
LDA+U Method: Ver. 1.0Taisuke Ozaki, RCIS, JAISTAugust 15, 20071 Total energyIn onjuntion with on-site terms of the unrestrited Hartree-Fok theory, the total energy of a LDA+Umethod [1℄ within the ollinear spin treatment ould be de�ned byELDA+U = ELDA +EU (1)with EU = 12X� Xi Xp Xl Uipl hTr(N�ipl)�Tr(N�iplN�ipl)i ;= 12X� Xs Us [Tr(N�s )� Tr(N�s N�s )℄ ; (2)where i is a site index, l an angular momemtum quantum number, p a multipliity number of radialbasis funtions, � a spin index, and s an organized index of (ipl). N is an diagonalized oupationmatrix. U is the e�etive Coulomb eletron-eletron interation energy. Considering the rotationalinvariane of total energy with respet to eah subshell s, Eq. (2) an be transformed as follows:EU = 12X� Xs Us hTr(AsN�s Ays)�Tr(AsN�s AysAsN�s Ays)i ;= 12X� Xs Us [Tr(n�s )� Tr(n�sn�s )℄ ;= 12X� Xs Us 24Xm n�smm � Xm;m0 n�smm0n�sm0m35 : (3)In the Eq. (3), although o�-diagonal oupation terms in eah subshell s are taken into aount,however, those between subshells are negleted. This treatment is onsistent with their rotationalinvariant funtional by Dudarev et al. [2℄, and is a simple extension of the rotational invariantfuntional for the ase that a di�erent U-value is given for eah basis orbital indexed with s � (ipl).In this simple extension, we an not only inlude multiple d-orbitals as basis set, but also an easilyderive the fore on atoms in a simple form as disussed later on.The ELDA+U an be expressed in terms of the Kohn-Sham eigenenergies "�� as follows:ELDA+U = ELDA +EU;= Eband + "Eee +E +Ex �X�;� h �� jv̂�LDAj �� i#+ "EU �X�;� h �� jv̂�Uj �� i# ;
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= Eband +�ELDA + 12X� Xs Us Xm;m0 n�smm0n�sm0m;= Eband +�ELDA +�EU; (4)where �ELDA and �EU are the double outing orretions of LDA- and U-energies, respetively.2 Oupation numberThe oupation number n may be de�ned byn�smm0 = X� f�h �� jn̂�smm0 j �� i; (5)where, to ount the oupation number n, we de�ne three oupation number operators given byon-site n̂�smm0 = j ~sm�ih ~sm0�j; (6)full n̂�smm0 = jsm�ihsm0�j; (7)dual n̂�smm0 = 12 �j ~sm�ihsm0�j+ jsm�ih ~sm0�j� ; (8)where j ~sm�i is the dual orbital of a original non-orthogonal basis orbital jsm�i, and is de�ned byj ~sm�i = Xs0m0 S�1sm;s0m0 js0m0�i (9)with the overlap matrix S between non-orthogonal basis orbitals. Then, the following bi-orthogonalrelation is veri�ed: h ~sm�js0m0�i = Æsm�;s0m0�0 : (10)The on-site and full oupation number operators have been proposed by Eshrig et al. [3℄ and Pikettet al. [4℄, respetively. It is noted that these de�nitions do not satisfy a sum rule that the trae ofthe oupation number matrix is equivalent to the total number of eletrons, while only the dualoupation number operator ful�lls the sum rule as follows:X� Tr(n�) =X� 12 fTr(S��) + Tr(��S)g = Nele; (11)where �� is the density matrix de�ned by��sm;s0m0 = X� f�h �� j�̂�sm;s0m0 j �� i;= X� f��;�sm�s0m0 (12)with a density operator: �̂�sm;s0m0 = j ~sm�ih ~s0m0�j: (13)2



The notes limit the disussion to non-Bloh wave funtions for simpliity, but the extension is straight-forward. For three de�nition of oupation number operators, on-site, full, and dual, the oupationnumbers are given byon-site n�smm0 = ��sm;sm0 ; (14)full n�smm0 = Xtn;t0n0 ��tn;t0n0Stn;smSsm0;t0n0 ; (15)dual n�smm0 = 12Xtn nSsm0;tn��tn;sm + ��sm0;tnStn;smo : (16)3 E�etive potentialThe derivative of the total energy Eq. (1) with respet to LCAO oeÆient ��;tn is given by�ELDA+U��;��;tn = �ELDA��;��;tn + �EU��;��;tn ;= �ELDA��;��;tn + Xsmm0 �EU�n�smm0 �n�smm0��;��;tn= �ELDA��;��;tn + Xsmm0 Us(12Æmm0 � n�smm0)�n�smm0��;��;tn= �ELDA��;��;tn + Xsmm0 v�U;smm0 �n�smm0��;��;tn (17)withon-site �n�smm0��;��;tn = ÆstÆmn��;sm0 (18)full �n�smm0��;��;tn =Xt0n0 Stn;smSsm0;t0n0��;t0n0 (19)dual �n�smm0��;��;tn = 12 (ÆstÆmnXt0n0 Ssm0;t0n0��;t0n0 + ��;sm0Stn;sm) (20)Substituting Eqs. (18)-(20) for the seond term of Eq. (17), we seeon-site Xsmm0 v�U;smm0 �n�smm0��;��;tn =Xt0n0htn�j " Xsmm0 j ~sm�iv�U;smm0h ~sm0�j# jt0n0�i��;t0n0 ; (21)
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full Xsmm0 v�U;smm0 �n�smm0��;��;tn =Xt0n0htn�j " Xsmm0 jsm�iv�U;smm0hsm0�j# jt0n0�i��;t0n0 ; (22)dual Xsmm0 v�U;smm0 �n�smm0��;��;tn =Xt0n0htn�j12 Xsmm0 hj ~sm�iv�U;smm0hsm0�j+ jsm�iv�U;smm0h ~sm0�ji jt0n0�i��;t0n0 ;(23)Therefore, the e�etive projetor potentials v̂�U an be expressed byon-site v̂�U = Xsmm0 j ~sm�iv�U;smm0h ~sm0�j; (24)full v̂�U = Xsmm0 jsm�iv�U;smm0hsm0�j; (25)dual v̂�U = 12 Xsmm0 hj ~sm�iv�U;smm0hsm0�j+ jsm�iv�U;smm0h ~sm0�ji : (26)It is lear that the e�etive potentials of on-site and full are Hermitian. Also, it is veri�ed that thee�etive potential of dual is Hermitian as follows:htn�jv̂�Ujt0n0�i = 12Xm0 v�U;tnm0Stm0;t0n0 + 12Xm Stn;t0mv�U;t0mn0 ; (27)= ht0n0�jv̂�Ujtn�i: (28)It should be noted that in the full and dual the v�U of the site i an a�et the di�erent sites by theprojetor potentials by Eqs. (25) and (26) beause of the overlap.4 Fore on atomThe derivative of the total energy with respet to atomi oordinates �k onsists of two ontributions:�ELDA+U��k = �ELDA��k + �EU��k : (29)
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The �rst term an be evaluated in the same way as in the LDA. The seond term is given by�EU��k = X�;smm0 �EU�n�smm0 �n�smm0��k ;= X�;smm0 v�U;smm0 �n�smm0��k= X�;� Xtn;t0n0 (��;��;tn��k htn�jv̂�Ujt0n0�i��;t0n0 + �;��;tnhtn�jv̂�Ujt0n0�i���;t0n0��k + �;��;tn��;t0n0 �htn�jv̂�Ujt0n0�i��k ) : (30)Considering H� = "�S� and yS = I, the �rst and seond terms in Eq. (30) an be transformedinto derivatives of the overlap matrix. The third term in Eq. (30) is analytially di�erentiated, sineit ontains just two-enter integrals.
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5 Enhanement of orbital polarizationThe LDA+U funtional an possess multiple stationary points due to the degree of freedom in theon�guration spae of oupation ratio for degenerate orbitals. If eletrons are oupied with a nearlysame oupany ratio in degenerate orbitals at the �rst stage of SCF steps, the �nal eletroni stateoften onverges a stationary minimum with non-orbital polarization after the SCF iteration. Also, itis often likely that eletrons are disproportionately oupied in some of degenerate orbitals due to theexhange interation, whih is so-alled 'orbital polarization'. As an example of the multiple minima,we an point out a obalt oxide (CoO) bulk in whih d-orbitals of the obalt atom are split to t2g andeg states, and the �ve of seven d-eletrons are oupied in t2g and eg states of the majority spin, andremaining two d-eletrons are oupied in the t2g state of the minority spin. Then, it depends on theinitial oupany ratios for the t2g states of the minority spin how the remaining two d-eletrons areoupied in three t2g states. If the initial oupany ratios are uniform, we may arrive at the non-orbitalpolarized state. In fat, unless any speial treatment is onsidered for the initial oupany ratios, wesee the non-orbital polarized state of the CoO bulk. In order to explore the degree of freedom for theorbital oupation, therefore, it is needed to develop a general method whih expliitly indues theorbital polarization. To indue the orbital polarization, a polarized redistribution sheme is proposedas follows: diagonalize d�s = V yn�sV d�s : asending order (31)summation D = 2l+1Xm=1 d�sm (32)redistribution d02l+1 = 1;d02l = 1;:::;d0m = D � (2l + 1�m);d0m�1 = 0; :::: (33)where D =Xm d0m (34)bak trasform n0�s = V d0�mV y (35)After diagonalizing eah subshell matrix onsisting of oupation numbers, we introdue a polarizedredistribution sheme given by Eq. (33) while keeping Eq. (34). Then, by a bak transformationEq. (35), we an obtain a polarized oupation matrix for eah subshell. This polarized redistributionsheme is applied during the �rst few SCF steps, and then no modi�ation is made during subsequentSCF steps. This proposed sheme maybe appliable to a general ase: any rystal �eld, any numberof eletrons in the subshell, and any orbitals: p,d,f,...6 Orbital optimization within LDA+UIn the orbital optimization within LDA+U, let us assume that the e�etive U-potential in the LDA+Umethod is applied to the primitive basis orbital � instead of the optimized basis orbital �, whih ismore natural in a physial sense than the opposite assumption.
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A Kohn-Sham (KS) orbital  � in the orbital optimization method is expressed by a linear ombi-nation of primitive orbitals �: j �� i = Xi� ��;i�j�i�i;= Xi� ��;i�(Xq ai�qj�i�i) ;= Xi� Xq ��;i�ai�qj�i�i;= Xi� (Xp ��;i�ai�q) j�i�i;= Xi� b��;i�j�i�i; (36)where � � (plm), � � (qlm),  and b are LCAO oeÆients for ontrated and primitive orbitals,respetively, and a ontration oeÆients. For simpliity we onsider an non-Bloh expression ofthe one-partile wave funtions, but the extention of the below desription to Bloh wave funtionsis straightforward. Assuming that the oupation number operators de�ned by Eqs. (6)-(8) are on-struted by the primitive orbitals, we have the oupation numbers for the on-site, full, and dual givenbyon-site n�smm0 = %�sm;sm0 ; (37)full n�smm0 = Xtn;t0n0 %�tn;t0n0Stn;smSsm0;t0n0 ; (38)dual n�smm0 = 12Xtn nSsm0;tn%�tn;sm + %�sm0;tnStn;smo ; (39)where %� is the primitive density matrix de�ned by%�sm;s0m0 = X� f�h �� j%̂�sm;s0m0 j �� i;= X� f�b�;�smb�s0m0 (40)with a primitive density operator: %̂�sm;s0m0 = j~�sm�ih~�s0m0�j: (41)Moreover, by de�ning a ontrated density operator:�̂�sm;s0m0 = j~�sm�ih~�s0m0�j; (42)we have the ontrated density matrix �� given by��sm;s0m0 = X� f�h �� j�̂�sm;s0m0 j �� i;= X� f��;�sm�s0m0 : (43)
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Then, the primitive density matrix % is written by the ontrated density matrix � as follows:%�iqlm;i0q0l0m0 = Xp;p0 aiplmqai0p0l0m0q0��iplm;i0p0l0m0 : (44)Considering the variation of the total energy Eq. (1) with respet to b, we �nd the e�etive potentialsof the LDA+U method with respet to the primitive basis orbital. They are given by the sameexpression as Eqs. (24)-(26), while the oupation number is given by Eqs. (37)-(39). After theHamiltonian matrix with respet to the primitive basis orbital � is onstruted, it is transformed tothat of the optimized basis orbital � as follows:h�iplmjĤj�i0p0l0m0i = Xq;q0 aiplmqai0p0l0m0q0h�iqlmjĤ j�i0q0l0m0i: (45)The Hamiltonian matrix with respet to the ontrated basis orbital is diagonalized. The proedureis summarized as follows:1. diagonalize the ontrated Hamiltonian h�iplmjĤj�i0p0l0m0i2. alulate the ontrated density matrix by Eq. (43)3. alulate the primitive density matrix by Eq. (44)4. alulate the oupation number by Eq. (37), (38), or (39)5. onstrut the Hamitonian by Eq. (24), (25), or (26)6. ontrat the Hamitonian by Eq. (45)7. return 1Although the optimization proedure of the ontrated oeÆients a is not disussed here, it an beeasily veri�ed that the same proedure as in the LDA method is derived. Thus, the orbital optimizationan be performed within the LDA+U method as well as the LDA method.Referenes[1℄ M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 73, 045110 (2006).[2℄ S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505(1998).[3℄ H. Eshrig, K. Koepernik, and I. Chaplygin, J. Solid State Chem. 176, 482 (2003).[4℄ W. E. Pikett, SC. Erwin, E. C. Ethridge, Phy. Rev. B 58, 1201 (1998).
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