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Background

The desired system size for first-

principles molecular dynamics

(FPMD) simulation is largely

increased.

Machine learning techniques has been

proven to fit potential energy surface1.

For better performance, researchers

seek to develop more complex model,

like deep neural network.

1 K. T. Butler et al., Nature 559, 547 (2018).
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Overview of on-the-fly fitting (active learning)

Model is not fixed by pre-train, also updated along MD simulation.
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Purpose of study

Main purpose

We try to fit the local PES for each atom with a compact atomic

decomposed model and on-the-fly update along MD simulation.

Highlight features

• Fitting by solving linear equations problem (numerical robustness

and low retrain cost)

• Independent model for each atom (O(N) time complexity and ability

for complex chemical environment)

• Training data can be iteratively accumulated (Cold start and online

training)
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Tensor representation of atomic energy

Total energy is represented by summation

of atomic energy:

𝐸tot
model = ෍

𝑖

𝐸𝑖
model

Them we consider the atomic energy for

atom 𝑖 :

𝐸𝑖
model = ൻ𝑉𝑖 𝐴(𝑛) ۧ|𝑉𝑖 ۧ|𝑉𝑖 … ۧ|𝑉𝑖 ,

𝐴(𝑛) ۧ|𝑉𝑖 =෍

𝑗

𝐴𝑖,𝑗,𝑘…,𝑛
(𝑛)

𝑣𝑗 = 𝐴(𝑛−1),

Where 𝐴(𝑛) is a n-rank tensor, ۧ|𝑉𝑖 is

descriptor vector. For 1st and 2nd rank case:

𝐸𝑖 𝐴
1 = 𝐴1𝑣1 + 𝐴2𝑣2 +⋯+ 𝐴𝑚𝑣𝑚,

𝐸𝑖 𝐴
2 = 𝐸𝑖 𝐴

1 + 𝐴22𝑣1𝑣1 + 𝐴23𝑣1𝑣2 +⋯

𝑛 − 1 tiems

𝐸 =෍

𝑖

𝜔𝑖෍

𝑗

𝜔𝑗𝑓𝑗 ෍

𝑘

𝑓𝑘 𝜔𝑘𝑥𝑘 ,

With Taylor expansion of 𝑓:

𝑓𝑘 𝜔𝑘𝑥𝑘 = 𝑓 𝑥0 + 𝑓′ 𝑥0 𝜔𝑘𝑥𝑘 − 𝑥0 +
1

2!

𝑓′′ 𝑥0 𝜔𝑘𝑥𝑘 − 𝑥0
2 +⋯

So, we have:

𝐸 = 𝑏0 +෍

𝑖

𝑏𝑖𝑥𝑖 +෍

𝑖,𝑗

𝑏𝑖𝑗𝑥𝑖𝑥𝑗 +⋯

+ ෍

𝑖,𝑗,…,𝑛

𝑏𝑖𝑗…𝑛𝑥𝑖𝑥𝑗 …𝑥𝑛
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Descriptor vector

We consider the atomic energy is contributed by 2-

body and 3-body interactions in a finite range.

| ۧ𝑉 = (1, 𝑉1
𝑟𝑎𝑑 , … , 𝑉𝑝

𝑟𝑎𝑑 , 𝑉1
𝑎𝑛𝑔

, … , 𝑉𝑝
𝑎𝑛𝑔

)

𝑉𝑝
𝑟𝑎𝑑 = ෍

𝑗,𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

ℎ 𝑍𝑗 𝐺𝑝
𝑟𝑎𝑑(𝑟𝑖𝑗)

𝑉𝑝
𝑎𝑛𝑔

= ෍

𝑗,𝑘;𝑗,𝑘∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

ℎ 𝑍𝑗 , 𝑍𝑘 𝐺𝑝
𝑎𝑛𝑔

(𝜃𝑖𝑗𝑘)

We use series of symmetry function 𝐺𝑝 to sample

all many body pairs inside cutoff range. 𝑍𝑗 is the

normalized atomic number for distinguish element

type.
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Orthogonal polynomial descriptor

Orthogonal polynomials with 𝒙 − 𝟏 𝒑 basis

The 𝑂𝑝(𝑥) = Orth[ 𝑥 − 1 𝑝], 𝑝 ≥ 3 series polynomial is forced to be orthogonal.

𝑂𝑝, 𝑂′𝑝, 𝑂′′𝑝 should converge to 0 for smooth energy change respect to

neighboring atom change.

𝑂𝑝(𝑥) Derivative of 𝑂𝑝(𝑥)
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Loss function

The fitting process is to determine the tensor element in 𝐴𝑖
𝑛 by minimizing the

loss function:

𝐿 =෍

𝑁

𝐸𝑁
model − 𝐸𝑁

DFT 2
+෍

𝑁

෍

𝑎𝑥𝑖𝑠

𝐹𝑁,𝑎𝑥𝑖𝑠
model − 𝐹𝑁,𝑎𝑥𝑖𝑠

DFT 2
+ 𝜆2෍

𝑁

𝐴𝑖
𝑛

Thus, to minimize the loss function we can let derivative to 0. (2nd rank tensor
case):

𝜕𝐿

𝜕𝐴𝑚′𝑛′
=෍

𝑁

𝐸𝑁
model − 𝐸𝑁

DFT 𝜕𝐸𝑁
model 𝑖

𝜕𝑎𝑖,𝑗,𝑝
+෍

𝑁

෍

𝑎𝑥𝑖𝑠

𝐹𝑁,𝑎𝑥𝑖𝑠
model − 𝐹𝑁,𝑎𝑥𝑖𝑠

DFT
𝜕𝐹𝑁,𝑎𝑥𝑖𝑠

model 𝑖

𝜕𝐴𝑚′𝑛′
+ 2𝜆2෍

𝑁

𝐴𝑚′𝑛′

Then the fitting process could be done alone the MD simulation and solving the

linear equations problem:

𝜕𝐿

𝜕𝐴𝑚′𝑛′
𝐴𝑚′𝑛′

𝑇 = 0
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Implementation

Decouple atomic force

𝐹𝑖,𝑎𝑥𝑖𝑠
model =

𝜕𝐸𝑡𝑜𝑡
model

𝜕𝑅𝑖,𝑎𝑥𝑖𝑠
=
𝜕𝐸𝑖

model

𝜕𝑅𝑖,𝑎𝑥𝑖𝑠
+෍

𝑗≠𝑖

𝜕𝐸𝑗
model

𝜕𝑅𝑖,𝑎𝑥𝑖𝑠
= 𝐹self(𝐴𝑖,𝑁) + 𝐹neighbor(𝐴𝑗,𝑁)

𝐹neighbor(𝐴𝑗,𝑁) contains parameters from neighboring atom which can not

solved independently. So, we use the parameters 𝐴𝑗,𝑁−1 to approximate

𝐹neighbor(𝐴𝑗,𝑁) and use autoregressive model to minimize residuals.

𝐹diff 𝐴𝑗,𝑁, 𝐴𝑗,𝑁−1 = 𝛼1𝐹diff 𝐴𝑗,𝑁−1, 𝐴𝑗,𝑁−2 + 𝛼2𝐹diff 𝐴𝑗,𝑁−2, 𝐴𝑗,𝑁−3 +⋯
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Implementation

Online training

Cause the dimension of parameter tensor 𝐴𝑖
𝑛 is fixed, thus we can

iteratively accumulate the training data by:

𝜕𝐿

𝜕𝐴𝑚′𝑛′
= 𝐴𝑚′𝑛′

𝑛 = 𝜔 ∗ 𝐴𝑚′𝑛′
𝑛−1 + 𝐴𝑚′𝑛′

new

𝜔 is a forgetting ratio which is little smaller than 1 to discard history step

information that is too far away from current configuration.

Force residuals given by autoregressive

model reflect long-time scale

interaction in MD trajectory. The idea

is same in recurrent neural networks

(RNN) and graph neural networks

(GNN).
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Workflow with OpenMX

Scheme of ML code and OpenMX1

Fully parallelized for each atom

Necessary data from OpenMX

• Gxyz

atom position

• FNAN

neighboring atoms number

• NATN

neighboring atoms serial number

• DecE

decomposed energy

[1] OpenMX: https://www.openmx-square.org/
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Benchmark calculation of various systems

Isolated System Energy MAE Force MAE

Methene (CH4) 0.08 meV/atom 7 meV/Å

Nitrobenzene (C6H5NO2) 0.73 meV/atom 68 meV/Å

Sialic Acid (C11H19NO9) 1.07 meV/atom 114 meV/Å

Adenosine Triphosphate

(C10H16N5O13P3)
1.32 meV/atom 145 meV/Å

Bulk System Energy MAE Force MAE

2D Graphene 0.23 meV/atom 27 meV/Å

Aluminum 0.47 meV/atom 76 meV/Å

Amorphous Silica (SiO2) 0.92 meV/atom 127 meV/Å

The typical accuracy range for ML potential is ~2 meV/atom and ~200 meV/Å. 
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Radial Distribution Function

RDF of amorphous silicon Si-Si distance under 300K. 

(2000 fs in total, 400 fs for initial training, update every 10 steps).

Two peaks are

precisely reproduced

by our tensor

regression model.
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Radial Distribution Function

RDF of amorphous silica under 300K.

(2000 fs in total, 500 fs for initial training, update every 10 steps).
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Conclusion

• We developed effective model of fitting local atomic energy

surface, the accuracy is comparable to other ML potentials. Also, it

able to reproduce the long-time scale statistical property.

• The accelerate ratio is around 10 by simple on-the-fly algorithm but

lower than existing active learning method (～103).

• Our model shows enlightenment in the development of future machine

learning potentials. Compact models which based on the physical

system also possible for ML potentials compare with the more

complex and data-driven large models.
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Future Prospects

• Design on-the-fly algorithm based on our model, for example the

analysis of changes in atomic chemical environment.

• Application for electrode surface, because there are many possible

surface structures and a long AIMD time is required for screening.

• Extending the model prediction capabilities to more complex high-

entropy alloy surfaces that always face reconfiguration during

dynamics.

• Our final target system is electrochemical interface systems which

are still challenge for existing ML potentials and DFT packages .
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Thank you for your listening.

Q&A
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Density functional theory

Many-body Schrödinger equation

෡𝐻Ψ 𝒓,𝑹 = 𝐸Ψ 𝒓,𝑹

With Born-Oppenheimer approximation, the electronic motion and 

the nuclear motion in molecules can be separated.

Ψ 𝒓,𝑹 = 𝜙𝑒𝑙𝑒 𝒓 𝜒𝑛𝑢𝑐 𝑹

Electron Schrödinger equation in Hartree unit

−
1

2
෍

𝑖

∇𝑖
2 +

1

2
෍

𝑖≠𝑗

1

𝒓𝒊 − 𝒓𝒋
−෍

𝑖,𝐼

𝑍𝐼
𝒓𝒊 − 𝑹𝑰

𝜙𝑒𝑙𝑒 𝒓 = 𝐸𝜙𝑒𝑙𝑒 𝒓
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Density functional theory

Hohenberg-Kohn theorem I

For any system of interacting particles in an external potential 𝑉𝑒𝑥𝑡(𝒓),
the potential 𝑉𝑒𝑥𝑡(𝒓) is determined uniquely by the ground-state particle
density 𝑛0(𝒓).

Hohenberg-Kohn theorem II

A universal functional for the energy 𝐸[𝑛] can be defined in terms of
the density. The exact ground state is the global minimum value of this
functional.

With Hohenberg-Kohn theorem, the solution of the system ground
state can be shifted from the solution of the wave function to the
electron density. The system degrees of freedom are reduced from
3N to 3.
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Density functional theory

Kohn-Sham DFT

In Kohn-Sham scheme constructed an auxiliary system which the atoms are all
independent of each other, and in turn we can solve the single-electron
Schrödinger equation.

𝐸 𝑛 = −
∇2

2
+ න𝑑𝒓𝑛 𝒓 𝑉𝑒𝑥𝑡 𝒓 +

1

2
න𝑑𝒓𝑑𝒓′

𝑛 𝒓 𝑛 𝒓′

𝒓 − 𝒓′
+ 𝐸𝑥𝑐(𝑛)

With Hohenberg-Kohn theorem II, the electron density that minimizes 𝐸 𝑛 is
the real electron density of the system. By the Lagrange multiplier method we
can obtain the KS equation.

−
∇2

2
+ 𝑉𝑒𝑥𝑡 𝒓 + 𝑉𝐻 𝒓 +

𝛿𝐸𝑥𝑐 𝑛

𝛿𝑛
𝜓𝑖 𝒓 = 𝜀𝑖𝜓𝑖(𝒓)

After determining the form of 𝐸𝑥𝑐 𝑛 , KS equation can be solved by self-
consistent field method.
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Linear scaling DFT

The core idea of the O(N) method is based on the assumption that the electron

density 𝑛 is given by the summation over each site 𝑖.

The density matrix 𝜌 is calculated by solving following linear equations:

where, 𝐻(𝑖) is the local Hamiltonian matrix, 𝑆(𝑖) is the overlap matrix. By truncating

system the time complexity is reduced:

𝑂 𝑁3 → 𝑁 × 𝑂(𝑁𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

Further, the 𝑁𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 can be reduced by introducing Krylov subspace method, The

Krylov subspace method used in OpenMX is a combination of DC and recursive

methods to improve computational efficiency and robustness.
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Energy decomposition in OpenMX

Because the pseudo-atomic orbitals 𝜒 for pseudopotential in OpenMX is in

finite range, the total energy can be decomposed into contributions from each

atomic site 𝑖 and localized orbital 𝛼:
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Energy decomposition in OpenMX

The total energy in OpenMX is organized by:

Kinetic energy

with
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Energy decomposition in OpenMX

Electron-core Coulomb energy (Non-local part)

Neutral atom energy
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Energy decomposition in OpenMX

Screened core correction energy

Electron-electron Coulomb energy
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Energy decomposition in OpenMX

Exchange correlation energy
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