Improvement of J_{ij} calculation for extended basis sets having large non-orthogonality: current situation and problem

Asako Terasawa

Research Organization for Information Science and Technology (RIST)
2023-11-09, The 3rd OpenMX Developers Meeting

Experimental background: complexity of multi-phase structure of permanent magnet

- To create strong permanent magnets...
 - Main phase: strong ferromagnetism and strong magnetic anisotropy
 - Grain boundary phase: magnetic insulation of main phase grains

If not, magnetic reversal easily spread in the presence of demagnetization field

Magnetic insulation mechanism Mat. Trans. **57** (2016), 1221-1229

Computational study of permanent magnets

- Calculation of exchange coupling constant J_{ij}
 - for systems including rare earth elements, e.g. Nd, Sm, Dy
 - for sufficiently large systems that can represent different phases and multi-phase structures of permanent magnets
 - Minimum ~ 50 atoms
 - Maximum ~ a few hundreds or a few thousands of atoms

A bit too large, but anyway this cannot be attained without development of code

jx: J_{ij} calculation code for OpenMX post-processing

- Post-process calculation of exchange coupling constant J_{ij} using ground state density and second perturbation theory [J. Magn. Magn. Mat 67, 65–74 (1987)]
- Applicable for isolated systems and periodic systems
- MPI parallelization for periodic systems
- Efficient algorithm for energy integration
- To use jx, you need to choose relatively small basis set.

[T. Ozaki, PRB,75, 035123 (2007)] [AT et al., JPSJ 88, 114706 (2019)]

J_{ij} for transition metals

Fair correpondence with experimental Curie temperature

•

	$T_{ m C} \ [{ m K}]$	
System	calculated	experimental
bcc Fe	1321	1040
hcp Co	1640	1131
fcc Ni	445	627

XC: GGA-PBE PAO: s2p2d2

J_{ij} for rare earth metals, for various basis sets

- However, jx seems to work bad in calculations of rare earth metals...
 - Strong dependence on basis sets in density functional calculation
 - Diverges when choosing large number of basis!

Problem

- What is the origin of divergence in rare earth metal calculation?
- How can we eliminate it?
- How can we calculate very accurate and converged J_{ij} for large number of basis?

What is clear is that ...

- Electronic state itself will be converged when choosing very large number of basis
- This problem comes from the calculation method of J_{ij}

Non-Orthogonality problem

• Implemented ecuation to calculate J_{ij} using Liechtenstein method [J. Magn. Magn. Mat 67, 65–74 (1987)][AT et al., JPSJ 88, 114706 (2019)]

$$J_{ij} = \frac{1}{2} \sum_{p=1}^{N_{\rm P}} \tilde{R}_p \sum_{\mu,\nu \in i} \sum_{\mu',\nu' \in j} \left\{ \hat{P}_i |_{\nu\mu} G^+_{i\mu,j\nu'}(\downarrow,\tilde{z}_p) \hat{P}_j |_{\nu'\mu} G^+_{j\mu',i\nu}(\uparrow,\tilde{z}_p) \right\}.$$
Contribution from atomic sites i and j

- Currently, in P_i and P_j , we just put the difference of diagonal element of Hamiltonian for spin up and down.
- For large basis sets, Atomic sites will be ill-depicted by this definition, because of large overlap of wide basis functions

Atomic sites by valence state

- First, we tried definition of atomic sites by valence state only.
- In this method, we sum up the constribution of valence state for Liechtenstein calculation, while using extended basis set for electronic state calculation.

- This didn't solve the problem!
- Strong dependence on basis set for 1st NN

Orthogonalization of atomic orbitals

• Then, we tried orthogonalized atomic orbitals:

Schematic of non-

Löwdin orthogonalization (LO)

$$|i\rangle^{(LO)} \equiv \sum_{j'} |j'\rangle \mathbf{S}^{-1/2}|_{j'i}.$$

Schematic of

Orthogonalization of atomic orbitals

We also tried another orthogonalization method:

Single-site orthogonalization (SO)

$$|i\rangle_{i}^{(SO)} \equiv |i\rangle - \sum_{j'\neq i} \sum_{j''\neq i} |j'\rangle \mathbf{S}_{\bar{i},\bar{i}}^{-1}|_{j'j''}\langle j''|i\rangle$$

$$|j\rangle_i^{(\mathrm{SO})} \equiv |j\rangle, \ j \neq i,$$

Schematic of single-site orthogonalized basis function

 $\mathbf{S}_{\overline{i},\overline{i}}^{-1}$: Submatrix of overlap matrix for *i*-site element

Spin population scaling

 Because it turns out that the SO basis underestimate the spin population slightly, we tried spin-population scaling for SO results

Spin-population scaling

$$J_{ij}^{(SOS)} = \frac{\Delta n_i}{\Delta n_j^{(SO)}} \frac{\Delta n_j}{\Delta n_j^{(SO)}} J_{ij}^{(SO)}$$

Discussion

- jx: fails when taking large number of basis functions
- Redefinition of atomic sites by valence state only
 - Works bad for rare earth metals, particularly when the number of basis function is very large.
- Redefinition of atomic sites by orthogonalized orbitals
 - Löwdin orthogonalization scheme does not converge J_{ij} at all.
 - Single-site orthogonalization scheme underestimates the spin population slightly, and it affects the calculated value of J_{ij} .
 - Although the convergence can be improved by spin population scaling, it makes the physical meaning of calculated values unclear.

Discussion

Physically-meaningful definition of atomic sites?

- Because Liechtenstein method is based on Heisenberg model of localized spins, we need to define atomic sites by the spin rotation on the atoms.
- How does it rotate?
- Definition of atomic sites by its electronic occupation
 - We should try (or, have tried) Wannier functions...

Future works

- Implementation of closest Wannier functions to a given set of localized orbitals
 - https://arxiv.org/abs/2306.15296

$$\rho_{\mathbf{R}g,\mathbf{R}'g'} = (\widetilde{\chi}_{\mathbf{R}g}|\widehat{P}|\widetilde{\chi}_{\mathbf{R}'g'}),$$

$$S_{\mathbf{R}g,\mathbf{R}'g'} = (\chi_{\mathbf{R}g}|\chi_{\mathbf{R}'g'}).$$

$$\Lambda_g = \sum_{\mathbf{R}g'} \rho_{\mathbf{0}g,\mathbf{R}g'} S_{\mathbf{R}g',\mathbf{0}g}$$

$$\Lambda_g^{\dagger} \Lambda_g = Y_g \Omega_g^2 Y_g^{\dagger},$$

$$|\bar{y}_{g,\nu}\rangle = \frac{|y_{g,\nu}\rangle}{\sqrt{\langle y_{g,\nu}|S_{\mathbf{0}g,\mathbf{0}g}|y_{g,\nu}\rangle}},$$

FIG. 3. CWFs for (a) Si, (b) Cu, (c) TTF in TTF-TCNQ, and (d) TCNQ in TTF-TCNQ. In all the cases, isovalues of ±0.04 (orange:0.04, blue:-0.04) are used for drawing the isosurfaces using OpenMX Viewer [33]. The computational conditions for (a), (b), (c), and (d) are the same as those in Fig. 2 (b), Fig. 4 (a), Fig. 5 (b), and Fig. 5 (b), respectively.