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• Electronic transport in nano-scale materials: 

• Experiments

• Nonequilibrium Green function method

• Applications

• Usage of OpenMX for the NEGF calculations

• Exercise

 From a scattering problem

 Keldysh method



Diffusive/Ballistic transport
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Quantum conductance in gold nanowires

Takayanagi et al., Nature 395, 780 (1998).

After contacting two gold structures, gradually the two strucutres 

are pulled along the axial direction. Then, the bridging region 

becomes gradually thinner. Along with the structural change, the 

conductance changes stepwise.



(LaMnO3)2n/(SrMnO3)n superlattice

Bhattacharya et al., PRL 100, 257203 (2008)

Depending on the number of layers, the system exhibits a 

metal-insulator transition. n<3 metal, 3≦n insulator



Transport in a single strand DNA molecule

Adsorption Detachment

Molecular structure of a single 

strand DNA molecule

The current jumps when the molecule adsorbs and 

detaches. 
Harm van Zalinge, Chem. Phys. Chem. 7, 94 (2005) 
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Application of tunneling magnet resistance (TMR) effect

A device used for a hard disk head is based on a tunneling 

magnet resistance (TMR) effect, in which the tunneling current 

strongly depends on the relative spin direction of two 

ferromagnetic regions.

Large current
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Small current

Application of tunneling magnet resistance (TMR) effect

A device used for a hard disk head is based on a tunneling 

magnet resistance (TMR) effect, in which the tunneling current 

strongly depends on the relative spin direction of two 

ferromagnetic regions.



System connected to two reservoirs with 

different chemical potential

1. The left and right reservoirs are infinitely large and 

in thermo-equilibrium with different chemical potential.

2. They are connected via a small central region.

3. The total system may be in a non-equilibrium steady state

that electrons flow steadily from the left to right.  



One-dimensional scattering problem

x=0 x=a

V0

ε<V0(Tunnel effect)

The one-dimensional 

scattering problem for a 

potential wall (x=0 to a) 

can be solved analytically.

V0 < ε
Reflection

Transmittance



Generalization of scattering problem in a quasi 1D

Lead 1 Lead 2Device

(1) Assume that the wave 

function of the isolated lead 

is known. 

(2) Assume that the whole wave 

function of the total system can be 

given by 

(3) By putting the whole wave 

function in the step2 into the 

Schroedinger eq., we obtain the 

following equations:

The whole wave function can be 

written by φ.
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Charge density in the device

The charge density of the device can be calculated by considering the 

contribution produced with the incident wave function.

All the contributions are summed up with the Fermi function.

Adding the contributions from each lead yields

Depending on the chemical potential, 

the contribution of each lead varies.
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Flux of probability density #1 

In the nonequilibrium steady state the probability density is conserved. We evaluate the flux 

of the probability density using the time-dependent Schroedinger equation. 

The time evolution of the integrated probability density is given by 

Each term can be regarded as the contribution from each lead k.

Thus, we have
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Lead 1 Lead 2Device

i1      Flux from the device to the lead 1  ←

i２ Flux from the device to the lead 2  →

In other words, in the steady state i1 from the device to the lead 1 

is equal to -i2 from the lead 2 to the device. 

where the sign of the flux of the probability density ik is taken so that the direction from 

the device to the lead k can be positive. 

1 2i i 

Flux of probability density #2 

 †

k k k d d k k

ie
i        



Current #1

Ψd and Ψ2 can be written by the wave function of the 

isolated lead 1.

Then, the current from the leads 1 to 2 is given by
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Considering all the states in the lead 1, we obtain the formula of 

current from the leads 1 to 2 as follows:

Adding all the contributions from 

each lead yields the formula:
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Summary of the formulae

The whole wave function is written by the incident wave function:

The charge density in the device is given by the sum of the contributions from each lead.

Considering the flux of the probability density, the current is given by 
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Linear chain model

As a simple case, Let’s consider a linear chain mode as shown below:

Lead 1 Lead 2Device
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Conductance and transmission
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Takayanagi et al., 

Nature 395, 780 (1998).



3D cases

Assume that the periodicity on the bc plane, and non-

periodicity along the a-axis. 
Then, we can write the Bloch wave 

function on the bc plane

and the problem can be cast to a 1D 

problem.

where the Hamiltonian is given by a block 

tri-diagonal form:

TO et al., PRB 81, 035116 (2010).



Green function of the device region

Using the block form of matrices and the following identity:

we obtain

where the self energies are explicitly given by



Assumption in the implementation of the NEGF method

It is assumed that the states for μR< μL in the central part 

is in the thermal equilibrium. Then, the charge density can 

be calculated by 

Thermal equilibrium



Density matrix of the device region

From the previous assumption we made, the density matrix 

is given by the sum of the equilibrium and nonequilibrium

contributions.

The equilibrium contribution is given by the integration of 

the equilibrium Green function.



Contour integration

By expressing  the Fermi function

one can obtain a special distribution

of poles. The distribution gives 

the extremely fast convergence.   

T. Ozaki, PRB 75, 035123 (2007).



Nonequlibrium density matrix

Since NEGF is a non-analytic function, the integration is 

performed on the real axis with a small imaginary part.



Poisson eq. with the boundary condition

Poisson eq.

FT for x-y plane

Discretization

Boundary conditions:

XY-FFT → linear eq. → XY-inverse FFT

Cost:  O(Nxlog(Nx))×O(Nylog(Ny))×O(Nz)



Dual spin filter effect of the magnetic junction

up spin     : flowing from left to right

down spin: flowing from right to left

→ Dual spin filter effect 

Rectification ratio at 0.4V: 44.3

The same result is obtained for 6-ZGNR and 10-ZGNR.

PRB 81, 075422 (2010).



Conductance (transmission) of 8-ZGNR

For the up-spin 

channel, the 

conduction gap 

disappears at -0.4 V, 

while the gap keep 

increasing for the 

down spin channel. 



Band structures with offset of 8-ZGNR

0 V

-0.4 V

-1.0 V

Blue shade:      Conductance gap 

for the up spin

Purple shade:   Conductance gap 

for the down spin

The energy regime where 

the conductance gap 

appears does correspond 

to the energy region 

where only the π and π* 

states overlaps each other. 



Wannier functions of π and π* states

Neither symmetric nor asymmetric

Symmetric

Asymmetric

calculated from by Marzari’s method 



Wannier functions for π and π*  states of 8-ZGNR

Wannier function of π

Wannier function of π *

Hopping integrals calculated by the Wannier functions

Since the π and π* states of 7-ZGNR are 

neither symmetric nor asymmetric, the 

corresponding hopping integrals survive.

Since for 8-ZGNR  the π state is asymmetric and 

the π* state is symmetric with respect to the σ 

mirror plane, the hopping integrals are zero.



I-V curve by a TB model

In the simplified TB model the current 

can be written by 

I-V by the simplified TB model

The TB model well 

reproduces the result of 

the NEGF calculation.



1. Band calculations

The band structure calculations are performed for the left and right leads 

using a program code 'openmx'. The calculated results will be used to 

represent the Hamiltonian of the leads in the NEGF calculation of the step 2.

2. NEGF calculation

The NEGF calculation is performed for the structure of L0|C0|R0 under zero 

or a finite bias voltage using a program code 'openmx', where the result in 

the step 1 is used for the construction of the leads.

3. Transmission and current

By making use of the result of the step 2, the transmission, charge/spin 

current density, and the eigenchannel are calculated by a program code 

'openmx'.

The calculation proceeds as step 1 → step 2 → step 3.

Computational flow

All the details can be found at the pages 161-183 in the manual.



Exercises

• Calculate the transmission of carbon chain. Please 

follow the guidance in the pages 162-172 of the 

manual. The input files, ‘Lead-Chain.dat’ and ‘NEGF-

Chain.dat’, are available in the directory 

‘work/negf_example’. 

• Calculate the transmission of graphene. The input files, 

‘Lead-Graphene.dat’ and ‘NEGF-Graphene.dat’, are 

available in the directory ‘work/negf_example’.



Exercise 1: carbon chain

% ./openmx Lead-Chain.dat 

Step 1 

Step 2 & 3 

% ./openmx NEGF-Chain.dat

Output: lead-chain.hks

Output: 

negf-chain.tran0_0 

negf-chain.conductance

…

You can get the following transmission 

by plotting negf-chain.tran0_0, where x: 

4th column, y: 6th column.

Step 1:      Lead-Chain.dat 

Step 2&3: NEGF-Chain.dat

work/negf_example/

The input files can be found in



Exercise 2: Graphene

% ./openmx Lead-Graphene.dat 

Step 1 

Step 2 & 3 

% ./openmx NEGF-Graphene.dat

Output: lead-graphene.hks

Output: 

negf-graphene.tran0_0 

negf-graphene.tran1_0

…….

You can get the following transmission 

by plotting gra-negf.tran5_0, where x: 

4th column, y: 6th column.

work/negf_example/

The input files can be found in

Step 1:      Lead-Graphene.dat 

Step 2&3: NEGF-Graphene.dat


