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Chapter 1

Basic issues

1.1 Time evolution operator
The time evolution operator Us(t, to) in the Schrodinger representation is defined by
s (1)) = Us(t, 10) | Ws(t0)), (1.1)

where |Ug(t)) and |¥s(o)) are the ket vectors of the states in the Schrodinger representation at time ¢
and tg, respectively. The time evolution operator Us(t, to) must satisfy the following three conditions:

(1) Unitarity
Consider the conservation of the probability:
(Us(t0)[Ws(to)) = (Ws(8)|Ws(t)) = (Us(t0)|UL (¢, t0)Us(t, o) | Us(to))- (1.2)
This is assured by imposing the unitarity of Us(t, o):
Ul (t,t0)Us(t, to) = Us(t, to)Ud (¢, to) = 1, (1.3)

where 1 is the identity operator. If the inverse operator U;l(t,to) of (75(t,t0) can be defined, by
multiplying both the sides by U; (¢, %), we obtain

Ul(t, to) = U7 (¢, to). (1.4)
Also, if the time evolution of Wg in the reverse time
|Ws(t0)) = Us(to, 1) ¥s (1)) (1.5)
is defined, by putting Eq. (1.1) into Eq. (1.5) we get
|Ts(to)) = Us(to, )Us(t, o) | Ws (ko)) (1.6)
Since it is expected to be Us(to, t)Us(t, to) = 1, by noting Egs. (1.3) and (1.4), we conclude
Us(to, t) = Ud(t,t0) = Ug ™ (t, o). (1.7)

(2) Associativity



It is natural to consider that the time evolution of |¥g(tg)) from ¢y to t2 coincides with that from t
to t1 and subsequently from t; to to, where tg < t; < to. That is,

Us(t2, to) = Us(ta, 11)Us(t1, to).- (1.8)
(3) Continuity
It is assumed that the state changes continously as a function of time:
|Ws(to + dt)) = Us(to + dt, t0)|¥s(to)). (1.9)
Thus,

lim Us(to 4 dt, to) = 1. (1.10)
dt—0

Let us now look for an expression satisfying above three conditions. An expression for Us (to+dt, to)
which satisfies above three conditions approximately within small time interval dt is given by

Us(to + dt, to) = 1 — %ﬂs(to)dt. (1.11)

The unitarity is confirmed as:

Ol (to +dt, to)Us(to + dtto) = (1+ 3 Hylto)dt) (1 — 3 Hi(to)de),
= 1+ Mdﬂ,
h
~ 1. (1.12)
The associativity is confirmed as:
Us(tg + dt1 + dto, tg + dtl)Us(tO ~+ dtq, to) = 1 f{ (to + dtl)dtg)(l — %ﬁs(to)dtl),

- ( h( +8Ha£ )dt +- >dt2> (1 ﬁH (to)dtl)

= 1- hH s(to)(dty + dta) + O(dt?),

0s(t0 + dt1 + dto, to).

1

The continuity is confirmed as:

lim <1 - ;Lfls(to)dt> =1. (1.14)

dt—0

Thus, we have confirmed that the expression Eq. (1.11) surely satisfies the three conditions mentioned
above within small time interval. Using the expression Eq. (1.11), we now derive an equation governing
the time evolution of the time evolution operator. Considering the associativity, we can write

Us(t +dt,tg) = Us(t+ dt, t)Us(t, to),
~ (1—ﬁfs(t)dt Us(t, to). (1.15)

Rearranging the above equation gives

Ts(t + dt, to) — Us(t, t AP
Us(t + dt, fii Us(t, to) :_%Hs(t)Us(t,to). (1.16)

(1.13)



So, we get the equation:

ih%f]s(t,to) = Hy(t)Us(t, o). (1.17)

This is the equation governing the time evolution of the time evolution operator in the Schrodinger
representation. By differentiating both the sides of Eq. (1.1) with respect to time ¢ and mutiplying
ih, we obtain

i s(0)) = (i 0ult10) ) st (118)

Replacing the time derivarive in the parenthesis of the right hand side by Eq. (1.17), the time dependent
Schrodinger equation can be obtained as:

.0 A
i [Us(t)) = Hs(t)|¥s(1)). (1.19)

1.2 Density matrix

Let us consider a mixed ensemble that electrons populate states Vs j, where each proportion is wy(k =
1,2,--+). The sum of the proportions in the population is unity:

> wy =1 (1.20)
k

The ensemble average of an operator A(t) is defined by
[AD)] = D wi({Ts | As(t) s 1),
k

= SN wl ek xa) Ol As (1) [x5) (1 s 1),

i, k
= ) [Zwk|‘1’s,k><q’s,k|
i,] k
= Z<xg-Iﬁs(t)lx»(xilﬁs(t)!xﬁ,
2y
= tr(ps(t)As(t)). (1.21)

Ixa) (il As(8) [ x5).

with the definition of the density matrix operator:
ps(t) = D wi s k() (Tsn(®)], (1.22)
k

where the trace in Eq. (1.21) is interpreted as the trace for the matrix form of the operators us-
ing certain complete basis set. Considering that Wy follows Eq. (1.19) and assuming that wy, is
independent of time, the time derivative of Eq. (1.22) leads to

L0 B 0 .0
zhaps(t) = Xk:wk [(zhatllll&k}) (Vs k| + Vs i) (m@t (‘Ifsk|>} ,

= Zwk [ﬁsl\ps,kM\PS,k’ - ’\Ils,k><qls,k’ﬁs} s
k
= —[ps(t), Hs(t)]. (1.23)



In the thermal equilibrium, it can be considered to be %p}(t) = 0. This leads to [ﬁs,ﬁs] = 0,
and means that pg and H, can be simultaneously diagonalized using the eigenstates of H. Using the

eigenstates a quantity o, related to the entropy S = kpo, can be written as

o = —tr(psIn(ps)),

= =Y preIn(porr), (1.24)
P

where pgi is the diagonal term of the matrix form, and equl to wy in Eq. (1.20). In the complete
random ensemble, the o takes the maximum, and it turns out to be o = In(N), since pgr = % where
N is the number of states. On the other hand for the pure ensemble o takes the minimum, and ¢ = 0.

In the thermal equilibrium, it can be considered that ¢ may take a maximum under two conditions:
D pspr =1 (1.25)
k

and

A~

[ﬁS] = tr(psHs),
= > puEr= U, (1.26)
k

where FEj is the eigenenergy of Hg, and U is a constant. The density matrix, giving the maximum,
can be found by minimizing the following function F' using Lagrange’s multiplier method:

F——U+’Y(Zpkl€—1>—FB(ZpkkEk—U), (1.27)
k k

F

where v and 3 are the multipliers. i 0 gives
exp(—pBE;
oy = SPEBEY) (1.28)
exp(y+1)

% = 0 gives
> o = 1. (1.29)
k
Putting Eq. (1.28) into Eq. (1.29) yields

exp(y+1) = Zexp(—ﬁEk). (1.30)
k

Replacing exp(y + 1) by Eq. (1.30), we obtain

i = exp(—ﬁEi)
" >k exp(—BEy)
Noting that Y, exp(—BEy) = tr(exp(—3Ha)) = tr(exp(—BV HaV')) = tr(exp(—BHs)), VpaVT = ps,
and V exp(—BHq)V' = exp(—fHs), where V is the unitary matrix which diagonalizes Hg, and Hy is
a matrix of which diagonal terms are Fj, and pq a matrix of which diagonal terms are pgr, we can

(1.31)

write the density matrix in the thermal equilibrium as

exp(—BHs)

s = m- (1.32)



1.3 Field operator

A creation operator a' and destruction operator @ defined for the Fermion satisfy the following anti-

commutation relations:

{asgal ;b = 6y, (1.33)
{&S,“dsd} = {asw sg}_o (134)

where {a, l;} = ab + ba. Using the operators, a field operator W (r) is defined by

\i!s(r) = Z\I/sz tO asz;
Ul(r) = Z\p (1.35)

where we considered Ws,(r,ty) being eigenstates of Hg(tp) as one-particle wave functions. The anti-
commutation relation for the field operator can be found as:

By ()Wl () + B )Py (r) = qusz L0 t0) (asaal ; +al jass)
= Z\Ijsz r,to) ‘PT () tO){&S,iad;j}a

= Z\I/sZ t() \I/T (I‘ to)

= 5(r—r). (1.36)
Therefore,
{Uslr, o), BL,(r' )} = o(r—7). (1.37)
The similar analysis leads to
{Wsi(r, to), Usi(r',to)} = {U],(r, t0), WL ,(r' t0)} = 0. (1.38)

It is also noted that the second quantized Hamiltonian H using the operators a! and @ can be rewritten
by the field operators as follows:

I:Is = Zasz {/dr\ll to Ul( )\I’SJ(I', to) CALS’J‘
+- Zalflj {//drdr’\IISJ(r,to)\I!l?j(r’,to)ﬁg(r,r’,t)\Ifsk(r',to)\IJs,l(r,to) as s (1.39)
_ / e (v, 1) 01 (v, 1) Ws(r, £0)

1 ~ ~ ~ ~
- / / drde' Wi (x, 1)UL (x', to)oa(r, t/, )W (1, £0) W (r, t0), (1.40)

where 07 and 09 are one- and two-particle time dependent operators. In the Schrodinger representa-
tionm, the field operator is not time dependent, while 91 and oy can be time dependent. Thus, we

see
0 »
— =
¢ V() 0,
0 -
_— T =
(%\I/ (r) 0, (1.41)



1.4 Representation

We discuss three kind of representations: Schrodinger, Heisenberg, and interaction representations. To
avoid confusion, the representation is denoted by a subscript, i.e., s, h, and i stand for the Schrodinger,

Heisenberg, and interaction representations, respectively.

(1) Schrodinger representation

In the Schrodinger representation, the expectation value of an operator As(t) is given by
<\Ijs(t) |As(t) |\I’s(t)> = <\I’s(t0) |(A]s]L (ta tO)As(t)Us(t, tO) |\Ijs(t0)>' (1'42)

If Ag(t) is time dependent, the time derivative of the operator Ag(t) can be considered:

= 2 As(t). (1.43)

(2) Heisenberg representation

In the right hand side of the Eq. (1.42), it is possible to consider that the operator Ag(t) is evolved
by the time evolution operator Us instead of the wave function. This change of view defines the

Heisenberg representation of A as:
Ap(t) = Ul (t,t0) As(t)Us(t, o). (1.44)

In this Heisenberg representation, the wave function, ¥y (t) = Wg(tp), is clearly independent of time.

Thus we see

0
v 1.4
lﬁat n(t) =0. (1.45)
So, Un(t,to) = 1, and
'hQU (t,to) =0 (1.46)
th=;Unlt to) = 0. .

Differentiating Ah(t) and multiplying ih, and utilizing Eq. (1.17), we find

mgtAh( t) = <m§tﬁg(t,to)) Ag(t)Us(t, t0) + Ul (t,to) <m§ Ag(t )) s(t,to) + UL (t, to) As(t) <m§tU (t, to)>
= T (1) F () A ()T (8 t0) + T (1 t0) Ag (O FL ()T, o) + T (8, ) (m 2 A >) U(t,10),
= —Hn(t)An(t) + An(t)Hy T(t,t0) (zh Ag( ) (t,to),
— An(t), Bu(®)] + U1t 10) (m;As@)) Ut ). (1.47)

If Ag is independent of time, Eq. (1.47) is simplified as

A = [An(), u(n) (1.48)



Let us consider to write H in the Heisenberg representation. The first term in the right side of
Eq. (1.39) is transformed using Eq. (1.44) as

Tt o) (Z al; [/ dr\ll r, to)o1 (r, )\Ilsﬂ-(r,to)] aSJ) Us(t, o)
= ZUT t,to)al Us(t,to)UL (¢, to) [/ dr¥l (r, to)o1(r, )\Ifs,i(r,to)} Us(t,t0)Ul (¢, t0)as jUs(t, to),

:%&h Udrxp r, to) o1 (r, )\Ijs,i(ratO)} an,j(t),

where we defined

dh,i (t) = Uj (t7 to)&s,iﬁs (t7 tO)) (149)

and

Ul(r,t) = YWl to)af, (¢). (1.50)

By doing the same analysis for the second term in the right side of Eq. (1.39), the total Hamiltonian
in the Heisenberg representation is written by

Hy = Hy + Hupo, (1.51)

where ﬁh,l and I:Ih’g are one- and two-particle Hamiltonians in the Heisenberg representation defined
by

Fing = [ drd} (0010, 0Fn(r,) (152
and
N 1 ~ ~ A ~
Hh,2 = 5 / / drdr,\l’;rq(rv t)\PL(rla t){)Q(ra rla t)\I’h(I'/, t)\I/h(rv t) (153)

The anticommutation relations for d;f”. and ay; are confirmed as follows:

{dh,i,&L,j} = &h,idﬂ,frdﬂ,j@h,i,
= Ul(t,to)asiUs(t, to) J(t,to)d;jUs(t,to)+U§(t,t0)a;jUs(t,to) 1(t,t0)asiUs(t, to),
= Ud(t,t0){as,i, al ;}Us(t, to),
= 6. (1.54)
As well,

{an,, ang} = {a}, ;. af, ;} = 0. (1.55)



The anticommutation relation for \iJLZ and \i/h,i is confirmed using Eq. (1.54) as follows:
(e ), B0} = 3 aslr )WL, 0 (], + i im.)
= Z‘IJSZ t() \I/T (I‘ to)
= (5(r—r). (1.56)

As well,

{Tn(r,0), (e, 6)} = {T],(r,0), WL ()} = 0. (1.57)

The time derivative of the field operator given by Eq. (1.50) can be obtained by making use of
Eq. (1.47). So, first let us consider [Uy,(r”, ), Hy(r,t)]. Noting that v; and vy are Hermitian so that

/ el (r, to)on (v, ) Us (r, £o) = / dr (51(r,t) W (r, 10)) B (. 10) (1.58)
and
//drdr’\ill(r,to)\ill(r’,to)f[}g(r,r’,t)\ils(r’,to)\ils(r,to) =
[ [ v’ (intex’ ) Flr ) P13 10)) Bl t0) Bl t0). (159)
we can evaluate [Uy(r”,t), Hy(r,t)] as follows:
[ (e", 1) Hu(t)] = / dri (x,1) [T (", 0), (1) (v, 1) D (r, )]
- / / drdr’in (e, ¥, 1) [y (" 1), W, (0, )8, () U (2 ) ()]
= 0", )T (x” ) {/dr Do (x”, 1 )W (r’,t)\i/h(r’,t)} Tp(r”,t)
% { / drﬁQ(r,r”,t)\l’L(r,t)\ifh(r,t)} B, 1),
- {@1(r",t)—|— / dr’@g(r”,r’,t)\ifL(r’,t)\ilh(r’,t)}\ilh(r",t), (1.60)

where for the above derivation from the first to second lines we utilized Eqgs. (1.56) and (1.57), and
the following relations:

[A, Bé} = {A,B}O—B{A,é}, (1.61)

[A BCDE } = {A, B} CDE - B {A, é} DE - BC {A, f)} E+ BCD {21, E} . (1.62)

The contribution to the time derivative of the field operator in the Heisenberg representation, cor-

responding to the second term in Eq. (1.48), is strictly zero because of Eq. (1.41). Therefore, the

first term only survives in Eq. (1.48), and consequently the time derivative of field operator in the
Heisenberg representation is given by

mgt\ph( t) = {@1(r,t)+/dr'@2(r,r’,t)ix;(r’,t)@h(r',t)}\i/h(r,t). (1.63)



The ensemble average of an operator fl(t) is written by the density matrix in the Heisenberg
representation as:

[AWB)] = Y wr{Usk(to)|US (£, 0) As (1) Us (¢, t0) [ sk (t0)),
k

= > wi(Usp(to)| An(t)| W (to)),
!

= D> we(Wek(to)xa) (xil An () x5) (X5 s 1 (F0)),

i k
= > 061D wrl ek (to)) (s (to)| 1xi) (il An(t)|x;),
ij k
= > Ola®) ) Ol An®)x),
2%
= tr(pA) (1.64)
with the definition of the density matrix operator in the Heisenberg representation:
pu(t) = D wil Vs k(o)) (Usx(to)]- (1.65)
k
Thus, we see that the the density matrix operator in the Heisenberg representation is independent of
time:
95 (t)=0 (1.66)
g\ = '

(3) Interaction representation

Suppose that the Hamiltonian Hy is decomposed into a time independent part ﬁs’o and a time de-
pendent part ﬁs,l-

Hy = Hqp + Hs 1 (1) (1.67)
In this case, let us consider to express the expectation value in a interaction representation:
(WOl A Ts(t) = (Ba(D]e™0er Toot Ay (t)e i o0t Foot [0y 1)),
= (W) Ai(1)[ W5 (1)), (1.68)
where we defined the wave function W;(¢) and the operator A;(t) in the interaction representation as:
[Wi(1)) = ef oo s 1)), (1.69)
A;(t) = entl=ot 4 (¢)e~w not, (1.70)

The equations (1.69) and (1.70) present the relation between the Schrodinger and interaction represen-
tations for the state vector and the operator. Differentiating the wave function defined by Eq. (1.69)
with respect to time, and multiplying it by ¢h, we obtain

L 0
Zham’i(t»

i ek (1))

N i i 0 ~
= —Hgpern=0!| W (1)) 4 ent=0t [ih&tUs(t,to)] |Ws(to)),
= —Hq et 10ty (1)) + er o0t FL UL (8, 1) [ Ws(t0)),
= enfONH 1 ()| Ws(1)),
= ey (e e TR0 (1),

= H;1(0)]¥i(t)), (1.71)

10



where we defined

A~

Hyp(t) = ers0t f, | (t)e~ wtleot, (1.72)

)

In the derivation of Eq. (1.71), we used H oehHS ot — e%HS’Ot.FAIsyo. This is a consequence of the fact

that if a function can be Taylor expanded, the following commutation relation is proven:

~ ~

Af(A) = f(A)A. (1.73)

Differentiating the operator defined by Eq. (1.70) with respect to time, and multiplying it by ik, we

obtain

Zﬁ;fi() = —Hy e ot Ag(t)em ot 4 eiiflaot (2 gA (t)) e i Hsot | i Hsot 4 (1o~ wHeot T,
= Ai(t)Hep — HaoAs(t) + ef Moot (maA (t)) e wll=ot,
= [Ai(t), Hep] + ef Moot (ih;,ﬁs(t)) e w0t (1.74)

By doing the same analysis as for the Heisenberg representation, we can define the creation, destruc-

tion, and field operators as follows:

&Il(t) — HSOtaT e hHsOt
aig(t) = enflsoly, e itsot (1.75)

) = DU )i (1),

Ti(r,t) = Z@SZ  t0)aiq(t). (1.76)

{ai, &iT,j} = dij,

{aig a5} = {af,al;} =0, (1.77)
{@i(rvt)7\i};[(r/7t>} = (5(1‘—1")7
{Ui(r, 1), Bi(x', 1)} = {¥l(r,t), ¥, 1)} = 0. (1.78)

Using the field operator in the interaction representation, we can write the Hamiltonian as:
H; = Hio + Hi, (1.79)
with

+;//drdr’¢lj( )\I/T(I‘ t)UQ o(r, I‘)\i/i(r/,lf)\i/i(rj)7 (1.80)

*%/ [ dras 8]0 b (OB OB, ) (1.81)

11



where 01 and 92 are time independent one-particle and two-particle potentials, respectively, and
01,1 and 721 are time dependent one-particle and two-particle potentials, respectively.

The time derivative of the field operator given by Eq. (1.76) can be obtained by making use of
Eq. (1.74). Since in this case the second term in Eq. (1.74) is zero due to Eq. (1.41), we only have to
consider [W;(r”,t), Hy o(r, t)]. Noting that

Hio(t) = en o0t F, o (t)e™ wHs0t = F, o(t)en FootenHoot = F, (1), (1.82)

)

and using Egs. (1.61) and (1.62), we can evaluate [¥;(r”,t), Hg o(r, )] as follows:

[Wi(x”,t), Hso(r,t)] = [Wi(x",1), HIO( )],
/ drino(r) [F3(e”, 1), ¥, £) 03, 1)
= / drdr’0(r, 1) [ (e, 0), B (0, ) B (0, )03, ), )]
_ {@1,0(r",t)+ / dr’@zo(r”,r’,t)\ilgf(r’,t)\i’i(r’,t)}\ili(r”,t). (1.83)
Thus, we can write
ma‘i’g:” _ {@1,0(r",t)+ / dr'@lo(r”,r'7t)\il;r(r’,t)\i!i(r’,t)}\i’i(r”,t). (1.84)

Using Eq. (1.68), the ensemble average of an operator A(t) is written by the density matrix in the

interaction representation as:

[A()] = Zwk s k(D] As ()| s 1 (1)),
= Zwk e (0 A (8)[ T3 (1)),
= ZZwk (D)) Ol A (D)) O [ Wk (1)),

7]

= Z(Xj\ zk:wkm’i,k(t)><q’i,k<t)‘ ) (il Ai ()] x5),
J
= Z(Xj\ﬁi(t)lxi><xilz4i(t)!><j>,
2
= tr](pA) (1.85)
with the definition of the density matrix operator in the interaction representation:

= > wi| Wi ())(Tir(0)]. (1.86)
k

Noting that ¥ obeys Eq. (1.74) and assuming that wy, is independent of time, the time derivative
of Eq. (1.86) leads to

L0 L 0 0
zhapi(t) = Zwk [(thl‘lfi,w) (Wi k| + Vi) (Zhat< i,k|>] ;
= Zwk [ i1 Vi) (Pik| — ‘\I’i,k><\11i,k’[:[i,1} ;

= —[ﬁi(t), Hi 1 (). (1.87)

12



The time evolution operator in the interaction representation can be found by starting from
Eq. (1.69)

|\I’i(t)> = e%HS’0t|\I’s(t)>>
_ e%H&gtUS(t’tO)ef%Hs,oto (e%Hs,oto‘\I/sOfO))) ,

~

= Ui(t, t0)|¥;(to))

with the definion:

Us(t, to) = en 0t (¢, tg)e~mllsoto, (1.88)
Differentiating Eq. (1.88) with respect to time, and multiplying it by ik, we obtain the equation
govering the time evoultion of the time evoultion operator in the interaction representation:

D - P . - . N
ihan(t,to) = —Hger o0t Ug(t, to)e™ nHs0t0 4 entlso! <ihatUs(t,to)) e~ i s oto.
= —HaoUi(t, to) + en =0t H UL (t, tg)e~ wHl=oto,
= — (Q%Hs,Otﬁs’Oe_%Hs,Ot) ﬁi(t,to) + (e%Hs,otHSe—%Hs,ot) (G%HS’OtUs(t,to)e_%HSvOtO) ’
= ﬁivl(t)f]i(t,to). 159)

Also, using Egs. (1.1), (1.44), (1.69), (1.70), and (1.88), the relations between the Heisenberg and
interaction representations can be expressed for the state vector and the operator as:

) = U (0, t)e #0805 (1)) = T5(0, 1) W3(1)), (1.90)
Ap(t) = U;(0,1) A; (t)Ui(t, 0). (1.91)

1.5 Formal solution of the time evolution operator

The formal expression is derived for the time evolution operator U; in the interaction representation.
Starting from the differential equation Eq. (1.89), we formally integrate the equation as:

Tiltto) it .
/ aU; = —— [ dtiH;i(t1)Ui(ts, to),
Ui(to,to) L Ji
. A it .
Ui(t,to) — Ui(to,to) = _ﬁ i dtlHiyl(tl)Ui(tl,to), (1.92)
0
Noting ﬁi(to,to) =1 leads to
A ) t A A
Ui(t,ty) = 1-— % dty Hy 1 (t1) Ui (11, to). (1.93)
to

As well, the time evolution operator Ui(t1,to) in the right hand side of Eq. (1.93) can also be expressed
by

A~

1 [t . A
Ui(t1,to) = 1_ﬁ ) dtQHLl(tz)Ui(tQ,t(]), (1.94)
0
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where t; > to. Putting Eq. (1.94) into Eq. (1.93) gives

~ 7 t . i 2
Ui(t7t0) = 1+ <—h> dtlHi,l(tl) + (_h>

to

t t1 “ ~ ~
/t dt t dtaHy 1 (t1)Hi 1 (t2)Ui(tz, to)-
0 0
(1.95)

By applying the same procedure repeatedly, we obtain the formal solution of the time evolution
operator as:

i - 3 (1)

n=0

t t b
/to dty tol dts - - ./to CdtnHy () Hia () - Fia(t),  (1.96)
where t1 > to > --- > t,_1 > t,, and the term for n = 0 in the summation means the identity
operator. It is noted that I:Im with later time are ordered in the left side in the product of ﬁi,l being
the integrand in the integration. Let us consider to make the integration range unique, i.e., from tg to
t. When we simply change the integration range into that from ty to ¢ for every integration, the time
ordering that later time are placed at the left side cannot be preserved. However, by noting that tq,
to, - -+, t, are just arbitrary variables, we can permutate the variables t1, to, - -, £, so that the time
ordering can be kept. Moreover, considering that the number of permutation for the variables is n!,
Eq. (1.96) can be eventually rewritten by

) o0 i\ 1t ¢ t . . )
Uilt,t)) = > (—) —/ dty [ dta--- | dt,T[Hy1(t1)Hi1(tz) - Hig(tn)],  (1.97)
— h n! Ji, to to
n=0
where T'[- - -] is a time ordering operator which orders operators in the parenthesis in order of a rule
that one with later time is put to the left side. Since the expansion given by Eq. (1.97) can be formally
regarded as the Taylor expansion of the exponential funtion, sometimes, Eq. (1.97) is written as

Ui(t, tg) = T[exp (—; t:dt’ﬁm(t’)])]. (1.98)

Although the entity of Eq. (1.98) is not so clear at glance, it just means Eq. (1.97).
Time ordering operator

Let us reconsider the time ordering operator T'[- - -] appearing in Eq. (1.97). The precise definition
of the time ordering operator is that T'[- - | orders field operators in the parenthesis in order of a rule
that one with later time is put to the left side. In addition, if the field operators are for Fermion, a
factor (—1)F is attached, where P is the number of permutation. For example, if W;(t;) (i = 1 — 4)
are Fermion field operators and t3 > t4 > t1 > to, then

T [0 (t1) Ba(t2) W (k) W (ta) | = (=1)" D (t) o (a) 01 (81) T 2),
= Wa(ts)Wa(ta) Wy (t1) Wa(ta), (1.99)
In Eq. (1.97), we did not consider the factor (—1)F in the time ordering operator. This is because
f{i,l consists of an even number of field operators. As shown above, for example, it is found that

the following permutation (U1 (ty)Wa(ts))(Us(ts)Wa(ts)) — (U3(t3)Wa(ts))(Vy(t1)Pa(ts)) is made by
permutating the operators four times. Thus, we find that the factor alway cancels in the time ordering
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operator in Eq. (1.97). Also, it is noted how the case with t; = t3 should be treated. In our treatment,
we define for Fermion as

TIA@®)BW)] = 0(t —tYAR)B{') — (' —t) Bt A(¢), (1.100)

where two kinds of step functions §(z) and 6(x) are defined by

1 forz>0

O(z) = orr=t (1.101)
0 forO0>=x

_ 1 f

O(z) = orz>0 (1.102)
0 for0>zx
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Chapter 2

Equilibrium Green functions (EGF)

2.1 Definition

In this section, we discuss equilibrium Green functions. First, let us define' the one particle causal

Green function G¢(rt, r't’) as:

cog iy — i gy TRl UL )T S, <%|¢L<r't'>@h<rt>|wh>>
Ge(rt,r't') = —i (0@ t T TO{t —1t) Tr ) ,
AR |T[n (r) ], ()] 0n)
(Un|Wp) 1)
with the definition of T[- - -], so called the time-ordering operator:
TIA®)B(t)] = 0(t —t)A@)B(t') T O(t' — t)B(t)A(t), (2.2)

where A and B are field operators, and the upper and lower signs are for Fermion and Boson,
respectively.? In Eq. (2.1), ¥y, is the ground state of an interacting system in the Heisenberg repre-

sentation, and satisfies the following time independent Schrodinger equation:
Hy|Wy) = B[Wp). (2.3)

Note that the suffix for time is dropped in the notation, because of the time independence of Wy,.

Since the notation of Eq. (2.1) is too weighty, let us introduce a simplified notation as follows:

(Un|T [P (rt) U, ()] P

T, (rt) U (r'¢)]) = 2.4
(T (1) B, (') ) TR (24)

Then, we can simply write the causal Green function as:
Go(rt, vt = —i(T[Uy(ct)¥] (') (2.5)

Considering Eq. (1.63), the time derivative of G°(rt, r't') with respect to the time ¢ becomes:

ihaath(rt, ') = —i (m&(t — ) (U, (et) W] (') £ iR6 (¢ — ') (U] (') Ty, (1))

! Green functions defined in many particle physics are not those defined in a mathematical sense.
2 The time ordering operator is just same as that discussed in the previous section
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= i (h8(t — ) ([ Fn(rt), WL (D)) + (Tlo1(r, ) T (r) T (1))

+
—~
S
RS
—~
“"5
~
SN—
K>
=
—
-
~~
N—
=B
=+
—~
%\
A~
SN—
~
|
K>
=+
—~
H\
S
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/\
SN—
S
=
—
'-s
~~
SN—
~
~_

L(r’t’)@(r,t)wh(rt»,

{0 (e, ) Un (e UL () — (T ()35 (x, ) U (x1)), (2.6)
where 04(r,t) is a potential related to the two particle operator in Eq. (1.63), and given by
/dr"vg (r,v” t)W L(r",t)\ilh(r",t). (2.7)

Putting Eq. (2.7) into the third and fourth terms in the right hand side of the final line of Eq. (2.6),
we find

(0 (xt) Uy, (et) W] (') = / dr"ta(x, v 1) (WL (078) Uy, (2 8) Uy, (rt) U (2'1)), (2.8)
(Wl ('t Yot (et) Uy (xt)), = / dr" Do (e, v ) (L (2 VW () Uy, (28) Uy () ). (2.9)

The third and fourth terms can be written by a two-particle Green function, although we do not
discuss about it here. If the Hamiltonian does not contain the two particle operator, Eq. (2.6) recovers

a differential equation determing the Green function in a mathematical sense as follows:

(ihgt — 1 (r, t)) Ge(rt,x't") = hé(t—t)o(r—1'). (2.10)

The problem is how one can relate the causal Green function with physical quantities. Like the
derivation of Eq. (1.52), in general, the one particle operator Oy, in the second quantized Heisenberg

representation is given by
n(rt) /dr Bl (e't)o(rt, ') n(r't). (2.11)
The expection value of the one particle operator is evaluated by

. (W] [ de] () o(et, ) Uy (1) | W)
(On(rt)) = <\Ph|\1}h> : (2.12)

- /dr o(xt, )b (1)),

= lim lim [ dr'o(rt,r )<¢1L(r”t)\ilh(r't')>,

t'—tt ! —r!

= Fi lim lim [ dr'o(rt,r’) (ii(‘i’L(r"t)@h(r’t’») ,

t'—tt =’

= Fi lim lim [ dr'o(rt, v')G(x"t, 2't)),

t'—tt ! —=r!

= Fi lim [ dr'o(rt,v')G(x"t, 2/t ), (2.13)
! —r!
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where t* stands for the time positively infinitely later than the time ¢, and in the final line lim,_,,+

is simplified by just putting ¢t into ¢’. For example, when we consider the number density operator,

the operator o(rt,r’) is replaced by 7(r) defined by

i(r) = 6(r — r').

(2.14)

Note that this is the definition of the number density operator in the second quantization, since we

do not need to consider the summation over the index of particle in this case. Putting Eq. (2.14) into

Eq. (2.13), we get the number density as:

(A(r)) = FiG(rt,rtT). (2.15)
Also, it is convenient for later discussion to define four Green functions:
Retarded Green function:
GM(xt,x't') = —if(t—t)({In(rt), U] (')},
= —if(t — ) (U (e, (Y)) — i6(t — ) (B () (1)) (2.16)
Advanced Green function:
Go(xt,x't') = Bt~ O){In(rt), VLT,
= 0t — ) (I (ct) Ul (') +i0(t — ) (U] ('t )by, (xt)) (2.17)
Lesser Green function:
G<(rt,r't') = (U] ('t') Uy, (rt)) (2.18)
Greater Green function:
G (rt, 'ty = —i(Uy (ct) W] (v't')) (2.19)

They are not independent of each other, including the causal Green function. Several relations can be

found as:

G (rt,'t") — G*(rt,x't))

—i (0t — ')+ 0(t' — 1)) (Ip (et) U] (¢t
G~ (rt,r't') —

)+ (B (') Iy (),

G=(rt,x't"). (2.20)

Go(rt,x't') = —if(t — ') (W ()Wl (') £ 0t — t) (U] ('t ) Ty(rt)),

= 0@t —t)G”(ct,x't) £ 0 —t)G=(rt,x't). (2.21)
G (rt,v't)) = —if(t —t')(Uy(ct)T] (') —if(t — ¢) (U] (2t Uy (xt)),

= 0(t—t")G” (xt,2't) — O(t — t')G=(rt,r't'). (2.22)
G(xt,x't') = 0 — ) (Un(rt) WL (1)) +i0(t — 1) (U], ('t Un(xt)),

= -0t —t)G” (xt,x't') + 0(t' —t)G=(rt,x't). (2.23)

In addition, it is possible to express the physical quantities using G~ or G< such as

(A(r)) =

FiG=<(rt,rt).
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2.2 Gell-Mann and Low theorem

2.3 Perturbation expansion

We now consider the perturbation expansion of the causal Green function. The purpose of the per-
turbation expansion is to develop a way of evaluating the Green function by using the ground state
of a non-interacting system. Let us start our discussion by expressing the expectation values in the
right hand side of the first line of Eq. (2.1) in the interaction represenation. Putting Eqgs. (1.90) and
(1.91) into the expectation values in Eq. (2.1), we obtain

In case of t > t/,

(Wi [ W (rt) W], (/1) | W) _ {(W@)|0i(t,0)0(0, 1) Wi (xt) Ui (¢, )1( 0, ) U] ('t Ui(t', 0) T (0, /)W (¢'))
(Wn| ) (Wi(1)] Ui (¢, 0) U (0, £) s (t)) ’
_ (OO G ) ¥ @) ()
(W3 (1)|Wi(t))
(<¢>(@U|[(J+(:oog>0;> ) H0.0)0s Wi(t’t/)q’!(r%/)ﬁi(f’0)<<<1>[i]|iz(??’<5,ooi§|ﬁ>i>)

)

S>

(®;]U; (+00,0) oy U;(0,—o0)|®;)
<<¢i|Ui(+O°70)¢’i>> (0,6)Ci(#, 0) ((‘1>i|0i(07—00)|<1>i)>
(@] T [Us(+00, Ui (t, ) Ui(¥', —00) Wi (xt) ¥] (x't)] | 93)
(D3] 53] P5)
(@] T[Sy i (xt) U] (r't')]| )

_ ‘ , 2.24
CARALZY .

9

In case of t/ > t,

(s
N—
>
=N
L
I-Ep
/'\
\—/
Q>
—~
o~
[@n)]
SN—
Q:>
—~~
=
~
-
&
/\
\—/
~

(Up W] (') U (rt) | ) (3 (1) |05 (#, 0) U5 (0, ) B (') U (¢
(Up|Tn) (W3 ()| U (¢,
(U3 () Oyt 1) s (xt) | W5()

(3 ()5 (1)) ’

(21|03 (+00,0) / 1\ i 7, Ui(0,—00)|®;)
(<<I>iUi<+oo,o><1>i>)U(0t) ()Gl )‘I’l(”)U‘(t’O)<<<1>i|Ui<o,—oo>|<1>i>)

(®3]03(+00,0) ) 7. i 03(0,~00) %) ’

<<<1>1|Ui(+oo,o><1> >) U0, )Ti(¢, 0) <<<1>-|U-<o oo>|<1>i>>

(@3] T[U; (+00, ") U; (', ) Us (¢, —00) W] (') 5 (rt)]| @)
<<I>i|51‘(1)1>

(@3] T[S0 (xt) U (/1)) | ;)

. At : (2.25)
(@355 Ds)

)

where S; is the S-matrix defined by

~

S; = Ui (400, —o0). (2.26)

It should be noted that the permutation on U; does not change the sign, since H;, being the component
of 0i, consists of an even number of field operators as mentioned before. As a result, one can see that
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the both cases, t > t' and t' > ¢, give the same expression, while the sign is different. By inserting
these expressions into Eq. (2.1), we can express the causal Green function as

&;| T[Sy Wi (xt) Wl (/1)) |®5)
(D3] 5| ;)

Ge(rt,r't') = —i< . (2.27)

Furthermore, as discussed before, S; can be expanded using Eq. (1.97). So, putting Eq. (1.97) into
Eq. (2.27), we obtain the perturbation expansion of the Green function as:

Gttty — (=5)" & ot [25 dtn (@ TH s (h) -+ Hia () B3 (xt) U] (7)) | )
rt,r = —1 ~7 = -
o (—4) TS dty - [ dtn (S| T[H (1) -+ i (£)]|9s)

(2.28)
If ﬁi,l contains just the one-particle interaction in Eq. (1.80) such as
B = / dr] (et)oy 1 (rt) s (rt), (2.29)
then the numerator in Eq. (2.28) can be explicitly expanded, by letting it iGe, as
iGC(rt, r't") = iGS(rt,x't))
g . . . . .
+ <_h> /dtl/dr17)171(I‘ltl)<(I)i|T[\I’;r(rltl)\yi(rltl)q}i(rt)q}j(I‘lt/)]|<I>i>,
1/ i\? . .
+ 5 <_h) /dtl/drlvl,l(rltl)/dtg/drgvl,l(rgtg)
(O3 T (r181) Wi (r180) U] (roto) Wy (roto) W (et) W] (/8] @) + - - -,
(2.30)

where G§(rt,r't') is the Green function of the non-interacting system given by .FAILO, and defined by

iGE (vt r't') = (03| T [y (xt) U] (/)] ;). (2.31)

2.4 The Wick theorem

A systematic way of evaluating the higher order terms in Eq. (2.30) is discussed in this section. The
idea is to express the time ordering operator (or T-product) T--:] by using the normal ordering
operator (or N-product) N|[---], where, for example, N|- -] operates such as

N[O W0, | = -0 o, 0, (2.32)

The operator N|- - -] permutates the destruction and creation field operators so that all the destruction

operators can be arranged to the right hand side of the creation operator, and a factor (—1)" with

the number of permutations P is attached in case of Fermion. The field operators such as U, and U,

in Eq. (2.32) will be discussed later. The systematic way is based on the Wick theorem which is the
subject of this section.

If the reference Hamiltonian given by Eq. (1.80) consists of only the time-independent one-particle

contribution, one can write it in the Schrodinger representation as:

A~

Ao = / drl (r)d1 o (r) s (x),

20



= > hwidl s, (2.33)
=1
where Uy ;(r) obeys
01,0(r) Vs i(r) = haw; Vs ;(r). (2.34)

It is noted that only the diagonal terms survive due to the orthonormality of {U} in Eq. (2.33). Then,

the destruction operator a can be expressed using Eq. (1.70) in the interaction representation as:

Gi; = erllotgg e it

9
[e’¢) T o n P A
] [ itwga. Q. ~ —ttwyra’ A 1
= e ks s,k as,i I | e k'Y k! sk ,

k'=1

o AT A T P
— (ezthasyias,z> &s,i (e—ztwlas’iasﬂ> ’

= e Mwigg,, (2.35)

where we used the following relations for ¢ # j, being the consequence of the anticommutation relations,
Egs. (1.34) and (1.35):

N PN P AT AT AT AT —_ AT AT AT A1
as,iasﬂas,jasd - as ZaS,]aS ZaSJ - as ]as zas ZCLS] - _as ]as zaSJaSZ =a ]aS,]as ZCLS 2 (236>
R . A PP | .
Qg ;0s,jlsi = —dg ;s ;0s;j = as,las’jasd. (2.37)

The equivalence of the two expressions given in the third and fourth lines of Eq. (2.35) can be confirmed
by applying those to arbitrary abstarct state? The similar analysis leads to

d;r,z‘ = el &l,i' (2.38)

Using Eqgs. (2.35) and (2.38), the Fermion field operators can be written in the interaction represen-
tation as:

Uy =0, + 0] (2.39)
with the definitions:
\iju = Z \Ijs z a‘l s (2'40)
1€Eunocc
\ifl = Z \I/S’Z‘(I‘>6Ali7i. (2.41)
1€0cc

5By applying a; to |®;) stepf by  step, one  can conﬁrrri Eq. (2.35) Tas follows:
ai,i|Pi) = &i,ie%HSﬁﬂ(I)S) = Qi (Hzozl eltwkas,kas’k> |Ps) = (Hiil eitw’“”’“) (eltwiassias’i) s, (efltw’:'lsvias”:) |®s) =
e—ztwini (Hzil e““’knk) (eztw@asyias,q,) ds,i|q)s> _ e—’LilUinq', (Hio:l eztwknk) (1 + Z‘twi&;i&s,i + - ) &s,i S> =
(H;’;l eitwk"’“) efit“’i""ds,i@s% where |®s) is the abstract state vector in the Schrodinger representation, and ny is
the occupation number of the one-particle state k in |®s). The factor (H;o:l e”“”c”’“) in the final expression is implicitly

ignored since the factor cancels out when the expectation value (@i\Ai@i) is considered. Also, n; is 0 or 1 for Fermion,
which allows us to write Eq. (2.35).
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satisfying
v,®; =0, U, o; = 0. (2.42)

where 7 € unocc and 7 € occ stand for the summations over unoccupied and occupied states, respec-
tively, and ®; is the abstract representation of the ground state for the Hamiltonian given by Eq. (2.33).
Since one cannot destruct (create) the unoccuied (occupied) states in ®; anymore, Eq. (2.42) can be
confirmed.

Using Eq. (2.39), the Green function of the non-interacting system Eq. (2.31) can be evaluated
explicitly.

iGG(xt, ') = (| (ct) U] (2'1)]|5),
= (][ (rt) U (r'1)]| @) + (@3] T[ D (rt )‘i/( t')]|@1)
(D TS (et U (28] | @5) + (| T[T (1) o (x'8)]| @),
= (Bl W (et)Wh (")]| @) + (3| T W] (xt) o (x't')]|3), (2.43)

where the first and fourth terms in the second lind of the right hand side only survive due to Eq. (2.42)
and the absence of a couple of a destruction and the same kind of creation operators. By noting that*

(Z Peilr )( >, )]@o,
1Eunocc ]Eunocc

=Y W)Ul () (@ Tlas (1) (1)),

(@i T[T () L)) |01) = (DT

1,j €unocc
= X \Ps,i<r>\lfl,,~<r’> e (@ | Tlag ia ] @),
%,j €unocc
Z Vg i(r )_’(tt)i fort >t
= i€Eunocc (244)
0 for t' >t
and
(®;|T[W] (rt) Uo (x't)]|B;) = (B5]T (Z Wi (r)as ) (Z qf;j(r’)aiﬁj)] |®;),
i€occ j€Eocc
= Y W)Ul (e e (4| T g i) i11®s),
1,j€occ
fort >+t
- Z Uy ()Wl (e = for ¢ > ¢ (2.45)
ZEOCC
iG§(rt,r't’) is explicitly written by
Z U i(r )_l(tt)i for t > ¢/
GS(rt, vt = t€unoce . 2.46
t 0( ) Z‘ljsz )—’L(t t) wy fOI.t/>t ( )
1€0cc

L f ) itwa!  a ) ; . 2 .
* Since |®;) = e e0f|Dg) = T]o7, "R RISk B = [I5, e**"™|®s), where Eq. (2.33) is used for Hs o, |®s) is the
abstract state vector in the Schrodinger representation and ng is the occupation number of the one-particle state k£ in
|®s), the expectation value (®;|T[as,;(t)a] (]| ®@3) can be evaluated as (®s|T'[a, i(t)al S]] @s).
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When we transform T'[- - -] into N7 -
we now define the contraction defined by

A'B =T[AB] — N|AB].

The contraction has the following properties:

AB = —BA,
(A+B)C = AB+AC,
AB = 0 if A and B are anticommutable.

|, it is important to know the difference between them. Thus,

(2.47)

(2.48)
(2.49)
(2.50)

Egs. (2.48) and (2.49) are trivial from the definition, and Eq. (2.50) can be confirmed by noting that

T[AB] = 0(ts —tg)AB — 0(tp —tA)BA = AB and N[AB]

the following contractions become zero:

\i/;l\if;l = 0, ‘ifi‘\ifi‘zo,
b, = o0, Wl =o,
bGh = 0, wld, —o,
B@t = 0, @i —o,
\ilﬂ!'u = 0, \ifl‘\ﬂ'zo,
\ifﬁ\if&) = 0, @L“i/l':().

= AB or — BA = AB. Due to Eq. (2.50),

(2.51)

For example \ilﬁ\i/ﬁ = 0 is confirmed using the distributive properties of the time and normal ordering

operators and Eq. (2.50) as follows:

> Us(r)

&i,j)] ;

Uy, (01) Wy, (1) =
< > ‘I’s,z‘(r)di,z) Yo Usmai, || - N ( > ‘I’s,i(r)&i,z)
1€Eunocc jE€unocc i€unocc jE€unocc
= Uei(0) W (0)Tlas(t)aij(t2)] — D eilr)Ws;(r)Nlagi(t1)as(t2)],
%,j €unocc 1,j€unocc
= s i (r) s i (r)e™ e 2 Tag s ] — D Wsi(r)Us(r)e™ e Nlag iis ],
%,j €unocc %,j €unocc
- W (1)U, () 0052000
%,j €unocc
= 0.

(2.52)

As well, the other relations can be easily confirmed. A little contractions are not zero, and we find

the non-zero ones as follows:

V(b)) W (rate) = 30 sa(r) WL (r)e e g al
%,j €unocc
_ ) 1 —it1w; jitaw; A AT
= Z \11571(1‘1)\1157]-(1‘2) e Qg Qg ;
i#jEunocc
+ Z S, I'l (rZ)G_Z(tl tZ)wlaszAlzv
1€Eunocc
= Y Waalr) ¥l (ro)e g
1€Eunocc
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S e i(ry) L (ra)e T for g > 1y

= 7€unocc )
0 for to >t
_ iGﬁ(rltl, I‘th) for tl Z tQ (2'53)
0 for to > 3
Tl (rit) T, (rata) = Y Wei(r) W (ro)e e mia, al .,
1,j€occ
= Z Uy -(rl)\I/T (rg)e thwigi2wig. al
% S,J Sl S,]
i#j€occ
+ 30 Usi(r) Wl (ra)e e al
1€0cC
= Z \psvi(rl)\l};i(r ) it tQ)wlasz Zz?
1€occ
for tl > tQ
= — Z \1’571'(1'1)\I/;Z-(I'Q)e_i(tl_h)wi for t2 > tl ’
1€occ
0 for t1 > ¢
_ : oL b1 = b2 (2.54)
ZG(CJ(I‘ltl, I‘th) for to > 3

It should be noted that the normal ordering operator in the derivation of Eqgs. (2.53) and (2.54)

operates on not a, but the field operators. Also, it is important that

the resultant contractions are

not the operator anymore, and they are just a c-number. Now we can evaluate the contractions of the

field operators itself using Egs. (2.51), (2.53), and (2.54) as follows:

N

GO Bit) = () + B ) (, () + ('),

= 0, (2.55)
V) () = () + B (o) (B () + T, (1)),

= Ul (et) Tl (1) + Ul (0t) U, (0) 4+ U, (et) UE- (') + T (0t) T (2,

= 0, (2.56)
Ui(et) W (') = (B, (rt) + B (e0) (U] (2'F) + B, (2')),

= U, (et) Ul ('t + U ()T, (2't)) + UF (et) OF ('t)) + UL (et) 0, (1),

= W)l (') + Bl () U, (1),

= iGj(rt, r't') (2.57)

Based on the above discussion, we proceed to the Wick theorem.
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The Wick theorem

The Wick theorem transforms the T-product of field operators Ay -+ A, into the sum of N-products
of those as follows:

T[A;---A,] = NI[A;---A,]

i\j
+ 3 (1P AAALAN[A; - (igkl) - - Ay
©,5,k,1
_|_. .
—i—Z(—l)PA;A'JA'kA; e (2.58)

where N[A; --- (ij) - - - A,] is the N-product of the remaining field operators after elimination of A; and
flj, and P is the number of permutations from A; - -- Ay to flilejfh e (ig) - A;. Also, the last term
means the product of paired contractions of which number is n/2 when n is even, and the product of
paired contractions of which number is (n — 1)/2 and a remaining operator when n is odd.

To prove Eq. (2.58), first let us prove the following lemma:

Lemma 1

If the time associated with B is earliest compared to all the times associated with fll, e An, then

N[A,---A,)B = N[A;-- A, 1]A;, B + (—1)N[A;--- A,_sA,)

+(=1)" 'N[Ay--- A,JA B + N[A; - -- A, B] (2.59)

Proof of the lemma 1

A~

(1) If B is the destruction operator, then AkB' = 0. Also, indeed N[fh e fln}B = N[/h e AnB] due
to the definition of the N-product. Thus, the lemma is accepted.

(ii) If B is the creation operator, it is possible to assume that fll, ---,and A,, are all the destruction
operators. Arbitrary case can be generated by multiplying the both sides by a creation operator A
from the left side repeatedly and by permutating the order of field operators in the N-product, since
AN[A;--] = N[AA; --] and the changes of sign due to the permutation of the field operators to get
the case in the N-product cancel out.

In this case that B is the creation operator and that fll, S ,An are all the destruction operators,
the lemma can be proved by the principle of induction. For n = 1, we obtain AB = T[fllB] =
Ay B+ N[A;B]. This is the definition of the contaction. Thus, the lemma is accepted. Next, let us
assume that the lemma is accepted for n = m. Letting A be a destruction operator, we have

N[AA, ---A,]B = ANI[A;---A,B,
= A(N[Ar-+ Ay )4, B+ (“1)N[Ar -+ Ay Ay
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= N[AA;--- Ay 1]A; B + (—1)N[AA; - - Ay 2 A]A;, (B +---
+(—1)m_kN[/iA1 ce Am—(k—i—l)Am—(k—l) cee Am]AkB + -
+(—1)""'N[AAy--- A,)A; B+ AN[A; --- A, B], (2.60)
where the last term of the final line in the right hand side is evaluated as:
AN[A;---A,B] = (=1)"ABA,---A,,
= (=1)"T[AB)A,--- A,
= (=1)™A'B + N[AB)A;--- A,
= (=1)™N[A;--- A, JAB + (1) BAA, --- A,
= (=1)™N[A;---A,JAB + N[AA,---A,,B] (2.61)

By putting Eq. (2.61) into Eq.
proven.

Proof of the Wick theorem

(2.57), we can get the lemma for n = m + 1. Thus, the lemma is

The theorem is proven by the principle of induction. For n = 1, we obtain T[fll/lg] =N [1211/12] +

121'1121'2. This is the definition of the contaction. Thus, the theorem is accepted. Next, let us assume

that the theorem is accepted for n = m. Letting flmH be a field operator at the earliest time among

~

Al, ce ,Am—i-la then

T[Al' Ap]Ams

+Y ()P AAN[A; - (35) - A
i,J

+ 3 (1P AAALAN[A; - (igkl) - Ay
ikl

D A A A ) A,

N[Al ’ Am} Am—f—l

+ 3 (-DPAANTAL - (i) -+ A A

+ 3 ()P AAALAN[A; - (igkl) - Al A
i,7,k,l
+Z(—1)Pflifl'jfl;€/ll -flmH,
> (1) A A N[Ap - (im+ 1) Aypa] + N[Ay -+ Ay
+ 3 (-1)PAAALA;,  NIAy - (ijk(m + 1)) -+ Apg]
i,7,k,l
+3 ()P AAN[A; - (ig) - Ay
1,J
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1. (2.62)

where the lemma 1 is used for the derivation. So, we can reproduce the theorem for n = m + 1.
The assumption that Am+1 is a field operator associated with the earliest time among fll, e Am+1
can be eliminated by permutating the field operators in the T- and N-products for arbitrary case of
Eq. (2.63) so that the operator associated with the earliest time can be located at the most right side.
The changes of sign due to the permutation for both the sides in Eq. (2.63) cancel each other. Thus,
the theorem is proven. It is also noted that the Wick theorem can be applied to the field operator U,
itself as a consequence of the distributive properties of the 7- and N-products.® Although we have
proved the Wick theorem, the meaning of the summations in Eq. (2.58) is not so clear. Let us see the

formulas upto n = 4 below:

For n =2
T[A1Ag] = AjAy+ N[A Ay, (2.63)
For n =3

= N[A)AyA; — N[A3]A; Ay + N[A3]4; Ay + N[A1 Ay Ag], (2.64)

Il
=
}>
S
[\V]
Y
w
|
=
g»
*
+
=
N
&,
ES
NI_)J.\'»
_l_
=
E>>
Ef
Y
L,
e
oy

= (A1) + N[A1Ay)) Ay Ay — (Ay Ay + N[AyAy)) Ay Ay + (A3 A + N[AsAy)) Ay Ay
—i—N[Al AQ]A3A4 — N[AlAg]AQA4 + N[A2A3]A1A4 + N[AlAgAzJ}Ad,

5 This statement tends to cause a misunderstanding for the treatment of the N-product. Although the Wick theorem
is valid for the field operator W; itself, it should be noted that N[\ill\ilj] #* \iljlill This can be easily confirmed as:
N[U, Ul = N[U, U] + N[@,¥,] + N[U )] + N[WIb,) = U0, + 0,0, + U0l + &S0, on the other hand, Ui¥,; =
\i/L\ilu + 0,0, + \ilz\i/l + \ilo\i!l Therefore, after transforming the T-product using the Wick theorem, the resultant
N-products have to be evaluated based on the field operators \ilo and \i/u
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= N[A1A2A3A4] + AlAQN[AigfL;] — AlAgN[AQAzl] + A1A4N[A2A3]
+A5A3N[A1Ay] — A AN (AL Ag] + A3 Ay N[A, Ay
+ A Ay Az Ay — Ay A3 Ay Ay + Ay Az Ay Ay, (2.65)
As shown above, the T-product of field oprators can be transformed into the sum of the N-products
and a term consisting of the product of contranctions. The expectation values of the N-products for

the ground state ¥; are all zero due to Eq. (2.42). Thus, the last term in Eq. (2.58) only contributes
to the expecation value of the T-product. This is the usefulness of the Wick theorem.

2.5 Dyson’s equation

As discussed in the previous section, by making use of the Wick theorem one can evaluate the expec-
tation value in the second term of Eq. (2.42) as

(BT (o) Bs(rrt) ) @O0 = (8] (rt0) Bi(02)) (B3] (1'1)
— (B (r1t2) 5(0t)) (5 (112 B (2'F))
= —i2G§(rit, r1t1)GE(rt, v't) + 2GS (rt, v1t1 )G (r1ty, v't).
(2.66)
Putting Eq. (2.66) into Eq. (2.30) yields
iG(rt,x't') = iG§(rt,r't’)
— (—;) iGS(I‘t,I‘/t/)/dtl/dI‘11A)171<I‘1t1>Z'G8(I‘1t1,I‘1t1)
+ (-) /dtl /drlzGO rt rltl)vl 1(r1t1)zG0(r1t1,rt ) + - y
= (1 (FL) /dtl /dr1®171(r1t1)iG8(P1t1,I'17f1) + - >
X (iGS(I‘t, I'/t/) + (—;) /dtl /drliGg(rt,rltl)@l,l(rltl)iGS(rltl,r’t') =+ - ) s
(2.67)

where the factorized final form can be practically confirmed by expanding higher order terms. Also,
the denominator of Eq. (2.28) can be evaluated using the Wick theorem as:

2 (—%)né/_o; dtl.--/_z dtn (D3| T[Hi 1 (t1) - - - Hyp (£0)]] ;)

_ (1 _ (‘%) /dtl/drlm,l(rltl)z’c;g(rltl,rm) + ) . (2.68)

Thus, we find that the terms in the first parenthesis in Eq. (2.67) cancel by the denominator. Noting
—i(F)"i" T = 7, finally Eq. (2.28) can be written by

1
Ge(xt,x't) = Glet,x't) + / dt, / dr1 G5 (rt, r1t )01 (r161) G (r1t1, 1'8)

1 ~ c ~ c
+ﬁ/dtl/dI’l/dtg/dI’QGS(I't,rltl)vljl(rltl)GO(rltl,1‘2252)11171(1‘2252)6:0(1‘2252,I'/t/)
+higher order terms,
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1
= G(C)(I't,r/t,) + ﬁ/dt1/drlGS(rt,rltl)@l,l(rltl)
1
X (G(C)(I'ltl, I‘/t,) + ﬁ / dts /dI‘QGg(I‘ltl, I'QtQ)TA)Ll(erQ)G(C)(erQ, I‘,t/) + - >
1
= Gi(rt,r't") + ﬁ/dtl/drng(rt,r1t1)®171(r1t1)Gc(r1t1,r’t’), (2.69)

The final result of Eq. (2.69) is called Dyson’s equation for the case that Eq. (2.29) is assumed.
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Chapter 3

Non-equilibrium Green functions

(NEGF)

3.1 Definition

For the equilibrium Green function, the perturbation expansion of the Green function is made through
the Gell-Mann-Low theorem by using the ground state of the non-interacting system. On the other
hand, for the non-equilibrium Green function, the reference state used for the expansion can be
arbitrary state as long as the state is given by the one-particle Hamiltonian. For example, starting
from a state that a conductor is disconnected from infinite leads, where each part is at thermal
equilibrium with each chemical potential, and switching on the interaction between the conductor
and the leads on adiabatically, then the evolving state cannot return to the starting state even if the
interaction is adiabatically switched off. This can be understood by a fact that the state, initially
associated with the conductor, disappear somewhere in the lead at the time when the connection is
fully switched on. In other words, one cannot specify the final state, while one can specify the initial
state. Thus, we expand the non-equilibrium Green function perturbatively using only the initial state.
The Green function defined by Eq. (2.1) in the Heisenberg representation is transformed by an initial
state ®;, which can be related a mixed ensemble, in the interaction representation as:

In case of t > t/,

(W[ Tn(rt) UL () [W0) _ (@4]Ti(—00,0)T3(0, ) Ei(rt) Ui ¢, ') ¥ (r ’t’)U( ,0)Ui (0, —00)| ®3)
(Un|Tp) (@3|Us(—o00, 0)Us(0, 1) Ui(t, 0) U5 (0, —00) | &5) ’
_ (@i|Ti(—o00, ) i(xt) Ui(t, #) ¥l (') D (#, —00) | 3)
(@;|®5) ’
= (®s|Ui(—00, +00) U (++00, t) W (rt) Ui (t, ¢') ¥ (x' )Gt —o0)l @),
= (@] Ui(—00, +00)T[Ui(+00, t) Ui (t, ') U (', —00) W (xt) U] (r't')] | @),
= (®|SI T[S0 (et) W] (x't)) | ®;) (3.1)
In case of t' > t,
(Un| U (') On (1) [ Wh) _ (@|Ti( =00, 0)UR(0, ) Wit Ui (#', 1) U] (r) U <o>U< 00)|3)
(Un|W¥n) (®;]U;(—00,0)U3(0, ) Ui (¢, 0) U3 (0, —00) | ®3) 7
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(3| Us (—o0, t")WT (2 t) U (¢, £) W3 (xt) Ui (£, —o0) | @3)
(D;|@s) ’
= (®|Ui(—00, +00)Uj(+00, t') ¥ 1( t') -( ) (rt)U( 00)[®5),
= (®3|Ui(—00, +00)T[Ui(+o00, ) Ui(', 1) Ui (t, —00) Ul (x't) Wy (rt))|B;),
= (| S]T[Si 0 (xt) U] (x'1)]| @3). (3.2)

As a result, one can see that the both cases, t >t and t' > ¢, give the same expression, while the sign
is different. By inserting these expressions into Eq. (2.1), we can express the causal Green function as
G(vt, v't") = —i(®;|SI T[S U3 (0t) U] (r't)]|®5). (3.3)

It can be seen that the expression is different from the Green function for the equilibrium state
Eq. (2.27). Henceforth, the Green function given by Eq. (3.3) is refered to as the non-equilibrium
Green function. Let us consider the perturbation expansion of Eq. (3.3) by expanding both the S'IT
and S;. Considering Egs. (1.97) and (2.26), S'T is given by

Sio= i(;) E/ dt1/ dty - - / dtn { [H 11(t1)H11(t2)"'I:Ii,l(tn)]}Ta

n=0

- i (;)n:u/_o:odtl /_O:odtg---/_o; dt, T(Hy 1 (t1) Hi(t2) - Hi(ta)], (3.4)

n=0
where it is assumed that I—AIM is Helmitian, and T is the anti-time ordering operator which orders
field operators in the parenthesis in order of a rule that one with early time is put to the left side.
Considering the definition of the time ordering operator by Eq. (1.100), it should be noted that the
step functions in the anti-time ordering operator appear in a different way compared to the time
ordering operator as shown below:

T[H;1(t)Hiq(t2)] = Hiy(t)H 11(752)]}T, (3.5)

= { (ty — to) Hy1(t1) Hi i (t2) + 0(t2 — tl)ﬁi,l(tQ)ﬁi,l(tl)}Ta
O(ty — t1)Hy1(t1) Hiq(t2) + 0(t1 — to) Hya(ta) Hip ().

One can find the anti-time ordering operator permutates the field operators for the case with t; = o,
while the time ordering operator does not.
In this section, the Hamiltonian is supporsed to be

H; = Hio+ Hij (1) (3.6)
with
Hio = / drdl (vt)or(r) Ui (1),
Bt = / drdl (vt)o, 1 (o) B3 (xt). (3.7)

From above expressions, it is found that the two-particle operator is excluded. Then, one can write
SIT and T[Si\i/i(rt)\i!;f(r’t’)}, which are the constitutents in Eq. (3.3), as

SIT =1 + (;) /dtl/1‘1@1’1(I‘ltl)T[\iJI(I‘ﬂfl)\i/i(rltl)]

1/i\? R . - . . . .
+ 5 <h> /dtl/I'1U171(I'1t1)/dtg/I'21)171(I‘QtQ)T[‘If;r(I‘ltl)\lfi(rltl)\I/;f(I'QtQ)\IJi(I'QtQ)] + -
(3.8)
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TISbt) ¥} = T (e d]'e)]
+ (;j) /dt1/I‘1ﬁ171(rltl)T[\i/;r(rltl)ﬁ/i(rltl)@i(rt)@}‘(r/t/)]

1/ i\? R R
+ = <> /dt1/drlvm(rltl)/dtg/erULl(erg)

s (B3| T (r1 81 ) Ui (et )T (vota) Wy (vota) Ws (0t) U] (2t)]| @5)
o (3.9)
By multiplying Eq. (3.8) by Eq. (3.9), we can obtain its expectation value as:
(@i SITSy W3 (xt) U] (1)) |@s) = (4| T [ (xt) ] (x')] | 3)

(%) /dtl I‘11)1 1(I‘1t1)<(I) ‘T[ (I‘ltl)\i/i(rltl)\ifi(l‘t)\i/:(I‘lt/)]|<I)i>
+ () / dty | vio1 (erty) (@ T (rt0) s (eyty )| T3 (08) U (28] | D5)
1
2
X

.

( h) /dtl/drlvll I'1t1 /dtg/dI'Q’Ull I'th

I‘T \I/T<I‘1t1)\11 (rltl)\I}T(TQtQ \I/ (I‘th)\lf (I‘t)\I/T( )”(I)l>

h

(®

) —1

% ( )/dtl 1‘1’1)11 1‘1751 /dtl/rlvll I‘lt )
T[d

xT

X

AN ACTN A HCT ACTA ACOL (D)

1
+ 5 (h) /dtl rlvll I‘1t1 /dtz/TQ"Ul 1(1‘2t2)

“f(rm)@ (r1t1)B] (rat) Wi (rat) T (rt) B (/)]
+ (3.10)

The first, second, and fourth terms have been already discussed in the chapter for the equilibrium
Green function. After investigating the properties of the second Wick theorem, we will analyze the
third, fifth, sixth terms in Eq. (3.10) in later section.

3.2 The second Wick theorem
We define A'B' as an analog of the contraction defined by Eq. (2.47) as follows:
AB =T[AB] — N[AB]. (3.11)

Hereafter the contractions defined by Egs. (2.47) and (3.11) will be refered to as first and second
contractions, respectively. The second contraction has the following properties:

AB = —BA, (3.12)
(A + B)C: = AB 4 A5, (3.13)
AB = 0 if A and B are anticommutable. (3.14)

=
i)
wn
—~
w
—
S
&
=
(oW
—~
w
}_\
w

) are trivial from the definition, and Eq. (3.14) can be confirmed by noting that
T[AB] = 0(tp — tA)A —0(ta—tp)BA = AB and N[AB] = AB or — BA = AB. Due to Eq. (3.14),
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the following contractions become zero:

T = 0, Uhwl=o,
W@, = 0 WiEli=o,
Uk = 0,  UHT =0,
Tl = 0,  UHiw =0,
T, = 0, Uhwli=o,
v = 0, Uhwl=o.

The proof for above relations is same as for the first contraction.

and they are given by

(3.15)

A little contractions are not zero,

Whi(rit) Uyrats) = Y W ()W (ro)e™ e 256 6l
,j Eunocc
= Y Ol T (ry)et e Al bl
i#jE€unocc
+ 3 W) Wi(r)e Al
f€Eunocc
= Z \Ijl:i(rl)qjsyi(rQ) ~ita= tl)wl&!z&sz?
7€unocc
1 ) —i(ta—t1)w;
Z \IJSJ(rl)\IISJ(rg)e for t1 >t
= 1€unocc s
0 for t9 >t
_ iG(C)’*(I‘ltl,I'QtQ) for t1 > t9 (3 16)
0 for toy >t ’
Wy (rit) Wl (rat) = > WLi(r) s (ra)e™ e " al al ;.
i,j€occ
= 2 W)U (r)e e A a
i#j€occ
+ Z \I’ sz 1‘2) —ilt2— tl)wz&J;’z&éz’
i€occ
= Z \Il SZ r2) (t27tl)wzal zas i’
i€0cc
for tl Z t2
= Z \I’ sz I'Q) —i(ta—t1)w; for to > 11 >
1€occ
. 0 for tl Z t2 (3 17)
iGg’*(I‘ltl,I‘th) for to > '

where G

*(r1t1,Tats) is the conjugate complex of G§(r1t1, rats). As mentioned in the chapter for the

equilibrium Green function, note that the normal ordering operator in the derivation of Egs. (3.16)
and (3.17) operates on not a, but the field operators. Using Egs. (3.15), (3.16), and (3.17), the second

contraction can be obtained as follows:

/) —

A

Wi (rt) Wi(r't (T (rt) + WF (rt)) (i, ('t
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= 0, (3.18)

Q25 5
U (et) Ul (r't) + WL () U3 (') + W3 () UF (2t) + W (rt) W3 (2F),
0

— 0 (3.19)
Wity Bi't) = (THE') + O @'t) (T, (xt) + Tli(rt)),
= Wli(rt) T ('t) + Ul (rt) PEY) + U (rt) U (x't) + B (rt) T ('),
Uh(et) Wi (r't) + i (rt) Ul (2'1),
= Gy (rt,x't). (3.20)

The second Wick theorem

The second Wick theorem transforms the T—product of field operators A;--- A, into the sum of

N-products of those plus a product of the second contraction as follows:

1,J
+ > (-D)PAAAAIN[A; - (igkl) - Ay
i,5,k,1
+
+Z WPALAAA-- (3.21)

where N[A;---(ij)---Ay] is the N-product of the remaining field operators after elimination of A;
and Aj, and P is the number of permutations from A Ay to Aifljfll e (ig) - Al Also, the last
term means the product of paired second contractions of which number is n/2 when n is even, and
the product of paired contractions of which number is (n — 1)/2 and a remaining operator when n is
odd.

Although the proof of the theorem is very similar to that of the first Wick theorem, for completeness
the proof is shown below. To prove Eq. (3.21), first let us prove the following lemma:

Lemma 2
If the time associated with B is latest compared to all the times associated with fll, cee /ln, then
+(_1)nikN[A1 o An (k+1)An (k—1) A ]A}gB
+(=1)""'N[Ay - AJA B + N[Ar - A, B] (3.22)

This proof is similar to that of the lemma 1 which is discussed in the chapter for the equilibrium Green

function.
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Proof of the lemma 2

~ A~

(1) If B is the destruction operator, then AkB = 0. Also, indeed N[fll e fln]B = N[fh e AnB] due
to the definition of the N-product. Thus, the lemma is accepted.

(i) If B is the creation operator, it is possible to assume that fll, -+, and A,, are all the destruction
operators. Arbitrary case can be generated by multiplying the both sides by a creation operator A
from the left side repeatedly and by permutating the order of field operators in the N-product, since
ANJ[A; ---] = N[AA; -] and the changes of sign due to the permutation of the field operators to get
the case in the N-product cancel out.

In this case that B is the creation operator and that Al, S ,fln are all the destruction operators,
the lemma can be proved by the principle of induction. For n = 1, we obtain AB = T[fllé] =
A1B P+ N [Alé]. This is the definition of the contaction. Thus, the lemma is accepted. Next, let us

assume that the lemma is accepted for n = m. Letting A be a destruction operator, we have

N[AA,---An)B = AN[A;- - A,B,
— A(N[Al"'Am—l]A;nB;+(_1)N[A1'”Am—2Am] mo1 B+

_1)m—1N[A2 o Am]AiB7 + N[Al - AmB]) ,

i B+ (=1)N[AA;--- A, 9An)AL B+

-1 m_kN[AAl . Am—(k’-{-l)Am—(k‘—l) AR AB -
m-IN[AAy--- A, ]AiB + AN[A, --- A, B, (3.23)

~ ~ ~

AN[A,---A,B] =

MN[A; - Ap)AB + (1) BAA, - A,
AnAB + N[AA, --- A, B]. (3.24)

By putting Eq. (3.24) into Eq. (3.23), we can get the lemma for n = m + 1. Thus, the lemma is

proven.
Proof of the second Wick theorem

The theorem is proven by the principle of induction. For n = 1, we obtain T' [Alflg] =N [Alflg] +
A1A2 This is the definition of the second contaction. Thus, the theorem is accepted. Next, let us
assume that the theorem is accepted for n = m. Letting Am+1 be a field operator at the latest time
among 1211, S Am+1, then

T[Ar - ApAmia] = T[A1- Ap)Am
— (N[Al---/i ]
+Z PAA’ A('L])Am]
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~ A~ A~

l
= Y (DPAAL G N[AL---(i(m+ 1) - Agga] + NAL - A

A~

+ > (-DPAAA AL NA; - (ijk(m + 1)) -+ Ay ]

,5,k,l

FY )P AANAL (i) A
ij

+ > ()P AAAAN[A; - (igkl) - Ay
i,5,k,l

+Z(—1)PA;A3A;€A3 At

= N[A;- Ay

+ 3 ()P AAN[AL - (i) - Apy]
ij

+ > ()P AALAAIN[A - (igkl) - Ay
,5,k,l

+Y (-)PAAAA - (3.25)

where the lemma 2 is used for the derivation. So, we can reproduce the theorem for n = m + 1. The
assumption that Am—i—l is a field operator associated with the latest time among 1211, e flmH can be
eliminated by permutating the field operators in the T- and N-products for arbitrary case of Eq. (3.25)
so that the operator associated with the latest time can be located at the most right side. The changes
of sign due to the permutation for both the sides in Eq. (3.25) cancel each other. Thus, the theorem
is proven. It is also noted that the second Wick theorem can be applied to the field operator U, itself
as a consequence of the distributive properties of the T- and N-products.!

Although we have proved the second Wick theorem, the meaning of the summations in Eq. (3.21)

is not so clear. Let us see the formulas upto n = 4 below:

For n=2
T[A1Ay] = AjA;+ N[A14y), (3.26)
For n=3

1 See the footnote for the Wick theorem.
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T[A1A2As] = T[A;As)As,
= (AjA} + N[A; 4,)) A3,
= NJ[A;45)A3 + N[A3) A} A,
= N[A1)A, A, — N[Ag) A\ Ay + N[A3]Aj A} + N[A1 Ay As), (3.27)

AL ALAL A (3.28)

3.3 Structure of the NEGF

The first contractions arising from the T-product, T[gi\ili(rt)\il;r(r’t’)], in Eq. (3.3) are equivalent to
those of the numerator of Eq. (2.27) for the equilibrium Green funtion, and by using Egs. (2.67) and
Eqgs. (2.68) and they are given by

First contractions in T[Si\ifi(rt)‘ilg(r’t’)]

= (1 — <;) /dtl /drlﬁlyl(rltl)iGS(rltl, rltl) + - >

X <’iG8(I‘t, I',t,) + <_;L) /dtl/drliGB(rt, rltl)ﬁlyl(rltl)iGg(rltl, I'/t/) -+ .- > s
= <‘bi’§i’¢’i> (’iGS(I‘t, r’t’) + (—;) /dtl/drl’iGS(I‘t, I‘1t1)’lA)171<I‘1t1)’L'G8(r1t1’ r/t/) -+ .- ) .
(3.29)
Also, the second contractions of 5’1 can be found using Egs. (3.8), (3.20), and (3.28) as

Second contractions in S’iT

= 1+ (;) /dtl/drlﬁl,l(rltl)iGg’*(I‘ltl,I‘1t1)

1 /i\? . N . .
+§ (h) /dtl/drlm,l(rltl)/dt2/dr2vl’1(r2t2)ZGo’ (rit1,r161)iGy" (rata, rots)

1 /02 . ) e e
2 (h) /dtl/drlv1,1(1‘1t1)/dt2/dr2v1,1(r2t2)2G8’ (rato, T1t1)iGy" (rit1, vato) + -

= (@] 8]|@;). (3.30)

The term <<I>i]5’i\<1>i) in the Eq. (3.29) can be explictly evaluated by assuming the following special
form of I:IiJ(t):

H;1(—t) = H;i1(t).

) )
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At least, if ﬁm(t) is the coupling between leads and the conductor, the assumption is presumably
acceptable. With the assumption, ﬁi(O, —00) can be written as:

U;(0,—c0) = T {eXp (—;/_Ooo dtﬁi,l(t)])] ,

= T {exp (—;[Fom(—dt/)ﬁi,l(—t,)]ﬂ )

= -7 [exp (—;L ’ dt/ﬁi,l(t/)]ﬂ’

+o0
= —U;(0, +00), (3.31)
where the variable change of ' = —t is made. Then, it turns out that
(@3)%3] @) = <‘1’1|Ui(+00,0)0( 00)| 1),
= (®3|Ui(+00,0)(=Ti(0, +00))|®;),
= -1 (3.32)

Moreover, noting that ((@i\gi@i))T = <<I>i\5';r\<1>i>, it is found to be <<I>i]§;\<l>i>(<1>i]5'i]<1>i> = 1. There-
fore, Eq. (3.10) can be rewritten by the sum of two contributions. One of them consists of the terms
in the parenthesis in Eq. (3.29), and the other is a characteristic contribution which appears in the
NEGF not in the EGF, and will be discussed later on. Temporarily, letting the second contribution
be 7, one can write Eq. (3.10) as

(@3] STT[S3 05 (vt) U (/)] | 5)

= (iGS(I‘t, I‘/t/) + (—;) /dtl /drliGS(rt, rltl)@l,l(rltl)iGg(rltl, I‘Itl) + - ) +n.
(3.33)

The first contribution is equivalent to the connected diagrams appearing in the EGF.

To investigate the second contributin 7, first let us see the third term in Eq. (3.10) which is the
first order term in 7. The product of the T-and T -products being the constituent in the third term
of Eq. (3.10) can be expanded using Eq. (2.39) as

T (r1t2) Wi () T (B () B (071

= T[(V](r:t )+‘i’ (r1t0)) (Pu(rrtn) + Uh(rrt)] x T[(Wu(rt) + W () (TLE) + To (2'))],

= (T (eat) Bu(eats)] + TR et Th eata)] + T (r1t) P (eats)] + T (r141) U (r1t1)])
X (T (et) UL ()] + T (rt) Bo ()] + T[S (et) Bl (8] + T (et B (8)]) . (3.34)
When the expectation value of Eq. (3.34) is considered with respect to ®;, it is found that the sum of the
first and second terms in the first parenthesis gives iGg’*(rltl, rit1), and that the sum of the first and
second terms in the second parenthesis gives iG§(rt,r't’). They are parts of <<I>i|§iT|<I>i><<I>i\5’i\<I>i), and
cancel as discussed above. The other surving term is (®;|T[W,(r1ty) Wy (vt 7[0S (0t) T (r't)]|®;).

Although the contribution from the contractions in the expectation value is zero, it is found using
Egs. (2.51), (2.63), (3.15), and (3.26) that the contribution from the N-products survives as:

(B3| T[Wo(rity) T (ret)| B (rt) WL ()] [@1) = (5| N[Wo (ret) Wy (x1t1)| N [] (0t) U (28] | ;),
= (D] To(r1tr) Uy (rita) Ul (et) Ul (x't)[ @), (3.35)
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Noting that
@) = effor|ay),

= JJe"m|@s), (3.36)

L) Ul (x't))|®;)
= —<‘I’i\‘I’o(rltl)‘i’i(rt)‘i’u(rltl)‘iﬁ( "t")|®s)
5t

= —(Dg| Uy (ry (rt) > Wg(r) s, (r))e 1w |gy),
i€unocc
= 3 W (r) ¥ (ry)e ( ST W)W (x)e s > (3.37)
j€occ iEunocc

As defined in the chapter of the EGF, we now define the lesser and greater Green functions G§ and
Gy for the NEGF by

Gy (rt, 't = i(®;| U] (x't)Wi(rt)|®;),
= i Wo (xt) U (xt) | B3),

_ (zw )(zw )|<1>i>,

= Z \If ,J ) —itw; zt’wz<(I) |a as,j|<I>s>a
1i,j€occ
=>> qxsﬂ-(r)\p;i(r’)e*i(t*”wz‘ (3.38)
i€0cc
and
Gy (xt,x't) = —i(®;|;(xt)T] (x't)|®3),

= (@i T (rt) L (1) | 3),

= i<q’i|( > ‘I’s,i(r)&i,i(t)>( > \I’:,j(r/)&;j(t/)) |®s),

i€unocc jE€unocc

= =i Y U)W (r)e et (g ag s | D),

%,j Eunocc

= =i Y We(r) g (e e (3.39)

{€Eunocc

Using the lesser and greater Green functions, one can write Eq. (3.37) as
(@)W (011) Ty (r180) UL () TF (1) |B;) = Gy (vt r1t1)iGg (1t x't)). (3.40)

Thus, considering Egs. (3.10) and (3.33), the first order term (F.O.T) of n is give by

F.O.T in n = (;L) /dtl /I‘liGg (I‘t, r1t1)6171(r1t1)iG5 (I‘ltl, I'/t/). (341)

39



The fifth and sixth terms in Eq. (3.10) give rise to the second order terms (S.0.T) in 7. First, let
us analyze the fifth term. In the fifth term, the 7-, and T-products can be expressed by using the

Wick theorems as follows:

TI0] (rit)Ws(r181)] = iGE™ (rrty, v1ty) + N[W (r10) W5 (r181)]. (3.42)

T (e t) B3 () B3 () ] (')
= N[ (r)t)) i (rh ) s (rt) ] (2]
—iGg(ryth, )N (o) U] ('t))] + iG (et v ) ) N[5 (1 ;) B (1))
—iG(xhty, X't )N W] (r) ) Wy (xt)] + GG (xt, v/t ) N[I] () )) B (r) 1))

—iG ()b, i t))iGE (vt v't') + iG(rt, v t) )iGH (v, o't). (3.43)
Noting that
Ui, = O, + Tl 4+ 0,0, + 0,07,
R A A AR AL AT (3.44)
In the expectation value for the product of the T-, and T-products, the surving terms contributing to

7 are given by

The terms contributing to 7 in (@;|T[W] (r1#)W; (r1t1)| T[] (x4 #) 05 () 8;) Ui (xt) U (/1)) ;)

= —iGG(rhty, Tyt (Bs| N[ (rty) T (raty)| N [B (rt
+iGG (ot T #7) (D3| N [T (r1t1) Ty 1
—iGG(xhty, v ) (B3| N[Wo(r1t1) ¥,
+iG§(rt, 't )<<I>|N[ o(rit1)Wy(r
= HGE(chth, vyt (D5 T (rty) WS (r
—iGG(rt, i th) (D3| W (ret1) Tl (r '175'1
—iGE(r ]y, 't ) (D) W (1) U] (08) Ty (r1 1) T
HiGH(rt, 1) (D3| W (1) W (r) 2] ) W (
= +iGG(
—iG§(rt, )t} (=) G (vt rit1)i
—iGG(rt], ') (—i) Gy (vt v1t1)iGy (v1ty, r)t]
o

+iG§(rt, ') (=) Gy ()t r1t1)iGy (v1ty, T t)

(

(

rit), v t)) (=) Gy (vt, r1ty)iGy (v1ty, v't))
Gq ( )

)

) (3.45)

where the final expression is derived by the same procedure as for Eq. (3.37). By putting Eq. (3.45)
into Eq. (3.10), one can explicitly express the terms contributing to 7 in the fifth term of Eq. (3.10)

as follows:
The terms contributing to 7 in the fifth term of Eq. (3.10)

- (;) (;) [t [ oGt eia) [du [ n(-0GF @t i) (ni)iGs et x')
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H(5) (50) [t [x [t [ ¥-0Gswtrith)on a4 (<G (xih. ) (r8)iG5 (161,70

h
(;L) (_h> /dtl/rl/dtl/ GO (I‘t I‘1t1)’l)1 1(I‘1t1)’LG0 (rltl,rlt )’Ul 1(I'1t )(—i)Gﬁ(rﬁtﬁ,r’t')
+ (;) (%) G(rt, 't /dtl/rl/dtl/rl IG5 (vhth, ritr) o1 1(r1t1)iGy (vity, vhth) 011 () 8h).
(3.46)

T (r1t1) W3 (r161) Ul (vat2) Wi (rats))]

= N[\i/j(rltl)@i(rltl)ﬁﬂ(rm)@-(rm)]
FIGGT (b, v1t ) N[UT (rote) Ui (rota)] + iGE™ (r1ty, rote) N[y (vt ) U] (raty)]
—iGE (vat, v1ty ) N[W (r161) W (vata)] + 1G5 (vate, rota) N[W1 (r181) Ui (r1t,)]
+iGy " (r1t1, 1111)iGy " (rate, rate) — iGy " (rate, T1t1)iGy " (r1t1, Tats). (3.47)

T (et) U] (/)] = iG§ (vt 't') + N[y (ct) ¥l (/)] (3.48)

3.4 Finite temperature formalism

In case of t > t/,

[In(rt) ¥, (1)) = D (e (et) ¥ W) [ Un ),

= Zwk ik (O[T, 00T (0, £) Ui (xt) Ui (¢, 0) U3 (0, )Wl (et O3 (¢, 0) 050, ) | W5 1. (),

= Zwk ik (O[3 (et) Ui (8, ) W] (1) | W34 (1)),

- Zwk (B4 1| Ui (=00, t) W (ct) Ui (£, ') U1 (2t U5 (¢, —00) | @ 1),

= iwk@i,k\m(—oo, +00) Ui (+00, 1) 3 (xt) Ui (¢, ) U] (') U (t', —00) | @i ),

= Zwk s 1| ST T[S W3 (xt) U] (1)) |5 1),

= Z<xﬂ[2wk|<1>lk
7 ;

= tr (AoSIT[SiWi(xt) ¥] (x't

1 (aal SIS B3 (vt W] ()] ),
2))
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