Hands-on introduction of OpenMX - Practice -

Institute for Solid State Physics Mitsuaki Kawamura

> Schedule: 10:40~11:10 Lecture 11:10~12:00 Practice

> > 2020/2/14 The 1st OpenMX hands-on workshop 2020

2/19

Outline

- Introduction
- Computer in this tutorial
 - Configuration
 - Login
- Input file generation
- Job submit
- Check results
- Post processing and visualization
 - Band structure
 - Kohn-Sham orbitals
 - DOS, PDOS, Fermi surfaces
- Free excise

Intro Introduction : Purpose

a ch results

We will overview

esult: there are 2 entries in the selection

tch to the old layout of the page

wnload all results as: list of COD numbers | list of CIF URLs | data in CSV format | archive of CIF files (ZIP)

arching formula like 'B2 Mg'

Computer for this hands-on

CPU : Intel Xeon Broadwell 14cores × 2 (28 cores/node) RAM : 64 GB / node Compiler : Intel compiler & MKL library Utilities : /home/public/bin/ (already added to PATH)

5/19

Login

Login to workstation

Case 1: Use ssh command (Linux, UNIX, macOS, WSL)

\$ ssh -Y <u>user-name@server-name</u>

Enter your password.

Case 2: GUI ssh-client in Windows

Windows, essentially making the PC a terminal. The PC interacts with the server through the

Your PC may ask you to add this workstation to "known-hosts".

WinSCP is also required in this case.

^{7/19} Get CIF file from COD

Search results

Result: there are 2 entries in the selection

Switch to the old layout of the page

Download all results as: list of COD numbers | list of CIF URLs | data in CSV format | archive of Cl

Searching formula like 'Fe Pt'

◄ First | ◄ Previous 5 | Page 1 of 1 | Next 5 ► | Last ► ► | Display 5 20 50 100 200 300 50(

COD ID 🔺	Links	Formula 🛦	Space group 🛦	Cell parameters	Cell volume 🛦	
<u>1540807</u>	CIF	Fe Pt	<u>P 4/m m m</u>	3.849; 3.849; 3.7	54.815	Yuasa
				90; 90; 90		Magn phase <u>Journ</u>
9004222	CIF	Fe Pt	<u>P 4/m m m</u>	2.7235; 2.7235;	27.593	Baylis
				3.72		Revis
				90; 90; 90		some
						<u>The C</u>

Search

(For more information on search see the hints and tips)

Search by COD ID:	Search	
OpenBabel FastSearch:	Enter SMILES:	

Note: substructure search by SMILES is currently available in a subset of COD containing 183627 structures.

"chemical formula" in **alphabetic** order: e.g. $Nd_2Fe_{14}B \rightarrow "B Fe14 Nd2"$

^{8/19} Convert to OpenMX input

Search "OpenMX Viewer" on Web

9/19

Send into workstation and edit

In your PC

Depends on your PC

- \$ cd ~/Download/ <</pre>
- \$ scp abc.dat gauss.issp.u-tokyo.ac.jp:~/
- \$ ssh -Y guestOO@gauss.issp.u-tokyo.ac.jp

In gauss, open "abc.dat" and apply the following modification:

1, Add line

data.path /home/public/program/openmx3.9/DFT_DATA19/

2, Modify k-grid

^{10/19} Queuing system

- \$ cp /home/hands-on/practice/openmx.sh .
- \$ qsub openmx.sh

Job status	ppn	× OMP_	NUM_THR	EADS≦n	umbe	er of	cores	par noo	de	(28)
\$ qstat -a										
gauss:							Rea'd	Rea'd		Elap
Job ID	Username	Queue	Jobname	SessID	NDS	TSK	Memory	Time	S	Time
168.gauss	kawamura	default	openmx.sh	23466	1	7			 R	00:00:00
	4. 7.0				Nod	es		R: Rur	nir	ng
\$ qdel <u>job-ID</u>	Delete job) (If you	submitted	d wrong jo	b, et	c.)		Q: Wai	tin	g to start

^{11/19} Check standard output

\$ less openmx.stdout

```
<Poisson> Poisson's equation using FFT...
<Set Hamiltonian> Hamiltonian matrix for VNA+dVH+Vxc...
<Band> Solving the eigenvalue problem...
KGrids1: -0.45833 -0.37500 -0.29167 -0.20833 -0.12500 -0.04167 0.04167 ...
KGrids2: -0.45833 -0.37500 -0.29167 -0.20833 -0.12500 -0.04167 0.04167 ...
KGrids3: -0.45000 -0.35000 -0.25000 -0.15000 -0.05000 0.05000 0.15000 ...
<Band DFT> Eigen, time=0.235195
                                               Time for eigen-solution and
<Band DFT> DM, time=0.416772
                                               density matrix (second)
1 Fe MulP 9.2692 6.4700 sum 15.7391 diff 2.7992
2 Pt MulP 8.2556 8.0052 sum 16.2609 diff 0.2504
Sum of MulP: up = 17.52480 down = 14.47520
total= 32.00000 ideal(neutral)= 32.00000
<DFT> Total Spin Moment (muB) = 3.049605408328
<DFT> Mixing weight= 0.30000000000
<DFT> Uele = -36.891552072687 dUele = 0.096556004642
<DFT> NormRD = 1.170298176078 Criterion = 0.000000100000
```

Residual Norm

We can monitor this during the calculation.

12/19

Check the summary of output

¢ loss abc out	
p ress abt.out	Each section is surrounded by "*****"
*****	**************************************
**********************	·************* /¥*¥*
SCF history at MD= 1	type "n" and "N" for next and previous match
******	*******
SCF= 1 NormRD= 1.000000	000000 Uele= -35.799412526515
SCF= 2 NormRD= 1.8898910	.043491 Uele= -35.799412526515
SCF= 3 NormRD= 1.8683623	109120 Uele= -35.827036113047
SCF= 4 NormRD= 1.4142300	084310 Uele= -36.568305665058
SCF= 5 NormRD= 1.4559623	148448 Uele= -36.794996068046
SCF= 6 NormRD= 1.1702983	3176078 Uele= -36.891552072687
SCF= 7 NormRD= 1.0671389	991513 Uele= -36.946866542123
SCF= 8 NormRD= 0.7439516	.621288 Uele= -37.028028215533

Total energy (Hartree) at MD = 1 ***********************************

Other sections

- Mulliken populations
- Dipole moment (Debye)
- xyz-coordinates (Ang) and forces (Hartree/Bohr)
- etc.

Try to jump and see each section.

^{4/19} Specify k-path						
Structure information (primitive cell)	Quantum ESPRESSO pw.x input					
Crystal structure information	CP2K input					
	→ CRYSTAL *.d3 input					
Bravais lattice type: tP	VASP KPOINTS input for LDA/GGA					
Extended Bravais lattice symbol: tP1 (with inversion symmetry) Spacegroup: P4/mmm (number 123) Primitive cell vectors (Å) v x y z	IFORMAT DESCRIPTION] Copy to clipboard (Replace <> with the actual content for your simulation) Special k-points for band structure					
V1 2.7235000000 0.000000000 0.00000000	<> ! intersections					
V2 0.000000000 2.7235000000 0.000000000	reciprocal					
V3 0.000000000 0.00000000 3.7200000000	0.000000000 0.00000000 0.00000000 1 GAMMA					
<band.kpath.unitcell< td=""><td>0.000000000 0.50000000 0.00000000 1 X</td></band.kpath.unitcell<>	0.000000000 0.50000000 0.00000000 1 X					
2.7235000000 0.0000000000 0.000000000	0.000000000 0.500000000 0.00000000 1 X					
0.000000000 2.7235000000 0.000000000	0.500000000 0.50000000 0.00000000 1 M					

0.000000000 0.000000000 3.720000000

Band.KPath.UnitCell>

Band structure calculation

15/19

^{18/19} Fermi surface, DOS, PDOS (2)

```
[XXX@gauss] $ qsub -I
                                                                Interactive queue
[XXX@gaussXX] $ DosMain abc.Dos.val abc.Dos.vec
Which method do you use?, Tetrahedron(1), Gaussian Broadening(2)
1 🖉
Do you want Dos(1) or PDos(2)?
2 🕗
Which atoms for PDOS : (1, \ldots, 3), ex 1 2
1 2 🕗
[XXX@gaussXX] $ exit
$ gnuplot
                                                                            Fe up
                                                                          Fe down
                                                      1.5
                                                                            Pt up
gnuplot> set xzeroaxis
                                                                           Pt down
gnuplot> set yzeroaxis
gnuplot> set xlabel "Energy from E_F [eV]"
                                                      0.5
gnuplot> set ylabel "DOS [/eV]"
                                                    DOS [/eV]
gnuplot> plot [-10:10] ¥
                                                      -0.5
"abc.PDOS.Tetrahedron.atom1" u 1:2 w l t "Fe up"
                                                      -1
"abc.PDOS.Tetrahedron.atom1" u 1:3 w l t "Fe dow
                                                     -1.5
"abc.PDOS.Tetrahedron.atom2" u 1:2 w l t "Pt up"
                                                      -2
"abc.PDOS.Tetrahedron.atom2" u 1:3 w l t "Pt dow
                                                     -2.5
                                                      -3
                                                              -5
                                                                            5
                                                       -10
                                                                                  10
                                                                 Energy from E<sub>F</sub> [eV]
```

^{19/19} Free exercise time

- Compute other materials from COD database. Explain the result of band structure, PDOS, Fermisurface.
- Install the following visualization tools into your own PC.
 - VESTA
 - FermiSurfer
- Try other functions of OpenMX (Wannier function, etc.).
- Etc.