Orbital-resolved total energy in OpenMX

- Orbital resolved total energy
- Close look at each term
- Examples
- Summary

Taisuke Ozaki (Univ. of Tokyo)

OpenMX developer's meeting, Dec. 21-22, 2015

Orbital-resolved total energy in localized orbital methods

The total energy can be decomposed into each contribution resolved to atomic site and localized orbital.

$$E_{\text{tot}} = \sum_{\sigma=\alpha,\beta} \sum_{\nu} f_{\nu} \langle \varphi_{\nu}^{\sigma} | \hat{T} | \varphi_{\nu}^{\sigma} \rangle + \sum_{\sigma\sigma'} \int w_{\sigma\sigma'} n_{\sigma'\sigma} + \frac{1}{2} \int \int \frac{n'(\mathbf{r})n'(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dv dv' + E_{\text{xc}} \{n_{\sigma\sigma'}\} + E_{\text{cc}},$$

$$= E_{\text{band}} - \frac{1}{2} \int n' V_{\text{H}} dv - \int \text{Tr}(V_{\text{xc}}n) dv + E_{\text{xc}} + E_{\text{cc}},$$

$$= \text{Tr} \{\rho F\} = \sum_{i\alpha} \left[\sum_{j\beta,\sigma\sigma'} \rho_{i\alpha,j\beta}^{\sigma\sigma'} F_{j\beta,i\alpha}^{\sigma'\sigma} \right] + \sum_{i\alpha j\beta} E_{\text{cc}}^{(i\alpha j\beta)},$$

$$= \sum_{i\alpha} E_{i\alpha}.$$

where the matrix F is given by the sum of the KS effective potential plus double counting correction potentials.

$$F_{i\alpha,j\beta}^{\sigma\sigma'} = \langle i\alpha | v_{\rm eff}^{\sigma\sigma'} + v_{\rm dc}^{\sigma\sigma'} | j\beta \rangle$$

For even plane-wave codes, one may be able to perform the same analysis using Wannier functions.

$$E_{\text{tot}} = E_{\text{kin}} + E_{\text{na}} + E_{\text{NL}} + E_{\text{\deltaee}} + E_{\text{xc}} + E_{\text{scc}}$$

The first three terms can be easily decomposed as follows:

$$E_{\mathrm{kin}} = \sum_{\sigma} \sum_{i\alpha} \left(\sum_{n} \sum_{i\alpha} \rho_{\sigma,i\alpha j\beta}^{(R_{n})} h_{i\alpha j\beta,\mathrm{kin}}^{(R_{n})} \right) \longrightarrow E_{\mathrm{kin}}^{(\sigma,i\alpha)} = \sum_{n} \sum_{i\alpha} \rho_{\sigma,i\alpha j\beta}^{(R_{n})} h_{i\alpha j\beta,\mathrm{kin}}^{(R_{n})}$$

$$E_{\mathrm{na}} = \sum_{\sigma} \sum_{i\alpha} \left(\sum_{n} \sum_{i\alpha} \rho_{\sigma,i\alpha j\beta}^{(R_{n})} h_{i\alpha j\beta,\mathrm{na}}^{(R_{n})} \right) \longrightarrow E_{\mathrm{na}}^{(\sigma,i\alpha)} = \sum_{n} \sum_{i\alpha} \rho_{\sigma,i\alpha j\beta}^{(R_{n})} h_{i\alpha j\beta,\mathrm{na}}^{(R_{n})}$$

$$E_{\mathrm{NL}} = \sum_{\sigma} \sum_{i\alpha} \left(\sum_{n} \sum_{i\alpha} \rho_{\sigma,i\alpha j\beta}^{(R_{n})} h_{i\alpha j\beta,\mathrm{NL}}^{(R_{n})} \right) \longrightarrow E_{\mathrm{NL}}^{(\sigma,i\alpha)} = \sum_{n} \sum_{i\alpha} \rho_{\sigma,i\alpha j\beta}^{(R_{n})} h_{i\alpha j\beta,\mathrm{NL}}^{(R_{n})}$$

$$E_{\delta ee} = \frac{1}{2} \int dr \delta n(r) \delta V_{\rm H}(r)$$

By noting the following definitions.

$$\delta n(r) = n(r) - \sum_{i} n_{i}^{(a)}(r) \qquad n(r) = \sum_{\sigma} \sum_{n} \sum_{i \alpha j \beta} \rho_{\sigma, i \alpha j \beta}^{(R_{n})} \phi_{i \alpha}(r - \tau_{i}) \phi_{j \beta}(r - \tau_{j})$$

We can rewrite the energy term as follows:

$$E_{\delta ee} = \frac{1}{2} \sum_{\sigma} \sum_{i\alpha} \left(\sum_{n} \sum_{j\beta} \rho_{\sigma,i\alpha j\beta}^{(R_n)} h_{i\alpha j\beta,\delta V_{\rm H}}^{(R_n)} \right) - \frac{1}{2} \sum_{\sigma} \sum_{i\alpha} \left(\int dr \frac{1}{2N_i} n_i^{(a)}(r) \delta V_{\rm H}(r) \right)$$

where N_i is the number of basis orbital on atom *i*.

Then, one can regard the resolved energy term as

$$E_{\delta e e}^{(\sigma,i\alpha)} = \frac{1}{2} \sum_{n} \sum_{j\beta} \rho_{\sigma,i\alpha j\beta}^{(R_n)} h_{i\alpha j\beta,\delta V_{\rm H}}^{(R_n)} - \frac{1}{2} \int dr \frac{1}{2N_i} n_i^{(a)}(r) \delta V_{\rm H}(r)$$

 E_{xc} is also decomposed as follows:

$$\begin{split} E_{\rm xc} &= \int dr \Big(n(r) + n_{\rm pcc}(r) \Big) \mathcal{E}_{\rm xc}(r) \\ &= \sum_{\sigma} \int dr \Bigg(n_{\sigma}(r) + \frac{1}{2} n_{\rm pcc}(r) \Bigg) \mathcal{E}_{\rm xc}(r) \\ &= \sum_{\sigma} \sum_{i\alpha} \Bigg(\sum_{n} \sum_{j\beta} \rho_{\sigma,i\alpha j\beta}^{(R_n)} h_{i\alpha j\beta, \rm xc}^{(R_n)} \Bigg) + \sum_{\sigma} \sum_{i\alpha} \Bigg(\int dr \frac{1}{2N_i} n_{\rm pcc,i}(r) \mathcal{E}_{\rm xc}(r) \Bigg) \end{split}$$

Then, one can regard the resolved energy term as

$$E_{\rm xc}^{(\sigma,i\alpha)} = \sum_{\rm n} \sum_{j\beta} \rho_{\sigma,i\alpha j\beta}^{(R_{\rm n})} h_{i\alpha j\beta,\rm xc}^{(R_{\rm n})} + \int dr \frac{1}{2N_i} n_{\rm pcc,i}(r) \varepsilon_{\rm xc}(r)$$

The screened core-core Coulomb energy is decomposed as

$$\begin{split} E_{\rm scc} &= \frac{1}{2} \sum_{ij} \left(\frac{Z_i Z_j}{|\tau_i - \tau_j|} - \int dr n_i^{(a)}(r) V_{{\rm H},j}^{(a)}(r) \right) \\ &= \sum_{\sigma} \sum_{i\alpha} \left(\sum_j \frac{1}{2N_i} \left[\frac{Z_i Z_j}{|\tau_i - \tau_j|} - \int dr n_i^{(a)}(r) V_{{\rm H},j}^{(a)}(r) \right] \right) \end{split}$$

Then, one can regard the resolved energy term as

$$E_{\rm scc}^{(\sigma,i\alpha)} = \frac{1}{2N_i} \sum_{j} \left[\frac{Z_i Z_j}{|\tau_i - \tau_j|} - \int dr n_i^{(a)}(r) V_{{\rm H},j}^{(a)}(r) \right]$$

An example: Methane

The energy decomposition can be performed by a keyword: Energy.Decomposition on

One can find the decomposed energy in *.out.

Total energy (Hartree) = -8,211879033365392

Decomposed energies (Hartree) with respect to atom

		Utot	Ukin	Una	Unl	UH1	Uxc	Ucore+UH()
1	С	-6,242767483919	4.35525	-3,60696	-0.46890	0.04426	-2,07025	-4,49616
2	Η	-0,492277889157	0.55513	-0,65049	0,07550	0,00195	-0,32318	-0.15119
3	Η	-0.492277885800	0,55513	-0.65049	0.07550	0,00195	-0,32318	-0,15119
4	Η	-0.492277885616	0,55513	-0,65049	0,07550	0,00195	-0.32318	-0,15119
5	Η	-0,492277888873	0,55513	-0,65049	0.07550	0,00195	-0,32318	-0,15119

Decomposed energies (Hartree) with respect to atomic orbital

1	С	Utot	Ukin	Una	Unl	UH1	Uxc	Ucore+UHO	Ue
s s px py pz px px	mult 0 1 0 0 0 1		0. 42235 0. 07199 1. 12768 1. 12776 1. 12768 0. 13914 0. 13914	-0. 86043 -0. 05751 -0. 81128 -0. 81135 -0. 81128 -0. 06432 -0. 06432	0. 25887 0. 01544 -0. 20349 -0. 20350 -0. 20350 -0. 04677 -0. 04677	0. 02991 -0. 00793 0. 02765 0. 02766 0. 02766 0. 02765 -0. 00847 -0. 00847	-0. 49506 -0. 02750 -0. 46193 -0. 46195 -0. 46193 -0. 02636 -0. 02635	-0.34586 -0.34586 -0.34586 -0.34586 -0.34586 -0.34586 -0.34586 -0.34586	0. 0. 0. 0. 0. 0.

It is confirmed that the sum of decomposed energy is exactly the same as the total energy.

-6.242767483919 - 0.492277889157 - 0.492277885800 - 0.492277885616 - 0.492277888873 = -8.211879033365

Energy_Decomposition_flag==1

The decomposition for all the energy terms is performed in Total_Energy(). Those terms are listed below:

Kinetic energy: Neutral atom potential energy: Non-local pseudopotential energy: Core-core repulsion energy: Exchange correlation energy: Delta Hartree energy: Hubbard energy: vdW energy:

By searching with "Energy_Decomposition==1" in the Total_Energy.c, one can easily confirm the places where the energy decompositions are performed.

Summary

- To analyze effects of distortion, defects, and impurities to the total energy, the orbital resolved total energy method might be useful.
- The formulation is quite simple, and easy to implement.
- Even for plane-wave codes, a similar analysis may be possible by employing Wannier functions.
- Only a single file "Total_Energy.c" has been modified, leading to easy trace of the implementation.
- The method will be also useful for analysis of magnetic anisotropy energy of magnetic systems.