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Numerical atomic basis orbitals from H to Kr
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We present a systematic study for numerical atomic basis orbitals ranging from H to Kr, which could be used
in large scale O(N) electronic structure calculations based on density-functional theories~DFT!. The compre-
hensive investigation of convergence properties with respect to our primitive basis orbitals provides a practical
guideline in an optimum choice of basis sets for each element, which well balances the computational effi-
ciency and accuracy. Moreover, starting from the primitive basis orbitals, a simple and practical method for
variationally optimizing basis orbitals is presented based on the force theorem, which enables us to maximize
both the computational efficiency and accuracy. The optimized orbitals well reproduce convergent results
calculated by a larger number of primitive orbitals. As illustrations of the orbital optimization, we demonstrate
two examples: the geometry optimization coupled with the orbital optimization of a C60 molecule and the
preorbital optimization for a specific group such as proteins. They clearly show that the optimized orbitals
significantly reduce the computational efforts, while keeping a high degree of accuracy, thus indicating that the
optimized orbitals are quite suitable for large scale DFT calculations.

DOI: 10.1103/PhysRevB.69.195113 PACS number~s!: 71.15.Ap, 71.15.Mb, 71.15.Nc
on
n

ne
m
f
h

si
cs
th
r

re
e
-
te
or
y-
t
t

-

c
c
e
e

to

he
se

ack
of
that
tion
g a
de-
f ac-
nd
nd
ry

e,
ges,
ped

y
ters
re
he
by
e,
veral
ic
ccu-

ic
lex
lem
ce

re-
for

tes
ore

ria-
on
I. INTRODUCTION

Atomic orbitals as a basis set have been used for a l
time in the electronic structure calculations of molecules a
bulks. Especially, in covalent molecular systems, o
particle wave functions are well described by a linear co
bination of atomic orbitals~LCAO! because of the nature o
localization in the electronic states, which is a reason w
chemists prefer to use the atomic orbitals, e.g., Gaus
orbitals.1–4 On the other hand, in the solid-state physi
LCAO has been regarded as a somewhat empirical me
such as a tool for an interpolation of electronic structu
calculations with a high degree of accuracy.5 However, dur-
ing the last decade, LCAO has been attracting much inte
from different points of view, since great efforts have be
made not only for developing O(N) methods of the eigen
value problem,6–11 but also for making efficient and accura
localized orbitals12,13,15–17as a basis set being suitable f
O(N) methods to extend the applicability of densit
functional theories~DFT! to realistic large systems. Mos
O(N) methods are formulated under an assumption tha
basis set is localized in the real space.11 Therefore, the local-
ity of the atomic orbitals can be fully utilized in DFT calcu
lations coupled with O(N) methods. In addition, even if a
minimal basis set of atomic orbitals is employed for valen
electrons, it has been reported that a considerable accura
achieved in many systems.12,18–22This fact suggests that th
matrix size of the eigenvalue problem is notably reduc
compared to other localized basis methods such as finite
ements method.23,24These aspects of LCAO encourage us
employ the atomic orbitals in the large scale O(N) DFT cal-
culations.

However, several important problems still remain in t
applications of LCAO to DFT calculations in spite of the
0163-1829/2004/69~19!/195113~19!/$22.50 69 1951
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advantages. The most serious drawback in LCAO is the l
of a systematic improvement of atomic orbitals in terms
the computational accuracy and efficiency. One expects
a basis set such as double valence orbitals with polariza
orbitals for valence electrons provides a way for balancin
relatively small computational effort and a considerable
gree of accuracy. Nevertheless, when a higher degree o
curacy is required, we find the lack of a systematic a
simple way for increasing the number of atomic orbitals a
for improving the shape of atomic orbitals at a satisfacto
level within our knowledge of the LCAO method. Therefor
to overcome the drawback and to benefit the advanta
desirable atomic orbitals as a basis set must be develo
with the following features:~i! the computational accurac
and efficiency can be easily controlled by simple parame
as few as possible,~ii ! once the number of basis orbitals a
fixed, which means that an upper limit is imposed on t
computational efforts, the accuracy can be maximized
optimizing the shape of the atomic orbitals. Along this lin
recently, accurate basis sets have been constructed in se
ways.12–16Kennyet al.constructed a basis set so that atom
orbitals can span the subspace defined by selected and o
pied states of reference systems as much as possible.12 Jun-
queraet al. optimized the shape and cutoff radii of atom
orbitals for reference systems by using the downhill simp
method.13 However, in these approaches, the serious prob
in LCAO has not been solved at a satisfactory level, sin
the transferability of these optimized orbitals may be
stricted to systems similar to the reference systems used
the optimization in terms of atomic environments and sta
such as the coordination number and the charge state. A m
complete treatment for the optimization scheme is to va
tionally optimize atomic orbitals of each atom located
different environments in a given system.16,17Furthermore, it
©2004 The American Physical Society13-1
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is difficult to control the computational accuracy by simp
parameters since the procedure for generating more mul
orbitals than a minimal basis set is not unique in these
proaches proposed previously.12,13

In this paper, we present the first systematic study of c
vergence properties for numerical atomic orbitals rang
from H to Kr, in which it is shown that the computation
accuracy can be controlled by two simple parameters: a
off radius and the number of atomic orbitals. Our comp
hensive study not only provides a solution for the above fi
criterion, but also reveals the limitation in the applicability
LCAO to metallic systems, especially, alkaline and alkal
earth metals. Moreover, starting from our primitive orbita
a simple and practical method is presented for variation
optimizing numerical atomic orbitals of each atom in a giv
system based on the force theorem. The orbital optimiza
scheme enables us to maximize the computational accu
within a given number of basis orbitals, which fulfills th
above second criterion. This paper is organized as follows
Secs. II and III, we present a method for generating num
cal atomic orbitals, and show the convergence proper
within DFT in dimers ranging from H to Kr and selecte
bulks with respect to a cutoff radius and the number of
bitals. In Sec. IV, a simple method is presented for variati
ally optimizing numerical atomic orbitals of each atom in
given system, and the convergence properties of the o
mized orbitals is discussed. In Sec. V, we conclude toge
with discussing applicability and limitation of the LCAO
method.

II. PRIMITIVE ORBITALS

Let us expand a Kohn-Sham~KS! orbital cm of a given
system using numerical atomic orbitalsf ia in a form of
LCAO:

cm~r !5(
ia

cm,iaf ia~r2r i !, ~1!

wherei is a site index,a[(plm) an organized orbital index
and f ia(r )[Ylm(u,f)Ripl(r ). A radial wave functionRipl
depends on not only an angular momentum quantum num
l, but also a site indexi, and a multiplicity indexp. In this
Sec. II, we use our primitive orbitalsRipl8 as the radial wave
functionRipl as discussed below. Thus, it should be noted
beRipl5Ripl8 in this Sec. II, while a different expression wi
be discussed in Sec. IV. Note that our argument in this pa
is restricted within only nonspin-polarized systems and
non-Bloch expression of the one-particle wave functions
simplicity, but the extensions of our argument to those
straightforward.

We generate the numerical primitive orbitalsRipl8 based
on the following conditions:

~i! The atomic orbitals must completely vanish within t
computational precision beyond a cutoff radius, and mus
continuous up to the third derivatives around the cutoff
dius so that matrix elements for the kinetic operator are c
tinuous up to the first derivatives.
19511
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~ii ! A set of atomic orbitals are generated by simple p
rameters as few as possible, which means that orbitals
systematically available as many as we want.

The first condition is needed if the atomic orbitals a
coupled with O(N) methods which suppose the locality o
basis sets in the real space. Also the number of nonz
elements of Hamiltonian and overlap matrices is exactly p
portional to the number of atomic orbitals if the first cond
tion is satisfied. Once the geometrical structure is given,
structure of the sparse matrices can be predictable throu
connectivity table which is prepared from the geometri
structure. Thus, both the computational efforts and the siz
memory for evaluating and storing the matrix elements sc
as O(N). Another cutoff scheme which neglects small e
ments of Hamiltonian and overlap matrices should not
used because it violates the variational principle.25 The con-
tinuity of atomic orbitals assumed in the first condition
necessary to realize a stable geometry optimization and
lecular dynamics~MD! simulations. The second conditio
we assumed is indispensable in order to obtain a system
convergence with respect to simple parameters as few
possible.

Our primitive orbitalsRipl8 as a basis set26 are orbitals of
eigenstates, including excited states, of an atomic Ko
Sham equation with a confinement pseudopotential in
semilocal form for each angular momentum quantum nu
ber l.13,17,18To vanish the radial wave functionRipl8 of the
outside of the confinement radiusr c , we modify the atomic
core potentialVcore(r ) in the all electron calculation of an
atom and keep the modified core potential in the genera
of pseudopotential as follows:

Vcore~r !55
2

Z

r
for r<r 1

(
n50

3

bnr n for r 1,r<r c

h for r c,r ,

~2!

whereb0 , b1 , b2, andb3 are determined so that the valu
and the first derivative are continuous at bothr 1 and r c .
Figure 1 shows radial wave functions forl 50 of an oxygen
atom under the confinement pseudopotential. The numbe
nodes in the radial wave functions increases one by one
the eigenenergy increases. For the later discussion, here
introduce an abbreviation of a basis orbital as C4.5-s2p3,
where C indicates the atomic symbol, 4.5 is the cutoff rad
r c ~a.u.! used in the generation,s2p3 means that two and
three primitive orbitals are employed fors and p orbitals,
respectively. The abbreviation of a basis orbital will be us
to specify the content of basis orbitals, and also referred t
the basis specification. The abbreviation will be extended
describing the optimized orbitals in Sec. IV. The eigensta
construct an orthonormal basis set at the same atomic p
tion and vanish beyond the cutoff radiusr c within the double
precision, if an enough large value is used for the heigh
wall h. The completely vanishing tail of numerical orbita
assures that the number of nonzero elements of Hamilto
3-2
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NUMERICAL ATOMIC BASIS ORBITALS FROM H TO Kr PHYSICAL REVIEW B69, 195113 ~2004!
and overlap matrices is exactly proportional to the numbe
primitive orbitals. The continuity of the modified core pote
tial up to the first derivatives provides that of the radial wa
functions up to the third derivatives. Thus, the elements
Hamiltonian and overlap matrices are continuous up to
first derivatives, including that for the kinetic operator. T
sharpness of rising edge can be easily controlled by tunin
the radiusr 1. If the height of the wallh is large enough, the
tail of radial function vanishes within the double precisi
beyondr c even for excited states unbound without the mo
fied potential. In this study, we used 0.2~a.u.! and 2.03104

~hartree! for ur c2r 1u andh, respectively, for all elements w
considered. It should be mentioned that different modifi
potentials have been also proposed to shorten the tail o
dial wave functions.12,13,18 However, to the best of ou
knowledge, there are no modified potentials which can v
ish the tail of the excited states at a cutoff radius within
double precision, while keeping the continuity of radial fun
tions. On the other hand, our modified potential with a la
h can generate a set of continuous numerical radial funct
with the complete vanishing tail. In the atomic DFT calcu
tions with the modified potential, there are technical deta
to generate excited states in a numerical stable way. W
the radial differential equation is solved from a distance,
starting radiusr s must be marginally larger thanr c . We de-
terminedr s by a relationr s5r c12 ~a.u.! for all elements we
considered. Ifr s is considerably larger thanr c , then numeri-
cal instabilities appear due to the largeh. If the differential
equation is solved from the origin, we follow the usual pr
scription in the atomic DFT calculations.27 The choice of the
matching point, at which two wave functions solved from t
origin and a distance are merged, is also an important fa
to obtain the excited states in a numerical stable way. In
all electron calculation, we adopt a slightly outside of t
most outer peak as the matching point in the usual way.27 On
the other hand, we use a fixed matching point in the ca
lation of wave functions for the excited states under pseu
potentials with the modified core potential. This is becau
the most outer peak often arises near the cutoff radiusr c as
the number of nodes increases, which causes numerica

FIG. 1. The radial wave function forl 50 of an oxygen atom
under the confinement pseudopotential defined by Eq.~2!, where
4.5 ~a.u.!, 4.3 ~a.u.!, and 2.03104 ~hartree! were used forr c , r 1,
andh, respectively.
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stabilities in the solution of the differential equation from th
origin. In all elements, we used the fixed matching point
which the logarithmic radial mesh is divided in the ratio of
to 1, measured from the origin. Using the fixed matchi
point, a set of radial wave functions as primitive orbita
were generated without numerical instabilities.26

In the DFT calculations using the primitive orbitals, th
computational accuracy and efficiency can be controlled
two simple parameters: the cutoff radius and the numbe
orbitals per atom. The systematic control by two parame
for the accuracy and efficiency is similar to that of spheri
wave basis sets.15 However, we guess that a relatively sma
number of orbitals may be needed to obtain the converg
result compared to the spherical wave basis sets, since
primitive orbitals are prepared for each element unlike
spherical wave basis sets.15 This is one of reasons why w
use the eigenstates of an atomic Kohn-Sham equation
the confinement pseudopotentials as the primitive orbitals
order to investigate the convergence properties with res
to the cutoff radius and the number of orbitals per atom,
first show the total energy and the equilibrium bond length
dimer molecules ranging from hydrogen to krypton atom
The calculation of a dimer molecule could be a severe
for the convergence with respect to basis orbitals, since
neighboring atom is only one for each atom. In this cas
sufficient contribution from orbitals belonging to the oth
atoms is not anticipated to well express the peripheral reg
of each atom in KS orbitals, which means that the conv
gence rate of dimer molecules could be the slowest o
Therefore, the convergence properties of dimer molec
provide a practical guideline in an optimum choice of ba
sets for each element.

III. CONVERGENCE WITH RESPECT TO PRIMITIVE
ORBITALS

In Figs. 2–7 the total energies and the equilibrium bo
lengths for dimer molecules from H to Kr are shown as
function of the number of primitive orbitals for various cu
off radii r c , where the total energies were calculated at
experimental bond length and the equilibrium bond leng
were computed by a cubic spline interpolation for the ene
curve as a function of bond length. In most cases, a ho
nuclear diatomic molecule for each element was inve
gated. However, if the homonuclear diatomic molecule is
well resolved experimentally, or is highly weak binding, th
monoxide or the monohydride was calculated instead of
homonuclear diatomic molecule. In our all DFT calculation
factorized norm conserving pseudopotentials28,29 were used
with multiple projectors proposed by Blochl.30 In addition to
valence electrons, semicore electrons were also consider
making of pseudopotentials for several elements such a
kaline, alkaline earth, and transition elements. Moreover,
nonlinear partial core correction31 was considered in the
evaluation of the exchange-correlation terms except for a
drogen and a helium atom. A relativistic correction was n
included in the generation of pseudopotentials. The basis
superposition error32 was not corrected, since the dissoci
tion energy was beyond the scope of this paper. The e
3-3
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FIG. 2. The total energy and the equilibrium bond length of a hydrogen dimer H2, a helium dimer He2, a lithium dimer Li2, a beryllium
monoxide molecule BeO, a boron dimer B2, and a carbon dimer C2 as a function of the number of primitive basis orbitals per atom
different cutoff radii. The energy cutoff of 255, 262, 113, 123, 177, and 177~Ry! were used for the numerical integration and the solut
of Poisson’s equation in H2 , He2 , Li2, BeO, B2, and C2, respectively. In BeO, we used 5.0~a.u.! as a cutoff radius of primitive orbitals fo
the oxygen atom, and increased the number of basis orbitals of the beryllium and oxygen atoms as Berc-smpmdnand O5.0-smpmdn, where
r c is a cutoff radius, given in Fig. 2~h!, of primitive orbitals for the beryllium atom.
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tronic states and the cutoff radii used in the generation
these pseudopotentials26 are shown in Table I, where the cu
off radii are given in parentheses. We limited the stu
within the local spin-density approximation~LSDA! ~Ref.
33! to the exchange-correlation interactions, since we wo
like to focus our attention on the convergence properties w
respect to the basis orbitals. Also the real-space grid te
niques were used with the energy cutoff given in the capt
of figures in numerical integration13 and the solution of Pois
son’s equation using the fast Fourier transformation. All c
culations in this study were performed using our DFT co
OpenMX,26 which is designed for the realization of larg
scale calculations. We discuss the convergence prope
19511
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with respect to the basis orbitals in the following categoriz
elements in Figs. 2–7.

A. Representative elements

In representative elements such as H, B, C, N, O, an
systematic convergence properties are observed as expe
As the cutoff radius and the number of primitive orbita
increase, the total energy converges systematically. Al
with the energy convergence, the calculated equilibri
bond length converges at the experimental value within
error of a few percentages. When the energy convergenc
carefully observed from the left to the right elements in t
3-4
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FIG. 3. The total energy and the equilibrium bond length of a nitrogen dimer N2, a oxygen dimer O2, a fluorine dimer F2, a neon dimer
Ne2, a sodium dimer Na2, and a magnesium monoxide molecule MgO as a function of the number of primitive basis orbitals per at
different cutoff radii. The energy cutoff of 177, 177, 255, 343, 135, and 146~Ry! were used for the numerical integration and the solut
of Poisson’s equation in N2 , O2 , F2 , Ne2 , Na2, and MgO, respectively. In MgO, we used 5.0~a.u.! as a cutoff radius of primitive orbitals
for the oxygen atom, and increased the number of basis orbitals of the magnesium and oxygen atoms as Mgrc-smpmdnand O5.0-smpmdn,
wherer c is a cutoff radius, given in Fig. 3~l!, of primitive orbitals for the magnesium atom.
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first row, we find a trend that primitive orbitals with a high
angular momentuml are required in order to achieve enou
convergence. Note that the primitive orbitals with a high
angular momentuml beyond valence orbitals allocated
valence electrons are referred to as polarization orbitals
cording to quantum chemistry in this paper. In H2 and C2,
the valence orbitals are almost enough to accomplish
energy convergence. The inclusion of polarization orbitalsp
andd orbitals for hydrogen and carbon atoms, are not eff
tive for the energy convergence. In N2 and F2, the total en-
ergies are significantly reduced by the inclusion ofd orbitals.
The overestimated equilibrium bond lengths in the calcu
tions by thes and p valence orbitals shorten in accordan
with the inclusion ofd orbitals. The same trend as that o
19511
r
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served in the first row is found in the convergence proper
of the second row elements with respect to angular mom
tum of primitive orbitals. In P2 , S2, and Cl2 the polarization
d orbitals are relevant to obtain the convergent results, w
the inclusion of the polarizationd orbitals insensibly de-
creases the total energy in Al2 and Si2. In the third row, the
polarizationd orbitals are required in all representative e
ments from Ga to Br for the energy and geometrical conv
gences. If the valences and p orbitals are only considered
the equilibrium bond lengths tend to be overestimated. Ba
on the calculations, rough estimations of appropriate cu
radii of basis orbitals might be given as 5.0, 6.5, and 6.5 a
for representative elements of the first, the second, and
third rows, respectively. Although these rough estimatio
3-5
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FIG. 4. The total energy and the equilibrium bond length of an aluminum dimer Al2, a silicon dimer Si2, a phosphorus dimer P2, a sulfur
dimer S2, a chlorine dimer Cl2, and an argon dimer Ar2 as a function of the number of primitive basis orbitals per atom for different cu
radii. The energy cutoff of 123, 113, 103, 103, 113, and 290~Ry! were used for the numerical integration and the solution of Poiss
equation in Al2 , Si2 , P2 , S2 , Cl2, and Ar2, respectively.
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provide a practical guideline in an optimum choice of cut
radius for each element, it should be mentioned that ther
often an exceptional case in which a larger cutoff radius
required for the accurate description. As such an exceptio
case, we can point out that a relatively larger cutoff rad
must be used when an atom is negatively charged up, s
the electrons tend to be far from the atom due to the re
sive interaction between electrons. In contrast, a smaller
off radius could be enough to achieve a sufficient conv
gence when an atom is positively charged up, and when
atom has a high coordination number which means that
atom is surrounded by the other many atoms. We will ag
discuss the cutoff radius in the later discussion based
numerical results.

Moreover, the convergence with respect to the basis or
als could be confirmed when the electronic state is caref
19511
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examined. In Table II, we find that the electronic configu
tions of the experimental ground state are well reproduce
the first row representative elements by only the inclusion
valence orbitals. However, the polarization orbitals are m
important for the second and third row elements to obtai
convergent result in the electronic configuration. Actua
the use of only the valence orbitals fails to predict the grou
state of Si2. The basis orbitals, Si6.5-s2p2, gives 3Pu to be
the ground state of Si2, while the ground state is correctl
predicted as3Sg

2 by the inclusion ofd orbitals. Due to the
transition between calculated ground states with differ
symmetries, the nonmonotonic convergence of the equ
rium bond length of Si2 can be observed. Although th
ground state of Al2 is determined as3Sg

2 , even if thed
orbitals are included, experimental investigations reveal t
3-6
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FIG. 5. The total energy and the equilibrium bond length of a potassium dimer K2, a calcium monoxide molecule CaO, a scandiu
monoxide molecule ScO, a titanium dimer Ti2, a vanadium dimer V2, and a chromium dimer Cr2 as a function of the number of primitive
basis orbitals per atom for different cutoff radii. The energy cutoff of 113, 123, 146, 146, 146, and 146~Ry! were used for the numerica
integration and the solution of Poisson’s equation in K2, CaO, ScO, Ti2 , V2, and Cr2, respectively. In CaO and ScO, we used 5.0~a.u.! as
a cutoff radius of primitive orbitals for the oxygen atom, and increased the number of basis orbitals of the calcium, scandium, and
atoms as Car c-smpmdnfl, Scr c-smpmdnfl, and O5.0-smpmdn, wherer c is a cutoff radius, given in Figs. 5~d! and 5~f!, of primitive orbitals for
the calcium and scandium atoms.
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the ground state is3Pg
2 .41 The discrepancy between ou

theoretical prediction and the experiments is attributed
LSDA to the exchange-correlation interaction as reported
Martinezet al.72 They also obtained3Sg

2 as the ground state
of Al2 within LSDA, while their GGA calculation correctly
predicts that the ground state of Al2 is 3Pg

2 and the 3Sg
2

state is the lowest excited state.72 For the third row represen
tative elements, we did not observe the same kind of disc
ancy as that of Si2 in prediction of the ground state. How
ever, the inclusion ofd orbitals is recommended for th
geometrical convergence as mentioned before. Table III e
merated the equilibrium bond lengths which are calcula
using the orbitals with the largest cutoff radius and the gre
19511
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est number of orbitals for each dimer in Figs. 2–7. The c
culated bond lengths of dimer molecules by representa
elements are consistent with both the experimental and
other theoretical values, which supports that our primit
basis orbitals provide the convergent results comparabl
the other DFT calculations.

B. Transition elements

As well as the representative elements, we find system
convergence properties with respect to the cutoff radius
the number of primitive orbitals for the first row transitio
elements. Both the total energy and equilibrium bond len
3-7
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FIG. 6. The total energy and the equilibrium bond length of a manganese monoxide molecule MnO, an iron dimer Fe2, a cobalt dimer
Co2, a nickel dimer Ni2, a copper dimer Cu2, and a zinc monohydride molecule ZnH as a function of the number of primitive basis orb
per atom for different cutoff radii. The energy cutoff of 146, 146, 146, 146, 113, and 146~Ry! were used for the numerical integration an
the solution of Poisson’s equation in MnO, Fe2 , Co2 , Ni2 , Cu2, and ZnH, respectively. In MnO and ZnH, we used 5.0 and 4.5~a.u.! as a
cutoff radius of primitive orbitals for the oxygen and hydrogen atoms, and increased the number of basis orbitals of the mangan
oxygen, and hydrogen atoms as Mnr c-smpmdmfn, Znr c-smpmdmfn, O5.0-smpmdn, and H4.0-smpn, wherer c is a cutoff radius, given in Figs
6~b! and 6~l!, of primitive orbitals for the manganese and zinc atoms. Exceptionally, a cobalt dimer was calculated, while the bond le
Co2 determined experimentally is not available.
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converge with increasing of the cutoff radius of orbitals a
the number of orbitals. Interestingly, the polarizationf orbit-
als do not play an important role in the energy convergen
Within the valence orbitals the energy convergence is alm
achieved in all the transition elements that we conside
However, there would be a possibility that the polarizati
orbitals become more effective for transition elements i
higher row which lies downward in the periodic table w
have not studied, like the representative elements. In T
II, we find that the predicted electronic configurations of t
ground states are almost consistent with the experime
results within the use of only valence orbitals, except for2
19511
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and Ni2. In V2 the electronic configuration,3Sg
1 , observed

experimentally73 is correctly reproduced by the inclusion o
the polarizationf orbitals, while only the use of the valenc
orbitals predicts1Sg

1 as the ground state of V2. The non-
monotonic convergence of the equilibrium bond length of2
found in Fig. 5 can be attributed to the transition of singlet
triplet in the calculated ground state. For Ni2, recent
experiments74 by resonant two-photon ionization spectro
copy using argon carrier gas suggest that the ground sta
V50g

1 or 0u
2 , which would be a mixture of3Sg

2 and
1Sg

1(0g
2) or 3Su

1 and 1Su
2(0u

2). In contrary, we obtained
3Sg

2 , which is app hole state, as the ground state with
3-8



olecule

l
nd
ls of the

NUMERICAL ATOMIC BASIS ORBITALS FROM H TO Kr PHYSICAL REVIEW B69, 195113 ~2004!
FIG. 7. The total energy and the equilibrium bond length of a gallium monohydride molecule GaH, a germanium monoxide m
GeO, an arsenic dimer As2, a selenium dimer Se2, a bromine dimer Br2, and a krypton dimer Kr2 as a function of the number of primitive
basis orbitals per atom for different cutoff radii. The energy cutoff of 146, 146, 107, 107, 107, and 290~Ry! were used for the numerica
integration and the solution of Poisson’s equation in GaH, GeO, As2 , Se2 , Br2, and Kr2, respectively. In GaH and GeO, we used 4.5 a
5.0 ~a.u.! as a cutoff radius of primitive orbitals for the hydrogen and oxygen atoms, and increased the number of basis orbita
gallium, germanium, hydrogen, and oxygen atoms as Gar c-smpmdn, Ger c-smpmdn, H4.0-smpn, and O5.0-smpmdn, wherer c is a cutoff
radius, given in Figs. 7~b! and 7~d!, of primitive orbitals for the gallium and germanium atoms.
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LSDA. Although the calculated ground state3Sg
2 is not con-

sistent with the experiments,74 but is equivalent to the othe
theoretical prediction67 within generalized gradient approx
mations ~GGA! to the exchange-correlation interactio
Thus, the discrepancy between the theoretical prediction
the experiments must be attributed to the poor descriptio
exchange-correlation interaction or the limitation of sing
configuration method such as DFT rather than the quality
basis orbitals. Also, in Table III we see that the calcula
bond lengths are comparable to both the experimental
the other theoretical values. Although we observe a n
19511
nd
to
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monotonic behavior in the equilibrium bond length for C2
as shown in Fig. 6, this behavior can be attributed to
flatness of energy curve for Cu2. In such a flat energy curve
the equilibrium position is sensitive to the basis orbita
which suggests that the calculation to precisely determin
flat energy curve requires a special care within LCAO tre
ment. For the first row transition elements, a rough estim
tion of appropriate cutoff radius of basis orbitals might
given as 7.0 a.u. based on the calculations of dimer m
ecules, which provides a trade-off between the computatio
accuracy and efficiency. However, as discussed in the re
3-9
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sentative elements, it should be noted that the approp
choice of cutoff radius depends on atomic environments
states such as the coordination number and the charge

C. Alkaline and alkaline earth elements

Intrinsically, it would be hard to describe KS orbitals
systems consisting of alkaline and alkaline earth element
using LCAO with short range atomic orbitals. In Fig.

TABLE I. The atomic states taken into account in the pseu
potential generations and its cutoff radius~a.u.! defined in the
Troullier and Martine scheme.28 For Na, Mg, Al, K, Ca, Sc, Ti, V,
Cr, Mn, Fe, Co, Ni, Cu, and Zn, in addition to valence electro
semicore electrons were included in the pseudopotential gen
tions. Only valence electrons are considered for the other elem
If there are multistates with the same angular momentum in
considered states, the lowest state among the multistates was
as a semilocal part of the pseudopotential with the angular mom
tum. Thus, the cutoff radius of the upper state is not given in
rentheses. The local part is generated by a seventh polynomi
that the deviations between the all electron potential and
pseudopotential in terms of logarithmic derivatives of radial wa
functions are minimized as much as possible. The nonlocal par
the pseudopotentials are factorized by multiple projectors propo
by Blochl.30

Cutoff radius~a.u.!

H 1s ~0.80!
He 1s ~0.90!
Li 2s ~2.30! 2p ~1.50!
Be 2s ~1.40! 2p ~1.20!
B 2s ~1.30! 2p ~1.30!
C 2s ~1.30! 2p ~1.20!
N 2s ~0.95! 2p ~0.95!
O 2s ~1.00! 2p ~1.00!
F 2s ~1.40! 2p ~1.40!
Ne 2s ~1.60! 2p ~1.60!
Na 2p ~1.60! 3s ~2.50! 3p
Mg 2p ~1.30! 3s ~2.50! 3p
Al 2 p ~1.70! 3s ~2.20! 3p
Si 3s ~1.90! 3p ~2.00!
P 3s ~1.83! 3p ~1.83!
S 3s ~1.76! 3p ~1.76!
Cl 3s ~1.50! 3p ~1.50!
Ar 3s ~1.20! 3p ~1.25!
K 3s ~2.00! 3p ~2.00! 4s 4p
Ca 3s ~2.20! 3p ~2.20! 3d ~2.20! 4s 4p
Sc 3p ~1.70! 3d ~1.70! 4s ~2.80! 4p
Ti 3p ~1.70! 3d ~1.70! 4s ~2.60! 4p
V 3p ~1.70! 3d ~1.70! 4s ~2.50! 4p
Cr 3p ~1.70! 3d ~1.90! 4s ~2.40! 4p
Mn 3p ~1.70! 3d ~1.90! 4s ~2.50! 4p
Fe 3p ~2.00! 3d ~2.00! 4s ~2.60! 4p
Co 3p ~1.80! 3d ~2.00! 4s ~2.50! 4p
Ni 3p ~1.80! 3d ~1.50! 4s ~2.50! 4p
Cu 3d ~2.00! 4s ~2.00! 4p ~2.20!
Zn 3d ~1.80! 4s ~2.20! 4p ~2.00!
Ga 4s ~2.00! 4p ~1.90!
Ge 4s ~2.00! 4p ~2.00!
As 4s ~2.00! 4p ~2.00!
Se 4s ~1.84! 4p ~1.84!
Br 4s ~1.84! 4p ~1.84!
Kr 4s ~1.90! 4p ~2.10!
19511
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shows nodeless pseudoradial wave functions of 4s state in K,
Fe, and Br atoms, which are generated by the pseudopo
tial calculations. The comparison definitely reveals that
radial wave function of an alkaline element has a longer
compared to those of a transition element and a represe
tive element, which might make the use of basis orbitals w
a short cutoff radius difficult. Actually, we find in Figs. 2–
that a large cutoff radius is required for dimer molecules
alkaline elements to achieve a sufficient convergence in
total energy and the equilibrium bond length. At least 9
9.0, and 10.0 a.u. of the cutoff radii are needed for Li, N
and K atoms, respectively. It should be noted that the
quirement of a larger cutoff radius for alkaline elemen
causes great computational demands in the evaluation o
Hamiltonian matrix elements, since the number of grids
the sphere defined with a cutoff radiusr c scales as O(r c

3). In
contrast, the energy dependency on the number of orbita
not so large, which represents that the convergence is alm
accomplished even if a small number of orbitals are e
ployed. This energy independency with respect to numbe
orbitals helps us to reduce the computational costs in
application of LCAO to alkaline metal systems in spite of t
requirement of a large cutoff radius. For a sodium dimer,
see that the evolution of the equilibrium bond length is fl
with respect the number of basis orbitals for 6.0 a.u of
cutoff radius. Within the nonspin polarized calculation t
energy curve of Na2 has the double minimum such as K2.75

So, which of the minima can be stabilized depends on
quality of basis orbitals, although high quality basis orbita
provides the correct minimum. Since 6.0 a.u of the cut
radius is too short for sodium, the basis orbitals converg
wrong minimum even if the number of basis orbitals i
creases. This is a reason why the evolution of equilibri
bond length is so flat with respect to the number of ba
orbitals for 6.0 a.u of the cutoff radius. For alkaline ear
elements, the monoxide molecules were investigated for e
of calculations, since accurate calculations require a con
erably larger cutoff energy for the numerical integration a
the solution of Poisson’s equation due to highly weak bin
ing of the homonuclear diatomic molecules of alkaline ea
elements. From Figs. 2–7 we find that the total energies
the equilibrium bond length systematically converge as
cutoff radius and the number of primitive orbitals increa
such as representative elements. In these monoxide
ecules, 7.0 a.u. of the cutoff radius gives a trade-off betw
the computational accuracy and efficiency for all the alkal
earth elements. The inclusion of polarizationd oribtals is
essential for the convergence in CaO, while thed orbitals do
not play an important role in the energy and geometri
convergences of BeO and MgO. This is because the 3d state
of a calcium atom exists near the valence 4s state. Therefore,
the 3d orbitals of CaO considerably contribute ins and p
KS orbitals. In fact, the LCAO coefficient of thedxy orbital
with a nodeless radial function of the calcium atom is ab
0.3 in the occupiedp orbital of the monoxide molecule
alongx axis, in which Ca7.0-s2p2d2 andO5.0-s2p2 were
used as the basis orbitals. In Table II gives the electro
configurations for the ground state of the alkaline elem
dimers and the monoxide molecules of alkaline earth e
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TABLE II. The electronic configuration of the ground state predicted by our calculations within LS
The calculations were performed using experimental bond lengths, and the spin multiplicity are eva
from the difference in Mulliken charges of up and down spins. The experimental ground states are also
for comparison. The basis orbitals we used in these calculations are given in our basis specifica
parentheses. For the oxygen and hydrogen atoms in all the monoxides and the monohydrides, O5.0-s2p2 and
H4.5-s2 were used, respectively. For the energy cutoff we used the same values as those given in Fig
The electronic configurations determined experimentally are taken from the references listed below. F2,
the experiments74 suggest the existence of a ground state withV50g

1 or 0u
2 , which would be a mixture of

3Sg
2 and 1Sg

1(0g
2) or 3Su

1 and 1Su
2(0u

2).

Dimer Expt. Calc.

H2 ~H4.5-s2! 1Sg
1 a 1Sg

1 (1ssg
2)

He2 ~He7.0-s2! 1Sg
1 b 1Sg

1 (1ssg
21ssu

2)
Li 2 ~Li8.0-s2! 1Sg

1 c 1Sg
1 (2ssg

2)
BeO ~Be6.0-s2p2! 1S1 d 1S1 (ss2ss2pp4)
B2 ~B5.5-s2p2! 3Sg

2 e 3Sg
2 (2ssg

22ssu
22pu

2)
C2 ~C5.0-s2p2! 1Sg

1 f 1Sg
1 (2ssg

22ssu
22ppu

4)
N2 ~N5.0-s2p2! 1Sg

1 f 1Sg
1 (2ssu

22ppu
42psg

2)
O2 ~O5.0-s2p2! 3Sg

2 f 3Sg
2 (2psg

22ppu
42ppg

2)
F2 ~F5.0-s2p2! 1Sg

1 f 1Sg
1 (2psg

22ppu
42ppg

4)
Ne2 ~Ne7.0-s2p2! 1Sg

1 g 1Sg
1 (2ppu

42ppg
42psu

2)
Na2 ~Na9.0-s2p2! 1Sg

1 f 1Sg
1 (2ppg

42psu
23ssg

2)
MgO ~Mg7.0-s2p2! 1S1 h 1S1 (ss2ss2pp4)
Al2 ~Al6.5-s2p2! 3Pu

i 3Sg
2 (3ssg

23ssu
23ppu

2)
Al2 ~Al6.5-s4p4d2! 3Pu

i 3Sg
2 (3ssg

23ssu
23ppu

2)
Si2 ~Si6.5-s2p2! 3Sg

2 f 3Pu (3ssu
23ssg

13ppu
3)

Si2 ~Si6.5-s2p2d1! 3Sg
2 f 3Sg

2 (3ssu
23ppu

23ssg
2)

P2 ~P6.0-s2p2d1! 1Sg
1 f 1Sg

1 (3ssu
23psg

23ppu
4)

S2 ~S6.0-s2p2! 3Sg
2 f 3Sg

2 (3psg
23ppu

43ppg
2)

Cl2 ~Cl6.0-s2p2d2! 1Sg
1 f 1Sg

1 (3psg
23ppu

43ppg
4)

Ar2 ~Ar7.0-s2p2! 1Sg
1 j 1Sg

1 (3ppu
43ppg

43psu
2)

K2 ~K10.0-s2p2! 1Sg
1 f 1Sg

1 (3ppg
43psu

24ssg
2)

CaO ~Ca7.0-s2p2d2! 1S1 k 1S1 (ss2ss2pp4)
ScO ~Sc7.0-s2p2d2! 2S1 l 2S1 (dp4ss2ss1)
Ti2 ~Ti7.0-s2p2d2! 3Dg

m 3Dg (4ssg
23dsg

13dpu
43ddg

1)
V2 ~V7.5-s2p2d2! 3Sg

2 n 1Sg
1 (4ssg

23dsg
23dpu

43ddg
2)

V2 ~V7.5-s4p4d4f 2! 3Sg
2 n 3Sg

2 (4ssg
23dsg

23dpu
43ddg

2)
Cr2 ~Cr7.0-s2p2d2! 1Sg

1 o 1Sg
1 (4ssg

23dsg
23dpu

43ddg
4)

MnO ~Mn7.0-s2p2d2! 6S1 p 6S1 (ds1dp4dd2dp* 2)
Fe2 ~Fe7.0-s2p2d2! 7Du

q 7Du (4ssg
23dsg

23dsu
13dpu

43dpg
23ddg

33ddu
2)

Co2 ~Co7.0-s2p2d2! 5Dg (4ssg
23dsg

23dsu
13dpu

43dpg
23ddg

43ddu
3)

Ni2 ~Ni7.0-s2p2d2! V r 3Sg
2 (4ssg

23dsg
23dsu

23dpu
43dpg

23ddg
43ddu

4)
Cu2 ~Cu7.0-s2p2d2! 1Sg

1 s 1Sg
1 (4ssg

23dsg
23dsu

23dpu
43dpg

43ddg
43ddu

4)
ZnH ~Zn7.0-s2p2d2! 2Sg

1 t 2Sg
1 (ss2ss* 1ds2dp4dd4)

GaH ~Ga7.0-s2p2! 1S1 u 1S1 (ss2ss* 2)
GeO ~Ge7.0-s2p2! 1S1 f 1S1 (sss2sps2ppp4pps2)
As2 ~As7.0-s2p2d1! 1Sg

1 f 1Sg
1 (4ssg

24ssu
24psg

24ppu
4)

Se2 ~Se7.0-s2p2d1! 3Sg
2 f 3Sg

2 (4ssg
24ssu

24psg
24ppu

44ppg
2)

Br2 ~Br7.0-s2p2d1! 1Sg
1 f 1Sg

1 (4ssg
24ssu

24psg
24ppu

44ppg
4)

Kr2 ~Kr7.0-s2p2! 1Sg
1 v 1Sg

1 (4ssg
24ssu

24psg
24psu

24ppu
44ppg

4)

aReference 34.
bReference 35.
cReference 36.
dReference 37.
eReference 38.
fReference 51.
gReference 39.
hReference 40.
iReference 41.
jReference 42.
kReference 43.

lReference 44.
mReference 53.
nReference 73.
oReference 45.
pReference 46.
qReference 47.
rReference 74.
sReference 48.
tReference 49.
uReference 50.
vReference 52.
195113-11
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TABLE III. The calculated equilibrium bond lengths which a
calculated using the orbitals with the largest cutoff radius and
greatest number of orbitals for each dimer in Figs. 2–7. The exp
mental bond lengths and the other theoretical values are also sh
for comparison, which are taken from the references listed be
For a substantial comparison between our calculations and the
theoretical results, the other calculations based on pseudopote
and LSDA are listed. In case of the lack of calculations at the sa
level, computational results performed with the other context
listed, of which method is denoted in parentheses in this captio

Expt. Present Other

H2 0.741a 0.768 0.766b

He2 2.97c 2.417 2.397d

Li2 2.673a 2.748 2.699b

BeO 1.331a 1.339 1.319e

B2 1.590a 1.603
C2 1.243a 1.255 1.249f

N2 1.098a 1.104 1.094b

O2 1.208a 1.201 1.197g

F2 1.412a 1.435 1.388b

Ne2 3.09c 2.692 2.641d

Na2 3.079a 3.140 3.048b

MgO 1.749a 1.770 1.76h

Al2 2.650i 2.710 2.73j

Si2 2.246a 2.281 2.280k

P2 1.893a 1.926 1.877b

S2 1.889a 1.936 1.942l

Cl2 1.987a 1.946 1.971b

Ar2 3.76c 3.425 3.42d

K2 3.905a 3.620 3.670b

CaO 1.822a 1.768 1.79h

ScO 1.668a 1.719 1.649b

Ti2 1.942m 1.957 -
V2 1.77n 1.801 1.802o

Cr2 1.679p 1.643 1.632q

MnO 1.648r 1.673 1.585b

Fe2 2.02s 2.076 1.963t

Co2 - 2.033 1.93u

Ni2 2.155v 2.074 2.037w

Cu2 2.220a 2.249 2.170w

ZnH 1.595a 1.574 1.593b

GaH 1.663a 1.650 1.681b

GeO 1.625a 1.563 1.593b

As2 2.103a 2.066 2.070b

Se2 2.166a 2.150 2.164b

Br2 2.281a 2.257 2.273b

Kr2 3.951c 3.705 3.715d

aReference 51.
bReference 60.
cReference 52.
dReference 76.
eReference 61

~B3LYP!.
fReference 62

~APW!.
gReference 21.
hReference 63.
iReference 54.
jReference 72.
kReference 64.
lReference 65

~BLYP!.
mReference 53.

nReference 55.
oReference 66

~PW86-P86!.
pReference 56.
qReference 67

~PW91!.
rReference 57.
sReference 58.
tReference 69.
uReference 70.
vReference 59.
wReference 71.
19511
ments. The calculated electronic configurations for
ground state are wholly consistent with those determined
perimentally. Also, we find in Table III that the calculate
equilibrium bond lengths are comparable to both the exp
mental and the other theoretical values for the alkaline e
ment dimers and the monoxide molecules of alkaline ea
elements. These results support that our primitive basis
bitals give a complete basis set even for the alkaline
alkaline earth elements, while the cutoff radius required
the convergence is larger than those of representative
transition elements.

D. Rare-gas elements

It has been reported that local-density approximat
~LDA ! and GGA fail to predict the equilibrium bond length
and the dissociation energies of dimer molecules consis
of rare-gas elements weakly binding by Van der Wa
interactions.76 However, our attention in this study is t
know the convergence properties with respect to basis o
als. Therefore, we investigated homonuclear diatomic m
ecules of rare-gas elements, He, Ne, Ar, and Kr within LD
and compared the calculated equilibrium bond lengths w
the other theoretical values calculated by LDA. The dissoc
tion energies of the rare-gas dimers are significantly sm
unlike dimers of representative and transition elemen
Therefore, we had to use higher cutoff energies, which
262, 343, 290, and 290~Ry! for He2 , Ne2 , Ar2, and Kr2, for
the numerical integration and the Poisson’s equation so
the computations are not buried in numerical errors. It see
that the convergence in the total energy of rare-gas dim
depends on only the cutoff radius of primitive orbitals. F
all the rare-gas dimers 7.0 a.u. of the cutoff radius
enough to accomplish a sufficient convergence. On the o
hand, the calculated equilibrium bond lengths have a dep
dency on the number of orbitals, especially in Ar2 and Kr2,
however, the double valence with single polarization orbit
provide almost convergence results even for Ar2 and Kr2. In
Table III we see that the calculated equilibrium bond leng
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FIG. 8. The pseudoradial wave functions of 4s orbital in potas-
sium, iron, and bromine atoms, which are generated by the
scheme. For ease of comparison, the 3s semicore state of potassium
atom was excluded in the pseudopotential generation to make
4s orbital nodeless, while the 3s semicore state was considered
Table I. For iron and bromine atoms, the pseudowave functi
were calculated under the same conditions as shown in Table
3-12
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NUMERICAL ATOMIC BASIS ORBITALS FROM H TO Kr PHYSICAL REVIEW B69, 195113 ~2004!
are comparable to the other theoretical values calculate
all electron calculations within LDA. In addition, the calcu
lated electronic configurations for the ground states are c
sistent with those reported experimentally. Thus, our pri
tive orbitals could be a systematic basis set for rare-
dimers as well as representative, transition, and alkaline
alkaline earth elements, while the Van der Waals interacti
in the rare-gas dimers are not correctly taken into accoun
LDA calculations.

E. Bulks

For selected bulk systems, we investigated the con
gence properties of total energy, lattice constant, bulk mo
lus, and magnetic moment with respect to basis orbitals
shown in Fig. 9. The bulk modulus was calculated by a lea
square fitting of the total-energy curve to Murnaghan’s eq
tion of state.77 The magnetic moment in the bcc iron a
evaluated from the difference in Mulliken charges of up a
down spins. In the graphite carbon, the lattice constan
only theab plane was varied with a lattice constant of thec
axis fixed at the experimental value. For all bulk systems
same systematic convergence as that for dimer molecul
achieved as the cutoff radius and the number of primit
orbitals increase. When the shorter cutoff radius of primit
orbitals was used, the calculated lattice constant~bulk modu-
lus! tends to be shorter~greater! than the experimental val
ues. As the cutoff radius increases, these calculated va
converge at experimental values within an error of a f
percentages. For carbon in the diamond and graphite, 4.0
4.5 a.u. of the cutoff radius might be regarded as a trad
between the computational accuracy and efficiency, res
tively. The comparison in an appropriate cutoff radius
various systems suggests that the coordination numbe
each atom is an important factor which determines an
equate value of the cutoff radius. Our rough estimations
an appropriate cutoff radius are 5.0, 4.5, and 4.0 a.u. for
carbon dimer C2, the graphite carbon, and the diamond c
bon of which the coordination numbers are one, three,
four. Thus, an appropriate cutoff radius could be in inve
proportion to the coordination numbers. This observation
also confirmed in a comparison of the convergence with
spect to a cutoff radius for iron, an iron dimer Fe2 and the
bcc iron. In the bcc iron, we can obtain almost converg
results using 4.5 a.u. of the cutoff radius, while 7.0 a.u
needed to obtain the convergence in Fe2.

Here, it must be stressed that the calculation of the
iron illustrates a limitation in applicability of LCAO method
We found that it was difficult to perform reliable calculation
of the bcc iron using Fe4.5-s3p3d3 or more. In particular,
we were unable to perform meaningful calculations due
numerical errors for the bcc iron with a shorter lattice para
eter. The problem comes from the overcompleteness of b
orbitals. In the bcc iron with a shorter lattice parameter a
the use of a longer cutoff radius of basis orbitals, eigenval
of the overlap matrix can be negative, which means that
basis orbitals are not linearly independent. A remedy in t
case is to reduce matrices by removing eigenvectors co
sponding to the negative eigenvalues. However, the eigen
19511
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ues of the overlap matrix in bulk systems distribute contin
ously as a function of energy, thus, many ill-condition
eigenvalues, which are positive but almost zero, appea
the eigenvalue spectrum. The division by the ill-condition
eigenvalues brings about the numerical instability we met
basis orbitals with a larger cutoff radius is used for a de
system with atoms of large coordination numbers, a sm
number of optimized orbitals should be used to avoid
numerical instabilities.

IV. VARIATIONAL OPTIMIZATION

In this section, we present a simple and practical meth
for variationally optimizing numerical basis orbitals of ea
atom located on different environments in a given system17

Starting from the primitive basis orbitals discussed in t
Sec. II, the shape of radial wave functions of each atom
variationally optimized within a given cutoff radius so th
the total energy is minimized based on the force theore
The orbital optimization scheme promises us to reduce
computational cost, while keeping a high degree of accura
Although the primitive radial wave functionRipl8 , the eigen-
state of atomic KS equation with a confinement potent
was used as radial basis orbitalRipl of the KS orbital in a
form of LCAO in Sec. II, here, we reconsider a differe
expression forRipl and thusf ia . To give a variational de-
gree of freedom off ia , we furthermore expandf ia using
primitive orbitalsx ih([YlmRiql8 ) as follows:

f ia~r !5(
q

aiplmqYlmRiql8 5(
q

aiaqx ih~r !, ~3!

whereh[(qlm), in which the indicesl and m denote the
same as those of the indexa. Note that a primitive radial
wave functionRiql8 is independent onm, and that the coeffi-
cientsaiaq are independent variables on the eigenstatem, but
could depend on a magnetic quantum numberm. Therefore,
we prefer the expression~3!, which is expanded by a linea
combination ofx ih , rather than a expansion by the primitiv
radial functionRipl8 itself. The expression~3! is similar to a
contraction used in quantum chemistry based on Gaus
orbitals, in which basis orbitals are expanded by a lin
combination of several Gaussian orbitals. Therefore, the
sis orbital by the expression Eq.~3! will be referred to as
contracted orbital or optimized orbital. For the later discu
sion, we moreover extend the abbreviation introduced in S
II to the contracted orbital by Eq.~3! as C4.5-s62* p62,
where C indicates the atomic symbol, 4.5 is the cutoff rad
r c ~a.u.! used in the generation as well as discussed in Sec
s62 means that two optimized orbitals are constructed fr
six primitive orbitals for thes orbital, and the symbol*
signifies the restricted optimization that the radial wave fu
tion R is independent on the indexm, while R can differently
vary for the indexm in the unrestricted optimization~non-
symbol!. In case ofsnn such ass66, corresponding to no
optimization,snn can be simplified assn, which is equiva-
lent to the abbreviation introduced in Sec. II.

The contraction coefficientsaiaq can be easily optimized
by the two-step optimization scheme. The details of the tw
3-13
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FIG. 9. The total energy, equilibrium lattice constant, bulk modulus, and magnetic moment of carbon and silicon in the diamond,
arsenide in the zinc blend, carbon in the graphite, and the bcc iron as a function of the number of primitive basis orbitals per
different cutoff radii, in which the energy cutoff of 168, 120, 120, 156, and 170~Ry! were used for the numerical integration and the solut
of Poisson’s equation, respectively. The bulk modulus was calculated by a least square fitting of the total energy curve to Mur
equation of state. The magnetic moment in the bcc iron are evaluated from the difference in Mulliken charges of up and down spi
graphite carbon, the lattice constant of only theab plane was varied with a lattice constant of thec axis fixed at the experimental value. Th
lack of datum calculated using Fe4.5-s3p3d3or more in Figs. 9~l!–9~o! is due to the overcompleteness of basis orbitals as discusse
context.
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m-
step optimization scheme has been already describe
elsewhere.17 In this two-step optimization scheme, th
atomic orbitals are optimized variationally in the same tw
step procedure as that of the geometry optimization in te
19511
in

-
s

of aiaq instead of atomic positions. The radial parts of ba
orbitals in each atom located on different environment
automatically varied so that the total energy is minimize
which is a quite important advantage of our scheme co
3-14
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FIG. 10. The total energy for a carbon dimer C2, a methane molecule CH4, carbon and silicon in the diamond structure, an etha
molecule C2H6, and a hexafluoro ethane molecule C2F6 as a function of the number of primitive and optimized orbitals. The total energy
the number of orbitals are defined as those per atom for C2, carbon and silicon in the diamond, and as those per molecule for CH4 , C2H6,
and C2F6. The energy cutoff of 113, 113, 222, 120, 120, and 120~Ry! were used for the numerical integration in C2 , CH4, carbon and silicon
in the diamond structure, C2H6, and C2F6, respectively. The two step convergence of C2 is due to the inclusion of polarizationd orbitals,
where the basis specification was C4.5-smpmdnand C4.5-s6mp6md6n for the primitive and optimized orbitals, respectively. In the oth
system, only the valences andp orbitals were used, where the basis specifications are as follows: in CH4 H4.0-sm, C4.5-smpm, and H4.0-
s6m, C4.5-s6mp6m for the primitive and optimized orbitals, respectively, in carbon in the diamond C4.5-smpmand C4.5-s5mp5m for the
primitive and optimized orbitals, respectively, in silicon in the diamond Si6.5-smpmand Si6.5-s5mp5m for the primitive and optimized
orbitals, respectively, in C2H6 H4.5-sm, C5.0-smpm, and H4.5-s5m, C5.0-s6mp6m for the primitive and optimized orbitals, respectively,
C2F6 C5.0-smpm, F5.0-smpm, and C5.0-s5mp5m, C5.0-s5mp5m for the primitive and optimized orbitals, respectively.
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pared to the other optimization method.12,13 In the later part
of this section, we demonstrate capability of our meth
based on numerical results. Figure 10 shows the converg
properties of total energies for a carbon dimer C2, a methane
molecule CH4, carbon and silicon in the diamond structur
an ethane molecule, and a hexafluoro ethane molecule
function of the number of primitive and optimized orbital
The orbital optimization was done by ten iterative steps
cording to Eq.~6! in Ref. 17, in which each step includes te
self-consistent-field results~SCF! loops on the average. W
see that the unoptimized orbitals provide systematic con
gent results for not only molecules, but also bulk systems
the number of orbitals increase as discussed in Sec. II. M
over, remarkable convergent results are obtained using
optimized orbitals for all systems. The small set of optimiz
orbitals rapidly converge to the total energies calculated b
larger number of the primitive orbitals, which implies th
the computational effort can be reduced significantly with
high degree of accuracy. Only the restricted contraction w
investigated in this study, since we found in the previo
study that the unrestricted optimization is not effective
minimize the total energy.17 Also, the restricted optimization
guarantees the rotational invariance of the total ene
19511
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Therefore, our study was limited within the restricted op
mization. In Fig. 11 the radial parts of the minimal orbita
obtained by the restricted optimization for C2H6 and C2F6
are shown with those of the lowest primitive orbitals of
carbon atom for comparison. It is observed that the tails
both the optimizeds and p orbitals shrink compared to th
primitive orbitals in C2H6 and C2F6. In addition, we find that
the p orbitals of the carbon atom in C2F6 more shorten than
that of C2H6. The considerable shortening tail of thep or-
bital is related to change in the effective charge of carb
atom. Decomposed Mulliken populations of the carbon at
are 1.05 and 2.67 in C2H6, and 0.86 and 2.00 in C2F6 for s
andp orbitals, respectively. So, we see that the deviation
thep orbital is larger than that for thes orbital in a compari-
son of the decomposed Mulliken population. Therefore,
large shortening tail ofp orbital in C2F6 is due to increase o
effective core potential forp electrons. The comparison be
tween C2H6 and C2F6 clearly reveals that the shape of th
basis orbital can automatically vary within the cutoff radi
in order to respond to the change of the environment of e
atom, while minimizing the total energy.

Finally, as illustrations of the orbital optimization, w
demonstrate two examples: the geometry optimizat
3-15
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coupled with the orbital optimization of a C60 molecule and
the preorbital optimization for a set of amino acid residue

First, we performed the geometry optimization with t
orbital optimization as a preconditioning for a C60 molecule.
Before doing the geometry optimization, the orbital optim
zation was performed by ten iterative steps, which inclu
ten SCF loops per step on the average. Then, the geom
optimization was done using the optimized orbitals by fi
steepest descent~SD! steps with a variable prefactor for ac
celerating the convergence, which includes 14 SCF loops
step on the average. The optimized geometrical parame
are given in Table IV together with the total energy and
computational time per MD step. In case of the unoptimiz
primitive orbitals SN, TN, and TNDP, as the number of o
bitals increase, we find the decrease of the total energy
the convergent geometrical parameters comparable to the
perimental and the other theoretical values. Comparing to
unoptimized primitive and optimized minimal orbitals S
and SN8, it is found that the geometrical parameters calc
lated using SN8 are significantly improved without increas
ing the computational time. In case of the optimized orbit

FIG. 11. The radial wave function of the minimal orbitals of th
carbon atom obtained by the restricted orbital optimization for
ethane molecule C2H6 and a hexafluoro ethane molecule C2F6, and
the lowest primitive orbitals of a carbon atom. The optimizati
was done in the same conditions as those in Fig. 10.
19511
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SNP8, a complete convergence, which is comparable
TNDP, is achieved in the geometrical parameters with a g
reduction of the computational time. The comptutional tim
required for the orbital optimization of SN8 occupies only
4% of that of the whole calculation. So the orbital optimiz
tion can be utilized as a preconditioning before doing
geometry optimization or the molecular dynamics.
course, it is possible to perform the orbital optimization d
ing the geometry optimization for further accuracy. It
worth mentioning that the orbital optimization can be co
bined with an O(N) method,6–11 since only energy density
and density matrices, which are calculated by the O(N)
method, are required in Eq.~5! in Ref. 17. Therefore, the
orbital optimization can be applied to large scale system
O(N) operations.

Second, we show that it is significantly effective for th
realization of a high degree of accuracy and efficiency
construct a database of optimized orbitals for a spec
group such as proteins. Proteins are constructed from tw
kinds of amino acid residues. So, we categorized atom
the residues as eleven, eighteen, four, three, and two kind
hydrogen, carbon, nitrogen, oxygen, and sulfur atoms fro
chemical point of view in consideration of chemical enviro
ment and connectivity. To construct a database of optimi
orbitals for the categorized atoms, the structures of trip
tides, Gly-X-Gly, are considered for the orbital optimizatio
where X could be one of 20 kinds of amino acid residu
The structure of a Gly-X-Gly was optimized by a molecul
mechanics ~MM ! using a software TINKER ~Ref. 84!
with an AMBER98 force field ~Ref. 85! before the orbital op-
timization. Then, for the optimized Gly-X-Gly the restricte
orbital optimization was performed by ten iterativ
steps with nine SCF loops per step on the average
which LDA was employed to exchange-correlatio
interaction and the cutoff energy of 130 Ry was used
numerical integration and the solution of Poisson’s eq
tion. In a series of optimizations, the basis specificatio
were given as H4.5-s52* p51* , C5.0-s52* p52* d51* ,
N4.5-s52* p52* d51* , O4.5-s52* p52* d51* , and
S6.0-s52* p52* d51* . Because of the basis specification
the orbitals stored in the database are well optimized for
use of double valence plus polarization orbitals. Howev
the basis sets maybe provide a better performance even
the other specifications of basis sets compared to the orig

n

red
he
TABLE IV. Optimized geometrical parameters~Å and degrees! of a C60 molecule. The computational time per MD step was measu
using one Pentium 4 processor~2.8 GHz!. The energy cutoff of 108~Ry! was used for the numerical integration in all calculations. T
results by the other theory were taken from Ref. 82, and the experimental values from Ref. 83.

SN TN TNDP SN8 SNP8
C4.5-s1p1 C4.5-s3p3 C4.5-s3p3d2 C4.5-s31* p31* C4.5-s31* p31* d21* Other theory Expt.

r (CvC) 1.439 1.391 1.393 1.395 1.393 1.39–1.41 1.40
r (CuC) 1.489 1.455 1.448 1.452 1.447 1.44–1.45 1.45
/(CuCuC) 108.0 108.0 108.0 108.0 108.0 108.0
/(CvCuC) 120.0 120.0 120.0 120.0 120.0 120.0
Energy~hartree! 2333.729 2336.432 2336.939 2335.513 2336.233
Time~s!/MD step 168 403 1680 191 339
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TABLE V. The total energy~Hartree! of small polypeptides, Met-enkephalin~YGGFM!,86 valorphin
~VVYPWTQ!,87 dynorphin A~YGGFLRRIRPKLKWDNQ!,88 calculated using unoptimized primitive orbit
als and the optimized orbitals stored in the database of basis orbitals for proteins, where the prim
quences of the polypeptides are shown in parentheses. The cutoff energy of 100~Ry! was used for numerica
integration and the solution of Poisson’s equation. The specifications of the used basis orbitals are H4.s2p1,
C5.0-s2p2d1, N4.5-s2p2d1, O4.5-s2p2d1, and S6.0-s2p2d1. For the optimized orbitals the same speci
cations as the primitive basis set were used. The geometrical structures of the small polypeptides ar
ated by a simulated annealing method using a softwareTINKER84 with an AMBER98 force field85 to apply the
optimized orbitals to an arbitrary structural conformation. The number of residues and atoms are als
just for reference.

Residues Atoms Primitive~hartree! Optimized~hartree!

Met-enkephalin 5 75 2341.1740 2341.6071
Valorphin 7 125 2544.0666 2544.7536
Dynorphin A 17 312 21313.6671 21316.6620
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primitive basis sets, when the basis sets are used for ca
lations of proteins. Following the construction of the da
base, we performed SCF calculations of small polypepti
to investigate the transferability of the optimized orbitals
proteins. In Table V shows total energies of small polype
tides, Met-enkephalin,86 valorphin,87 and dynorphin A,88 cal-
culated using unoptimized primitive orbitals and the op
mized orbitals stored in the database, where the geomet
structures of the small polypeptides are generated by a s
lated annealing method using a softwareTINKER ~Ref. 84!
with anAMBER98 force field~Ref. 85! to apply the optimized
orbitals to an arbitrary structural conformation. We see tha
set of the basis orbitals optimized for proteins give a low
energy than the primitive orbitals in all the polypeptide
which shows that the optimized orbitals well span the oc
pied states of proteins beyond the primitive orbitals. T
illustrates that the database construction for a specific sys
promises us a substantial improvement in the basis con
gence, while keeping the same computational efforts as
of the primitive orbitals. The details of the database constr
tion for proteins will be presented elsewhere.

V. CONCLUSIONS

To conclude, we have presented the first systematic s
for numerical atomic basis orbitals ranging from H to K
Our primitive orbitals as a basis set are eigenstates, inclu
excited states, of an atomic Kohn-Sham equation with a c
finement pseudopotential in a semilocal form for each an
lar momentum quantum numberl. The scheme has been di
cussed for generating the systematic basis orbitals i
numerical stable way. The comprehensive investigation
convergence properties shows that our primitive basis or
als could be one of practical solutions as a systematic b
set in large scale DFT calculations for a wide variety
systems. Using the primitive orbitals, the computational
curacy and efficiency are systematically controlled by t
simple parameters: the cutoff radius and the number of
bitals per atom. As the cutoff radius and the number of prim
tive orbitals increase, the total energy and the physical qu
tities converge systematically. The convergence propertie
total energy and equilibrium bond length for dimer mo
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ecules with respect to basis orbitals provide a pract
guideline in an optimum choice of a cutoff radius, the nu
ber and the maximum angular momentum of basis orbi
for each element. In addition, our widespread study sho
limitations of the LCAO method to metallic systems an
dense structures with a large coordination number. In a
line and alkaline earth elements, valence orbitals tend
have a longer tail, which makes applications of the LCA
method to the systems difficult due to increase of compu
tional costs. In dense structures such as bcc, fcc, and hcp
primitive basis orbitals often become overcomplete. Ow
to the overcompleteness, we have difficulty in the system
improvement of basis orbitals for systems with a dense st
ture. Therefore, careful treatments are required in the ap
cations of LCAO method to a such kind of systems. In sp
of the difficulty, we believe that the primitive orbitals can b
a systematic basis set in a wide variety of materials, es
cially for highly covalent systems such as organic molecu

Furthermore, we have developed a simple and pract
method, based on the force theorem, for variationally o
mizing the radial shape of numerical atomic orbitals. T
optimization algorithm similar to the geometry optimizatio
allows us to fully optimize atomic orbitals within a cuto
radius for each atom in a given system. The optimized or
als well reproduce convergent results calculated by a la
number of primitive orbitals. The comparison between C2H6
and C2F6 demonstrates that the basis orbital can autom
cally vary within the cutoff radius in order to respond to th
change of the environment of each atom, while minimizi
the total energy. As practical applications of the orbital op
mization, we have demonstrated two examples: the geom
optimization coupled with the orbital optimization of a C60
molecule and the preorbital optimization for a set of ami
acid residues. The former shows that the small set of o
mized orbitals promises to greatly reduce the computatio
effort with a high degree of accuracy. The latter demonstra
that it is significantly effective for the realization of a hig
degree of accuracy and efficiency to construct a databas
optimized orbitals for a specific group such as proteins. T
scheme also could be a remedy for the problem of the o
completeness. Thus, we conclude that the optimized orb
are well suited for large scale DFT calculations.
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