
Geometry Optimization: Ver. 1.0Taisuke Ozaki, RCIS, JAISTAugust 16, 20071 Newton methodThe total energy E of a system an be expanded by the Taylor series with respet to atomi oordinatesfxig around E0 with fx(0)i g as follows:E = E0 + 3NXi ��E�xi�0 (xi � x(0)i ) + 12 3NXi;j  �2E�xi�xj!0 (xi � x(0)i )(xj � x(0)j ) + � � � ; (1)where the derivatives ()0 mean the partial derivatives at fx(0)i g, and N is the number of atoms. Bydi�erentiating Eq. (1) with respet to xk, to the seond order we have�E�xk = � �E�xk�0 + 3NXi  �2E�xk�xi!0 (xi � x(0)i ): (2)In ase the oordinates fxig give a loal minimum, assuming �E�xk = 0, we have the following matrixequation: 0BB� ( �2E�x1�x1 )0 ( �2E�x1�x2 )0 � � �( �2E�x2�x1 )0 ( �2E�x2�x2 )0 � � �� � � � � � � � � 1CCA0BB� (x1 � x(0)1 )(x2 � x(0)2 )� � � 1CCA = �0BB� � �E�x1�0� �E�x2�0� � � 1CCA : (3)The short notation is H�x = �g; (4)where the matrix onsisting of the seond derivatives in the left-hand side is alled Hessian H. UsingEq. (4), fxig an be updated by x(n+1) = x(n) � (H(n))�1g(n): (5)This is the well known Newton method.2 RMM-DIISIn the OpenMX, x(n) and g(n) in Eq. (5) are replaed by �x(n) and �g(n) given by the residual mini-mization method in the diret inversion of iterative subspae (RMM-DIIS) [1, 2℄ as follows:x(n+1) = �x(n) � � (H(n))�1�g(n); (6)1



where � is a tuning parameter for aeleration of the onvergene, whih an be small (large) for alarge (small) �g(n). �g in the RMM-DIIS an be found by a linear ombination of previous upto p-thgradients g as �g(n) = nXm=n�(p�1) amg(m); (7)where am is found by minimizing h�g(n)j�g(n)i with a onstraint Pnm=n�(p�1) am = 1. Aording toLagrange's multiplier method, F is de�ned byF = h�g(n)j�g(n)i � �(1� nXm am);= Xm;m0 amam0hg(m)jg(m0)i � �(1� nXm am): (8)Considering �F�ak = 0 and �F�� = 0, an optimum set of fag an be found by solving the following linearequation: 0BBBB� hg(n�(p�1))jg(n�(p�1))i � � � � � � 1� � � � � � � � � 1� � � � � � hg(n)jg(n)i � � �1 1 � � � 0 1CCCCA0BBBB� a(n�(p�1))a(n�(p�1)+1)�12� 1CCCCA = 0BBBB� 00�1 1CCCCA : (9)An optimum hoie of �x(n) may be obtained by the set of oeÆients fag as�x(n) = nXm=n�(p�1) amx(m): (10)If the Hessian H is approximated by the unity I, Eq. (6) beomesx(n+1) = �x(n) � � �g(n): (11)This sheme in the Cartesian oordinate has been implemented as 'DIIS' in OpenMX.3 Broyden-Flether-Goldfarb-Shanno (BFGS) methodDe�ne �g(n) = g(n) � g(n�1); (12)�x(n) = x(n) � x(n�1): (13)Then, the Broyden-Flether-Goldfarb-Shanno (BFGS) method [3℄ gives the following rank-2 updateformula for (H(n))�1:(H(n))�1 = (H(n�1))�1 + h�x(n)j�g(n)i+ h�g(n)j(H(n�1))�1j�g(n)i�h�x(n)j�g(n)i�2 j�x(n)ih�x(n)j�(H(n�1))�1j�g(n)ih�x(n)j+ j�x(n)ih�g(n)j(H(n�1))�1h�x(n)j�g(n)i ; (14)where (H(0))�1 = I. An optimization sheme using Eq. (6) and the BFGS update formula for theinverse of an approximate Hessian matrix in the Cartesian oordinate has been implemented as 'BFGS'in OpenMX. 2



4 Rational funtion (RF) methodThe BFGS update by Eq. (14) without any are gives an ill-onditioned approximate inverse of Hessianhaving negative eigenvalues in many ases. This leads to the optimization to saddle points rather thanthe optimization to a minimum. The rational funtion (RF) method [4℄ an avoid the situation inpriniple. Instead of Eq. (1), we may onsider the following expression:E = E0 + 3NXi ��E�xi�0 (xi � x(0)i ) + 12 3NXi;j  �2E�xi�xj!0 (xi � x(0)i )(xj � x(0)j ) + 12� 3NXi (xi � x(0)i )2: (15)Then, the equation orresponding to Eq. (4) beomes(H(n) + �I)�x(n) = �g(n): (16)Therefore, a large � assures that (H(n) + �I) is positive de�nite. If �(n)(= ��) is given by�(n) = hg(n)js(n)i: (17)With Eq. (17), Eq. (16) may be equivalent to H(n) g(n)(g(n))T 0 ! �x(n)1 ! = �(n)  �x(n)1 ! ; (18)where the size of the matrix in the left-hand side is (3N + 1) � (3N + 1), and alled the augmentedHessian. The lowest eigenvalue of the eigenvalue problem de�ned by Eq. (18) may give an optimumhoie for �, and the orresponding eigenvetor, the last omponent is saled to 1, gives an optimizationstep �x(n). In Eq. (18), the approximate Hessian an be estimated by the following BFGS formula:H(n) = H(n�1) + j�g(n)ih�g(n)jh�x(n)j�g(n)i � H(n�1)j�x(n)ih�x(n)jH(n�1)h�x(n)jH(n�1)j�x(n)i ; (19)where H(0) = I. An optimization sheme using Eq. (18) and the BFGS update formula Eq. (19) inthe Cartesian oordinate has been implemented as 'RF' in OpenMX.5 Eigenvetor following (EF) methodBy diagonalizing the approximate Hessian given by Eq. (19), the ill-onditioned situation an belargely redued [5℄. The approximate Hessian is diagonalized asE(n) = (V (n))TH(n)V (n); (20)where E(n) is a diagonal matrix of whih diagonal parts are eigenvalues of H(n). If the eigenvalueof the approximate Hessian is smaller than a threshold (0.02 a.u. in OpenMX3.3), the eigenvalue isset to the threshold. The modi�ation of eigenvalues gives a orreted matrix E0(n) instead of E(n).Then, we have the inverse of a orreted Hessian matrix H 0(n) being a positive de�nite as(H 0(n))�1 = V (n)(E0(n))�1(V (n))T : (21)A optimization sheme using the inverse Eq. (21) in Eq. (6) in the Cartesian oordinate has beenimplemented as 'EF' in OpenMX. 3



In addition, there are two important presriptions for the stable optimization: (1) If h�x(n)j�g(n)iis positive in the update of Hessian by Eq. (19), it is assured that the updated Hessian is positivede�nite. Therefore, if h�x(n)j�g(n)i is negative, the update should not be performed. (2) Themaximum step should be always monitored, so that an errati movement of atomi position an beavoided.Referenes[1℄ P. Csaszar and P. Pulay, J. Mol. Stru. 114, 31 (1984).[2℄ F. Ekert, P. Pulay, and H.-J. Werner, J. Comp. Chem. 18, 1473 (1997).[3℄ C. G. Broyden, J. Inst. Math. Appl. 6, 76 (1970); R. Flether, Comput. J. 13, 317 (1970); D. Goldrarb,Math. Comp. 24, 23 (1970); D. F. Shanno, Math. Comp. 24, 647 (1970).[4℄ A. Banerjee et al., J. Phys. Chem. 89, 52 (1986).[5℄ J. Baker, J. Comput. Chem. 7, 385 (1986).
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