB̂Â1 · · · Âm,

= (−1)mT̃ [ÂB̂]Â1 · · · Âm,

= (−1)m(Â;B̂; +N [ÂB̂])Â1 · · · Âm,

= (−1)mN [Â1 · · · Âm]Â;B̂; + (−1)m+1B̂ÂÂ1 · · · Âm,

= (−1)mN [Â1 · · · Âm]Â;B̂; +N [ÂÂ1 · · · ÂmB̂]. (3.24)

By putting Eq. (3.24) into Eq. (3.23), we can get the lemma for n = m + 1. Thus, the lemma is

proven.

Proof of the second Wick theorem

The theorem is proven by the principle of induction. For n = 1, we obtain T̃ [Â1Â2] = N [Â1Â2] +

Â;
1Â

;
2. This is the definition of the second contaction. Thus, the theorem is accepted. Next, let us

assume that the theorem is accepted for n = m. Letting Âm+1 be a field operator at the latest time

among Â1, · · · , Âm+1, then

T̃ [Â1 · · · ÂmÂm+1] = T̃ [Â1 · · · Âm]Âm+1

=
(
N [Â1 · · · Âm]

+
∑
i,j

(−1)P Â;
iÂ

;
jN [Â1 · · · (ij) · · · Âm]
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+
∑
i,j,k,l

(−1)P Â;
iÂ

;
jÂ

;
kÂ

;
lN [Â1 · · · (ijkl) · · · Âm]

+ · · ·
+
∑

(−1)P Â;
iÂ

;
jÂ

;
kÂ

;
l · · ·

)
Âm+1,

= N [Â1 · · · Âm]Âm+1

+
∑
i,j

(−1)P Â;
iÂ

;
jN [Â1 · · · (ij) · · · Âm]Âm+1

+
∑
i,j,k,l

(−1)P Â;
iÂ

;
jÂ

;
kÂ

;
lN [Â1 · · · (ijkl) · · · Âm]Âm+1

+ · · ·
+
∑

(−1)P Â;
iÂ

;
jÂ

;
kÂ

;
l · · · Âm+1,

=
∑
i

(−1)P Â;
iÂ

;
m+1N [Â1 · · · (i(m+ 1)) · · · Âm+1] +N [Â1 · · · Âm+1]

+
∑
i,j,k,l

(−1)P Â;
iÂ

;
jÂ

;
kÂ

;
m+1N [Â1 · · · (ijk(m+ 1)) · · · Âm+1]

+
∑
i,j

(−1)P Â;
iÂ

;
jN [Â1 · · · (ij) · · · Âm+1]

+
∑
i,j,k,l

(−1)P Â;
iÂ

;
jÂ

;
kÂ

;
lN [Â1 · · · (ijkl) · · · Âm+1]

+ · · ·
+
∑

(−1)P Â;
iÂ

;
jÂ

;
kÂ

;
l · · · Âm+1

= N [Â1 · · · Âm+1]

+
∑
i,j

(−1)P Â;
iÂ

;
jN [Â1 · · · (ij) · · · Âm+1]

+
∑
i,j,k,l

(−1)P Â;
iÂ

;
jÂ

;
kÂ

;
lN [Â1 · · · (ijkl) · · · Âm+1]

+ · · ·
+
∑

(−1)P Â;
iÂ

;
jÂ

;
kÂ

;
l · · · , (3.25)

where the lemma 2 is used for the derivation. So, we can reproduce the theorem for n = m+ 1. The

assumption that Âm+1 is a field operator associated with the latest time among Â1, · · · , Âm+1 can be

eliminated by permutating the field operators in the T- and N-products for arbitrary case of Eq. (3.25)

so that the operator associated with the latest time can be located at the most right side. The changes

of sign due to the permutation for both the sides in Eq. (3.25) cancel each other. Thus, the theorem

is proven. It is also noted that the second Wick theorem can be applied to the field operator Ψ̂i itself

as a consequence of the distributive properties of the T - and N -products.1

Although we have proved the second Wick theorem, the meaning of the summations in Eq. (3.21)

is not so clear. Let us see the formulas upto n = 4 below:

For n = 2

T̃ [Â1Â2] = Â;
1Â

;
2 +N [Â1Â2], (3.26)

For n = 3

1 See the footnote for the Wick theorem.
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T̃ [Â1Â2Â3] = T̃ [Â1Â2]Â3,

= (Â;
1Â

;
2 +N [Â1Â2])Â3,

= N [Â1Â2]Â3 +N [Â3]Â
;
1Â

;
2,

= N [Â1]Â
;
2Â

;
3 −N [Â2]Â

;
1Â

;
3 +N [Â3]Â

;
1Â

;
2 +N [Â1Â2Â3], (3.27)

For n = 4

T̃ [Â1Â2Â3Â4] = T̃ [Â1Â2Â3]Â4,

= (N [Â1]Â
;
2Â

;
3 −N [Â2]Â

;
1Â

;
3 +N [Â3]Â

;
1Â

;
2 +N [Â1Â2Â3])Â4,

= N [Â1]Â4Â
;
2Â

;
3 −N [Â2]Â4Â

;
1Â

;
3 +N [Â3]Â4Â

;
1Â

;
2 +N [Â1Â2Â3]Â4,

= (Â;
1Â

;
4 +N [Â1Â4])Â

;
2Â

;
3 − (Â;

2Â
;
4 +N [Â2Â4])Â

;
1Â

;
3 + (Â;

3Â
;
4 +N [Â3Â4])Â

;
1Â

;
2

+N [Â1Â2]Â
;
3Â

;
4 −N [Â1Â3]Â

;
2Â

;
4 +N [Â2Â3]Â

;
1Â

;
4 +N [Â1Â2Â3Â4],

= N [Â1Â2Â3Â4] + Â;
1Â

;
2N [Â3Â4]− Â;

1Â
;
3N [Â2Â4] + Â;

1Â
;
4N [Â2Â3]

+Â;
2Â

;
3N [Â1Â4]− Â;

2Â
;
4N [Â1Â3] + Â;

3Â
;
4N [Â1Â2]

+Â;
1Â

;
2Â

;
3Â

;
4 − Â;

1Â
;
3Â

;
2Â

;
4 + Â;

2Â
;
3Â

;
1Â

;
4. (3.28)

3.3 Structure of the NEGF

The first contractions arising from the T -product, T [ŜiΨ̂i(rt)Ψ̂
†
i (r

′t′)], in Eq. (3.3) are equivalent to

those of the numerator of Eq. (2.27) for the equilibrium Green funtion, and by using Eqs. (2.67) and

Eqs. (2.68) and they are given by

First contractions in T [ŜiΨ̂i(rt)Ψ̂
†
i (r

′t′)]

=

(
1−

(
− i

h̄

)∫
dt1

∫
dr1v̂1,1(r1t1)iG

c
0(r1t1, r1t1) + · · ·

)
×
(
iGc

0(rt, r
′t′) +

(
− i

h̄

)∫
dt1

∫
dr1iG

c
0(rt, r1t1)v̂1,1(r1t1)iG

c
0(r1t1, r

′t′) + · · ·
)
,

= ⟨Φi|Ŝi|Φi⟩
(
iGc

0(rt, r
′t′) +

(
− i

h̄

)∫
dt1

∫
dr1iG

c
0(rt, r1t1)v̂1,1(r1t1)iG

c
0(r1t1, r

′t′) + · · ·
)
.

(3.29)

Also, the second contractions of Ŝ†
i can be found using Eqs. (3.8), (3.20), and (3.28) as

Second contractions in Ŝ†
i

= 1 +

(
i

h̄

)∫
dt1

∫
dr1v̂1,1(r1t1)iG

c,∗
0 (r1t1, r1t1)

+
1

2

(
i

h̄

)2 ∫
dt1

∫
dr1v̂1,1(r1t1)

∫
dt2

∫
dr2v̂1,1(r2t2)iG

c,∗
0 (r1t1, r1t1)iG

c,∗
0 (r2t2, r2t2)

−1

2

(
i

h̄

)2 ∫
dt1

∫
dr1v̂1,1(r1t1)

∫
dt2

∫
dr2v̂1,1(r2t2)iG

c,∗
0 (r2t2, r1t1)iG

c,∗
0 (r1t1, r2t2) + · · · ,

= ⟨Φi|Ŝ†
i |Φi⟩. (3.30)

The term ⟨Φi|Ŝi|Φi⟩ in the Eq. (3.29) can be explictly evaluated by assuming the following special

form of Ĥi,1(t):

Ĥi,1(−t) = Ĥi,1(t).
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At least, if Ĥi,1(t) is the coupling between leads and the conductor, the assumption is presumably

acceptable. With the assumption, Ûi(0,−∞) can be written as:

Ûi(0,−∞) = T

[
exp

(
− i

h̄

∫ 0

−∞
dtĤi,1(t)]

)]
,

= T

[
exp

(
− i

h̄

∫ 0

+∞
(−dt′)Ĥi,1(−t′)]

)]
,

= −T

[
exp

(
− i

h̄

∫ 0

+∞
dt′Ĥi,1(t

′)]

)]
,

= −Ûi(0,+∞), (3.31)

where the variable change of t′ = −t is made. Then, it turns out that

⟨Φi|Ŝi|Φi⟩ = ⟨Φi|Ûi(+∞, 0)Ûi(0,−∞)|Φi⟩,
= ⟨Φi|Ûi(+∞, 0)(−Ûi(0,+∞))|Φi⟩,
= −1. (3.32)

Moreover, noting that
(
⟨Φi|Ŝi|Φi⟩

)†
= ⟨Φi|Ŝ†

i |Φi⟩, it is found to be ⟨Φi|Ŝ†
i |Φi⟩⟨Φi|Ŝi|Φi⟩ = 1. There-

fore, Eq. (3.10) can be rewritten by the sum of two contributions. One of them consists of the terms

in the parenthesis in Eq. (3.29), and the other is a characteristic contribution which appears in the

NEGF not in the EGF, and will be discussed later on. Temporarily, letting the second contribution

be η, one can write Eq. (3.10) as:

⟨Φi|Ŝ†
i T [ŜiΨ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩

=

(
iGc

0(rt, r
′t′) +

(
− i

h̄

)∫
dt1

∫
dr1iG

c
0(rt, r1t1)v̂1,1(r1t1)iG

c
0(r1t1, r

′t′) + · · ·
)
+ η.

(3.33)

The first contribution is equivalent to the connected diagrams appearing in the EGF.

To investigate the second contributin η, first let us see the third term in Eq. (3.10) which is the

first order term in η. The product of the T̃ - and T -products being the constituent in the third term

of Eq. (3.10) can be expanded using Eq. (2.39) as

T̃ [Ψ̂†
i (r1t1)Ψ̂i(r1t1)]T [Ψ̂i(rt)Ψ̂

†
i (r

′t′)]

= T̃ [(Ψ̂†
u(r1t1) + Ψ̂o(r1t1))(Ψ̂u(r1t1) + Ψ̂†

o(r1t1))]× T [(Ψ̂u(rt) + Ψ̂†
o(rt))(Ψ̂

†
u(r

′t′) + Ψ̂o(r
′t′))],

=
(
T̃ [Ψ̂†

u(r1t1)Ψ̂u(r1t1)] + T̃ [Ψ̂†
u(r1t1)Ψ̂

†
o(r1t1)] + T̃ [Ψ̂o(r1t1)Ψ̂u(r1t1)] + T̃ [Ψ̂o(r1t1)Ψ̂

†
o(r1t1)]

)
×
(
T [Ψ̂u(rt)Ψ̂

†
u(r

′t′)] + T [Ψ̂u(rt)Ψ̂o(r
′t′)] + T [Ψ̂†

o(rt)Ψ̂
†
u(r

′t′)] + T [Ψ̂†
o(rt)Ψ̂o(r

′t′)]
)
. (3.34)

When the expectation value of Eq. (3.34) is considered with respect to Φi, it is found that the sum of the

first and second terms in the first parenthesis gives iGc,∗
0 (r1t1, r1t1), and that the sum of the first and

second terms in the second parenthesis gives iGc
0(rt, r

′t′). They are parts of ⟨Φi|Ŝ†
i |Φi⟩⟨Φi|Ŝi|Φi⟩, and

cancel as discussed above. The other surving term is ⟨Φi|T̃ [Ψ̂o(r1t1)Ψ̂u(r1t1)]T [Ψ̂
†
o(rt)Ψ̂

†
u(r

′t′)]|Φi⟩.
Although the contribution from the contractions in the expectation value is zero, it is found using

Eqs. (2.51), (2.63), (3.15), and (3.26) that the contribution from the N -products survives as:

⟨Φi|T̃ [Ψ̂o(r1t1)Ψ̂u(r1t1)]T [Ψ̂
†
o(rt)Ψ̂

†
u(r

′t′)]|Φi⟩ = ⟨Φi|N [Ψ̂o(r1t1)Ψ̂u(r1t1)]N [Ψ̂†
o(rt)Ψ̂

†
u(r

′t′)]|Φi⟩,
= ⟨Φi|Ψ̂o(r1t1)Ψ̂u(r1t1)Ψ̂

†
o(rt)Ψ̂

†
u(r

′t′)|Φi⟩. (3.35)
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Noting that

|Φi⟩ = e
i
h̄
Ĥs,0t|Φs⟩,

=
∞∏
k=1

eitwknk |Φs⟩, (3.36)

one can explicitly evaluate Eq. (3.35) as

⟨Φi|Ψ̂o(r1t1)Ψ̂u(r1t1)Ψ̂
†
o(rt)Ψ̂

†
u(r

′t′)|Φi⟩
= −⟨Φi|Ψ̂o(r1t1)Ψ̂

†
o(rt)Ψ̂u(r1t1)Ψ̂

†
u(r

′t′)|Φi⟩
= −⟨Φs|Ψ̂o(r1t1)Ψ̂

†
o(rt)

∑
i∈unocc

Ψs,i(r1)Ψ
∗
s,i(r

′)e−i(t1−t′)wi |Φs⟩,

= −

 ∑
j∈occ

Ψs,j(r)Ψ
∗
s,j(r1)e

−i(t−t1)wj

( ∑
i∈unocc

Ψs,i(r1)Ψ
∗
s,i(r

′)e−i(t1−t′)wi

)
. (3.37)

As defined in the chapter of the EGF, we now define the lesser and greater Green functions G<
0 and

G>
0 for the NEGF by

G<
0 (rt, r

′t′) = i⟨Φi|Ψ̂†
i (r

′t′)Ψ̂i(rt)|Φi⟩,
= i⟨Φi|Ψ̂o(r

′t′)Ψ̂†
o(rt)|Φi⟩,

= i⟨Φi|
(∑
i∈occ

Ψ∗
s,i(r

′)â†i,i(t
′)

) ∑
j∈occ

Ψs,j(r)âi,j(t)

 |Φi⟩,

= i
∑

i,j∈occ
Ψs,j(r)Ψ

∗
s,i(r

′)e−itwjeit
′wi⟨Φs|â†s,iâs,j |Φs⟩,

= i
∑
i∈occ

Ψs,i(r)Ψ
∗
s,i(r

′)e−i(t−t′)wi (3.38)

and

G>
0 (rt, r

′t′) = −i⟨Φi|Ψ̂i(rt)Ψ̂
†
i (r

′t′)|Φi⟩,
= −i⟨Φi|Ψ̂u(rt)Ψ̂

†
u(r

′t′)|Φi⟩,

= −i⟨Φi|
( ∑
i∈unocc

Ψs,i(r)âi,i(t)

) ∑
j∈unocc

Ψ∗
s,j(r

′)â†i,j(t
′)

 |Φi⟩,

= −i
∑

i,j∈unocc
Ψs,i(r)Ψ

∗
s,j(r

′)e−itwieit
′wj ⟨Φs|âs,iâ†s,j |Φs⟩,

= −i
∑

i∈unocc
Ψs,i(r)Ψ

∗
s,j(r

′)e−i(t−t′)wi . (3.39)

Using the lesser and greater Green functions, one can write Eq. (3.37) as:

⟨Φi|Ψ̂o(r1t1)Ψ̂u(r1t1)Ψ̂
†
o(rt)Ψ̂

†
u(r

′t′)|Φi⟩ = iG<
0 (rt, r1t1)iG

>
0 (r1t,r

′t′). (3.40)

Thus, considering Eqs. (3.10) and (3.33), the first order term (F.O.T) of η is give by

F.O.T in η =

(
i

h̄

)∫
dt1

∫
r1iG

<
0 (rt, r1t1)v̂1,1(r1t1)iG

>
0 (r1t1, r

′t′). (3.41)
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The fifth and sixth terms in Eq. (3.10) give rise to the second order terms (S.O.T) in η. First, let

us analyze the fifth term. In the fifth term, the T̃ -, and T -products can be expressed by using the

Wick theorems as follows:

T̃ [Ψ̂†
i (r1t1)Ψ̂i(r1t1)] = iGc,∗

0 (r1t1, r1t1) +N [Ψ̂†
i (r1t1)Ψ̂i(r1t1)]. (3.42)

T [Ψ̂†
i (r

′
1t

′
1)Ψ̂i(r

′
1t

′
1)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]

= N [Ψ̂†
i (r

′
1t

′
1)Ψ̂i(r

′
1t

′
1)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]

−iGc
0(r

′
1t

′
1, r

′
1t

′
1)N [Ψ̂i(rt)Ψ̂

†
i (r

′t′)] + iGc
0(rt, r

′
1t

′
1)N [Ψ̂i(r

′
1t

′
1)Ψ̂

†
i (r

′t′)]

−iGc
0(r

′
1t

′
1, r

′t′)N [Ψ̂†
i (r

′
1t

′
1)Ψ̂i(rt)] + iGc

0(rt, r
′t′)N [Ψ̂†

i (r
′
1t

′
1)Ψ̂i(r

′
1t

′
1)]

−iGc
0(r

′
1t

′
1, r

′
1t

′
1)iG

c
0(rt, r

′t′) + iGc
0(rt, r

′
1t

′
1)iG

c
0(r

′
1t

′
1, r

′t′). (3.43)

Noting that

Ψ̂†
i Ψ̂i = Ψ̂†

uΨ̂u + Ψ̂†
uΨ̂

†
o + Ψ̂oΨ̂u + Ψ̂oΨ̂

†
o,

Ψ̂iΨ̂
†
i = Ψ̂uΨ̂

†
u + Ψ̂uΨ̂o + Ψ̂†

oΨ̂
†
u + Ψ̂†

oΨ̂o, (3.44)

In the expectation value for the product of the T̃ -, and T -products, the surving terms contributing to

η are given by

The terms contributing to η in ⟨Φi|T̃ [Ψ̂†
i (r1t1)Ψ̂i(r1t1)]T [Ψ̂

†
i (r

′
1t

′
1)Ψ̂i(r

′
1t

′
1)Ψ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi⟩

= −iGc
0(r

′
1t

′
1, r

′
1t

′
1)⟨Φi|N [Ψ̂o(r1t1)Ψ̂u(r1t1)]N [Ψ̂†

o(rt)Ψ̂
†
u(r

′t′)]|Φi⟩
+iGc

0(rt, r
′
1t

′
1)⟨Φi|N [Ψ̂o(r1t1)Ψ̂u(r1t1)]N [Ψ̂†

o(r
′
1t

′
1)Ψ̂

†
u(r

′t′)]|Φi⟩
−iGc

0(r
′
1t

′
1, r

′t′)⟨Φi|N [Ψ̂o(r1t1)Ψ̂u(r1t1)]N [Ψ̂†
u(r

′
1t

′
1)Ψ̂

†
o(rt)]|Φi⟩

+iGc
0(rt, r

′t′)⟨Φi|N [Ψ̂o(r1t1)Ψ̂u(r1t1)]N [Ψ̂†
u(r

′
1t

′
1)Ψ̂

†
o(r

′
1t

′
1)]|Φi⟩,

= +iGc
0(r

′
1t

′
1, r

′
1t

′
1)⟨Φi|Ψ̂o(r1t1)Ψ̂

†
o(rt)Ψ̂u(r1t1)Ψ̂

†
u(r

′t′)|Φi⟩
−iGc

0(rt, r
′
1t

′
1)⟨Φi|Ψ̂o(r1t1)Ψ̂

†
o(r

′
1t

′
1)Ψ̂u(r1t1)Ψ̂

†
u(r

′t′)|Φi⟩
−iGc

0(r
′
1t

′
1, r

′t′)⟨Φi|Ψ̂o(r1t1)Ψ̂
†
o(rt)Ψ̂u(r1t1)Ψ̂

†
u(r

′
1t

′
1)|Φi⟩

+iGc
0(rt, r

′t′)⟨Φi|Ψ̂o(r1t1)Ψ̂
†
o(r

′
1t

′
1)Ψ̂u(r1t1)Ψ̂

†
u(r

′
1t

′
1)|Φi⟩,

= +iGc
0(r

′
1t

′
1, r

′
1t

′
1)(−i)G<

0 (rt, r1t1)iG
>
0 (r1t1, r

′t′)

−iGc
0(rt, r

′
1t

′
1)(−i)G<

0 (r
′
1t

′
1, r1t1)iG

>
0 (r1t1, r

′t′)

−iGc
0(r

′
1t

′
1, r

′t′)(−i)G<
0 (rt, r1t1)iG

>
0 (r1t1, r

′
1t

′
1)

+iGc
0(rt, r

′t′)(−i)G<
0 (r

′
1t

′
1, r1t1)iG

>
0 (r1t1, r

′
1t

′
1), (3.45)

where the final expression is derived by the same procedure as for Eq. (3.37). By putting Eq. (3.45)

into Eq. (3.10), one can explicitly express the terms contributing to η in the fifth term of Eq. (3.10)

as follows:

The terms contributing to η in the fifth term of Eq. (3.10)

=

(
i

h̄

)(−i

h̄

)∫
dt′1

∫
r′1v̂1,1(r

′
1t

′
1)iG

c
0(r

′
1t

′
1, r

′
1t

′
1)

∫
dt1

∫
r1(−i)G<

0 (rt, r1t1)v̂1,1(r1t1)iG
>
0 (r1t1, r

′t′)
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+

(
i

h̄

)(−i

h̄

)∫
dt1

∫
r1

∫
dt′1

∫
r′1(−i)Gc

0(rt, r
′
1t

′
1)v̂1,1(r

′
1t

′
1)(−i)G<

0 (r
′
1t

′
1, r1t1)v̂1,1(r1t1)iG

>
0 (r1t1, r

′t′)

+

(
i

h̄

)(−i

h̄

)∫
dt1

∫
r1

∫
dt′1

∫
r′1(−i)G<

0 (rt, r1t1)v̂1,1(r1t1)iG
>
0 (r1t1, r

′
1t

′
1)v̂1,1(r

′
1t

′
1)(−i)Gc

0(r
′
1t

′
1, r

′t′)

+

(
i

h̄

)(−i

h̄

)
iGc

0(rt, r
′t′)

∫
dt1

∫
r1

∫
dt′1

∫
r′1(−i)G<

0 (r
′
1t

′
1, r1t1)v̂1,1(r1t1)iG

>
0 (r1t1, r

′
1t

′
1)v̂1,1(r

′
1t

′
1).

(3.46)

T̃ [Ψ̂†
i (r1t1)Ψ̂i(r1t1)Ψ̂

†
i (r2t2)Ψ̂i(r2t2)]

= N [Ψ̂†
i (r1t1)Ψ̂i(r1t1)Ψ̂

†
i (r2t2)Ψ̂i(r2t2)]

+iGc,∗
0 (r1t1, r1t1)N [Ψ̂†

i (r2t2)Ψ̂i(r2t2)] + iGc,∗
0 (r1t1, r2t2)N [Ψ̂i(r1t1)Ψ̂

†
i (r2t2)]

−iGc,∗
0 (r2t2, r1t1)N [Ψ̂†

i (r1t1)Ψ̂i(r2t2)] + iGc,∗
0 (r2t2, r2t2)N [Ψ̂†

i (r1t1)Ψ̂i(r1t1)]

+iGc,∗
0 (r1t1, r1t1)iG

c,∗
0 (r2t2, r2t2)− iGc,∗

0 (r2t2, r1t1)iG
c,∗
0 (r1t1, r2t2). (3.47)

T [Ψ̂i(rt)Ψ̂
†
i (r

′t′)] = iGc
0(rt, r

′t′) +N [Ψ̂i(rt)Ψ̂
†
i (r

′t′)]. (3.48)

3.4 Finite temperature formalism

In case of t > t′,

[Ψ̂h(rt)Ψ̂
†
h(r

′t′)] =
∑
k

wk⟨Ψh,k|Ψ̂h(rt)Ψ̂
†
h(r

′t′)|Ψh,k⟩,

=
∑
k

wk⟨Ψi,k(t)|Ûi(t, 0)Ûi(0, t)Ψ̂i(rt)Ûi(t, 0)Ûi(0, t
′)Ψ̂†

i (r
′t′)Ûi(t

′, 0)Ûi(0, t
′)|Ψi,k(t

′)⟩,

=
∑
k

wk⟨Ψi,k(t)|Ψ̂i(rt)Ûi(t, t
′)Ψ̂†

i (r
′t′)|Ψi,k(t

′)⟩,

=
∑
k

wk⟨Φi,k|Ûi(−∞, t)Ψ̂i(rt)Ûi(t, t
′)Ψ̂†

i (r
′t′)Ûi(t

′,−∞)|Φi,k⟩,

=
∑
k

wk⟨Φi,k|Ûi(−∞,+∞)Ûi(+∞, t)Ψ̂i(rt)Ûi(t, t
′)Ψ̂†

i (r
′t′)Ûi(t

′,−∞)|Φi,k⟩,

=
∑
k

wk⟨Φi,k|Ŝ†
i T [ŜiΨ̂i(rt)Ψ̂

†
i (r

′t′)]|Φi,k⟩,

=
∑
i,j

⟨χj |
[∑

k

wk|Φi,k⟩⟨Φi,k|
]
|χi⟩⟨χi|Ŝ†

i T [ŜiΨ̂i(rt)Ψ̂
†
i (r

′t′)]|χj⟩,

= tr
(
ρ̂0Ŝ

†
i T [ŜiΨ̂i(rt)Ψ̂

†
i (r

′t′)]
)
,
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