Structure of OPENMX extension: NEGF

Yang XIAO

Nanjing University of Aeronautics and Astronautics, China

The configuration under consideration

NEGF module

The first 3 steps are not NEGF cal.

```
if (3<iter || SucceedReadingDMfile==1) {
  TRAN DFT Original ( comm1,
                 level stdout,
                 iter,
                 SpinP switch,
                 nh, /* H */
                 ImNL, /* not used, s-o coupling */
                 CntOLP,
                             NEGF calculation
                 atv ijk,
                 List YOUSO,
                 /* output */
                 CDM, /* output, density matrix */
                 TRAN DecMulP, /* output, partial DecMulP */
                 ChemP e0);
 if SCF iter <= 3, employ the band diagonalization
 ********
else {
                               Band calculation
  int i,j,k,n,n2,wanA;
                                               TRAN DFT.c
```

if (TRAN SCF Iter Band<iter || SucceedReadingDMfile==1) { */

NEGF module **TRAN DFT.c** subroutine static void TRAN DFT Kdependent (1) Equilibrium part T.Ozaki, PRB 75, 035123 (2007) $\rho_{\sigma\pm}^{k} = \frac{i}{2\pi} \int_{-\infty}^{+\infty} dE G_{\sigma}^{k} \left(E \pm i0^{+} \right) f\left(E - \mu \right) = \pm \frac{1}{4} \mu_{\sigma}^{k,0} \mp \frac{1}{\beta} \sum_{k=0}^{N_{p}} G_{\sigma}^{k} \left(\alpha_{p} \right) R_{p}$ (2) Nonequilibrium part $\Delta f(E) = f(E - \mu_1) - f(E - \mu_2)$ $\Delta \rho_{\sigma}^{k} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dE G_{\sigma}^{k} \left(E + i\varepsilon \right) \Gamma_{\sigma,s}^{k} \left(E \right) G_{\sigma}^{k} \left(E - i\varepsilon \right) \Delta f \left(E \right)$ calculation of Green functions at k and iw for (Miw=myid; Miw<tran_omega_n_scf*spinsize; Miw+=numprocs) { k = Miw/tran omega n scf; iw = Miw - k*tran omega n scf; w = tran omega scf[iw]; w_weight = tran_omega_weight_scf[iw]; iw_method = tran_integ_method_scf[iw]; Re[E] $E_{r} + \frac{V}{2}$ E_{p-2}

/* calculation of surface Green's function and self energy from the RIGHT lead */

iside = 1;

TRAN_Calc_SelfEnergy(w, NUM_e[iside], GRR, NUM_c, HCR[k], SCR, SigmaR);

/* calculation of central retarded Green's function */

TRAN_Calc_CentGreen(w, NUM_c, SigmaL, SigmaR, HCC[k], SCC, GC);

TRAN_DFT.c

NEGF module		TRAN_DFT.c
subroutine static void TRAN_DFT_Kdependent		
$Advanced terms = G = [ES_{CC} - G]$	$-H_{CC}-\Sigma_L-\Sigma_R\right]^{-1}$	
<pre>if (TRAN_Kspace_grid2==1 && TRAN_Kspace_grid3==1 && iw_method==2) {</pre>		
<pre>for (i=0; i<num_c*num_c; (="" (iw_method="2)" *="" advanced="" calculation="" case="" else="" gc_ad[i].i="-GC[i].i;" gc_ad[i].r="GC[i].r;" green's="" i++)="" if="" in="" of="" pre="" sigmal_ad[i].i="-SigmaR[i].i;" sigmal_ad[i].r="SigmaL[i].r;" sigmar_ad[i].i="-SigmaR[i].i;" sigmar_ad[i].r="SigmaR[i].r;" tran_calc_centgreenlesser="" tran_kspace_grid2!="1" {="" {<="" }=""></num_c*num_c;></pre>	<pre>k = 0: G); TRAN_Kspace_grid3!=1 * function */</pre>	$A^{A} = \left(G^{R}\right)^{*}$
/* conjugate complex */ w.i = -w.i; $k \neq 0$:	$G^{A} = G(E - i\varepsilon)$	
<pre>/* calculation of surface Green's function and self energy from the LEFT lead */ iside = 0; TRAN_Calc_SurfGreen_direct(w, NUM_e[iside], H00_e[iside][k], H01_e[iside][k],</pre>		

NEGF module

TRAN_DFT.c

subroutine double TRAN_DFT_Original

$$\left|\rho = \frac{1}{V_c} \int_{BZ} dk^3 \left(\rho_{\sigma^+}^k - \rho_{\sigma^-}^k\right) e^{-ik \cdot R_n} + \frac{1}{V_c} \int_{BZ} dk^3 \Delta \rho_{\sigma}^k e^{-ik \cdot R_n}\right|$$

for (kloop0=0; kloop0<num_kloop0; kloop0++) {</pre>

```
k2 = T_KGrids2[kloop];
k3 = T_KGrids3[kloop];
```

```
TRAN_DFT_Kdependent(....,DM1,...);
} /* kloop0 */
```

```
/* MPI communication of DM1 */
```

tmp = 1.0/(double)(TRAN_Kspace_grid2*TRAN_Kspace_grid3);

```
for (k=0; k<=SpinP_switch; k++) {</pre>
```

MPI_Allreduce(DM1[k], TDM1, size_H1, MPI_DOUBLE, MPI_SUM, comm1);

```
if (1<=MA_AN && MA_AN<=Matomnum) {
    CDM[k][MA_AN][LB_AN][i][j] = TDM1[itot0]*tmp;</pre>
```

Return the new density matrix ρ to DFT module

