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Experimental background: complexity of
multi-phase structure of permanent magnet

e Jo create strong permanent magnets...

 Main phase: strong ferromagnetism and strong magnetic
anisotropy

* (Grain boundary phase: magnetic insulation of main phase
grains

If not, magnetic reversal
easily spread in the
presence of
demagnetization field

Magnetic insulation mechanism
Mat. Trans. 57 (2016), 1221-1229




Computational study of

permanent magn

ets

« (Calculation of exchange coupling constant Jj;

for systems including rare earth element

s, €.9. Nd, Sm, Dy

for sufticiently large systems that can re
ohases and multi-phase structures of permanent magnets

e Minimum ~ 50 atoms

oresent different

e Maximum ~ a few hundreds or a few thousands of atoms

A

bit too large,

but anyway this cannot be
attained without development of code




|X: Jij calculation code
for OpenMX post-processing

Post-process calculation of
exchange coupling constant J; using
ground state density and second
perturbation theory [J. Magn. Magn. Mat 67,

65-74 (1987)]

Applicable for isolated systems and
periodic systems

MPI parallelization for periodic

systems

Efficient algorithm for energy

iIntegration

To use |x, you need to choose
relatively small basis set.

Poles of
Fermi S
functions

XXX XXX Eimax

Y
Poles of retarded
Green’s functions

[T. Ozaki, PRB,75, 035123 (2007)]
[AT et al., JPST 88, 114706 (2019)]



Jij for transition metals

* Fair correpondence with experimental Curie temperature

18 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 16

16 r 14 | %

4 2t o
— 2 10 4.070 A -
% o % 8 \ i
E s 20 s

= ¢ | = \ 2.507
~ N ~ . @

2t 2t ®/ & ]

0| 0 %QB% OB |

2 . ) ! ! ! ! !

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
ryi [A] ry [A]
(a) bee Fe, k-grid = 27%27%27 (b) hep Co, k-grid = 32x32x%20
3.5 T T T T T T T |
NRC ‘ | Tc K]

) s \ T System | calculated | experimental
S bec e 1321 1040
> oo hep Co 1640 1131
E W | | fee Ni 445 627
~ \ ]

0.5 \\ o 1

, & 000 ,
N e et XC: GGA-PBE

2 3 4 5 rl.jEA] 7 8 9 10 PAQO: 32p2d2

(c) fce N, k-grid = 24x24x24




Jiitor rare earth metals
for various basis sets
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« However, |x seems to work bad in calculations of rare earth

metals...

e Strong dependence on basis sets in density functional calculation

* Diverges when choosing large number of basis!




Problem

What is the origin of divergence in rare earth metal
calculation?

OW can we eliminate it?

ow can we calculate very accurate and converged J;
for large number of basis?

What is clear Is that ...

Electronic state itself will be converged when choosing
very large number of basis

This problem comes from the calculation method of Jj




Non-Orthogonality problem

 Implemented ecuation to calculate J;; using Liechtenstein
method [J. Magn. Magn. Mat 67, 65-74 (1987)][AT et al., JPSJ 88, 114706 (2019)]
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povELptviE] Contrlbutlon from atomic S|tes i and j

* Currently, in P; and P;, we just
put the difference of diagonal Q O
element of Hamiltonian for spin =~ ¢
up and down.

» For large basis sets, Atomic Q ©
sites will be ill-depicted by this Q Q
definition, because of large
overlap of wide basis functions
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Atomic sites by valence state

e First, we tried definition of atomic sites by valence state only.
e |nthis method, we sum up the constribution of valence state
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e This didn't solve the problem!

e Strong dependence on basis set for 1st NN

Jij [meV]
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for Liechtenstein calculation, while using extended basis set
for electronic state calculation.




Orthogonalization of atomic orbitals

 Then, we tried orthogonalized atomic orbitals:
Lowdin orthogonalization (LO) 73>(LO) = Z \j’)S_l/Q\j,i.
j/

Schematic of non- Schematic of
orthogonal basis Lowdin basis
function function

;

10
iy (Al | "y [A]

s2pidl —— s3p2d2 —— s3p3d2fi —— ) s2pidl —— s3p2d2 s3p2d3f1 ——
s2p2d1 s3p2d2f1 s3p3d3 —— ] s2pi1d2 s3p2d2f1 s3p3d3 ——
s2p2d2 s3p3d2 s3p3d3f1 —— ) , s2p2d2 s3p2d3 s3p3d3ft ——

Do not converge at all!




Orthogonalization of atomic orbitals

 We also tried another orthogonalization method:

Single-site orthogonalization (SO) Schematic of
single-site
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Spin population scaling

* Because it turns out that the SO basis underestimate the spin
population slightly, we tried spin-population scaling for SO results
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Good convergence, but physical meaning?




DiIsScussIion

|X: falls when taking large number of basis functions
Redefinition of atomic sites by valence state only

 Works bad for rare earth metals, particularly when the
number of basis function is very large.

Redefinition of atomic sites by orthogonalized orbitals

e |owdin orthogonalization scheme does not converge J;; at
all.

* Single-site orthogonalization scheme underestimates the

spin population slightly, and it affects the calculated value of
Jij.

* Although the convergence can be improved by spin

population scaling, it makes the physical meaning of
calculated values unclear.




DiIsScussIion

* Physically-meaningful definition of atomic sites?

TTT TTZ,?QT

 Because Liechtenstein method is based on Heisenberg
model of localized spins, we need to define atomic sites

by the spin rotation on the atoms.

e How does it rotate” ...
* Definition of atomic sites by its electronic occupation
 We should try (or, have tried) Wannier functions...




Future works

* Implementation of closest Wannier tfunctions to a given
set of localized orbitals

e https://arxiv.org/abs/2306.15296

PRg,R’g’ — (X/Rglp'iR’g'):
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FIG. 3. CWFs for (a) Si, (b) Cu, (¢) TTF in TTF-TCNQ,

— |yg,1/> and (d) TCNQ in TTF-TCNQ. In all the cases, isovalues of
|yg,y> —_ 3 1£0.04 (orange:0.04, blue:-0.04) are used for drawing the iso-
\/ <y g,v | S 09,09 |y q, I/> surfaces using OpenMX Viewer [33]. The computational con-

ditions for (a), (b), (c), and (d) are the same as those in Fig. 2
b), Fig. 4 (a), Fig. 5 (b), and Fig. 5 (b), respectively.

We then should make our way by just, simply coding.
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https://arxiv.org/abs/2306.15296

