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A general method is presented to calculate absolute binding energies of core levels in metals and
insulators, based on a penalty functional and an exact Coulomb cutoff method in the framework of density
functional theory. The spurious interaction of core holes between supercells is avoided by the exact
Coulomb cutoff method, while the variational penalty functional enables us to treat multiple splittings due
to chemical shift, spin-orbit coupling, and exchange interaction on equal footing, both of which are not
accessible by previous methods. It is demonstrated that the absolute binding energies of core levels for both
metals and insulators are calculated by the proposed method in a mean absolute (relative) error of 0.4 eV
(0.16%) for eight cases compared to experimental values measured with x-ray photoemission spectroscopy
within a generalized gradient approximation to the exchange-correlation functional.
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Since the pioneering work of Siegbahn and co-workers
[1,2], x-ray photoelectron spectroscopy (XPS) has become
one of the most important and widely used techniques in
studying chemical composition and electronic states in the
vicinity of the surface of materials [3]. Modern advances
combined with synchrotron radiation further extend its
usefulness to enable a wide variety of analyses such as core
level vibrational fine structure [4], magnetic circular
dichroism [5], spin-resolved XPS [6], and photoelectron
holography [7]. The basic physics behind the still advanc-
ing XPS measurements dates back to the first interpretation
for the photoelectric effect by Einstein [8]. An incident
x-ray photon excites a core electron in a bulk, and the
excited electron with a kinetic energy is emitted from the
surface to vacuum. The binding energy of the core level in
the bulk can be obtained by measuring the kinetic energy
[1,2]. Theoretically, the calculation of the binding energy
involving evaluation of the total energies for the initial and
final states is still a challenging issue especially for
insulators, since after the emission of the photoelectron
the system is not periodic anymore and ionized due to the
creation of the core hole. The violation of the periodicity
hampers the use of conventional electronic structure meth-
ods under a periodic boundary condition, and the Coulomb
potential of the ionized bulk cannot be treated under an
assumption of the periodicity due to the Coulombic
divergence. One way to avoid the Coulombic divergence
is to neutralize the final state with a core hole by adding an
excess electron into conduction bands [9–13] or to approxi-
mate the bulk by a cluster model [14]. However, the charge
compensation may not occur in insulators because of the
short escape time of the photoelectron (∼10−16 sec) [15],
while the treatment might be justified for metals. Even if we
employ the charge compensation scheme, the screened core
hole pseudopotential which has been widely used in
pseudopotential methods allows us to calculate only the
chemical shift of binding energies, but not the absolute

values [9]. In spite of the long history of XPS and its
importance in materials science, a general method has not
been developed so far to calculate the absolute binding
energies for both insulators and metals, including multiple
splittings due to chemical shift, spin-orbit coupling, and
exchange interaction, on equal footing [16]. In this Letter
we propose a general method to calculate absolute binding
energies of core levels in metals and insulators, allowing
treatment of all the issues mentioned above and direct
comparison to experimental results, in a single framework
within the density functional theory (DFT) [19,20].
Let us start by defining the absolute binding energy Eb of

core electrons in bulks measured by a XPS experiment,
based on the energy conservation. The energy of the initial
state is given by the sum of the total energy EiðNÞ of the
ground state of N electrons and an energy hν of a
monochromatic x-ray photon. On the other hand, the
energy of the final state is contributed by the total energy
EfðN − 1Þ of the excited state of N − 1 electrons with a
core hole and the kinetic energy Kspec of photoelectron
placed at the vacuum level Vspec, as shown in Fig. 1.
Therefore, the energy conservation in the XPS measure-
ment is expressed by

EiðNÞ þ hν ¼ EfðN − 1Þ þ Vspec þ Kspec: ð1Þ
Noting that the chemical potential of the sample is aligned
with that of the spectrometer μ by Ohmic contact, and that
the vacuum level of the spectrometer Vspec is given by
Vspec ¼ μþ φspec using the work function of the spectrom-
eter φspec, Eq. (1) reads as

hν − Kspec − φspec ¼ EfðN − 1Þ − EiðNÞ þ μ: ð2Þ

The left-hand side of Eq. (2) is the binding energy EðbulkÞ
b

measured by the XPS experiment [21]. The right-hand side
of Eq. (2) provides a useful expression to calculate the
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absolute binding energy EðbulkÞ
b for bulks regardless of the

band gap of materials. Instead of using the experimental
chemical potential μ, it is possible to rewrite the total
energies with the intrinsic chemical potential μ0, where
intrinsic means a state that is free from the control of
chemical potential, by noting that what the shift of the
chemical potential μ ¼ μ0 þ Δμ does is only the constant

shift of potential Δμ. Then, we rewrite them as EiðNÞ ¼
Eð0Þ
i ðNÞ þ NΔμ and EfðN−1Þ¼Eð0Þ

f ðN−1ÞþðN−1ÞΔμ
using the intrinsic total energies Eð0Þ

i ðNÞ and Eð0Þ
f ðN − 1Þ

by assuming the common chemical potential μ for both the
initial and final states due to a very large N. Inserting these
equations into Eq. (2) yields

EðbulkÞ
b ¼ Eð0Þ

f ðN − 1Þ − Eð0Þ
i ðNÞ þ μ0: ð3Þ

Equation (3) is an important consequence, since only
quantities that can be calculated from first principles are
involved. Thereby, we use Eq. (3) to calculate the absolute

binding energy EðbulkÞ
b . Note that the chemical potential μ0

is calculated by assuming the Fermi distribution at a finite
electronic temperature. It should be emphasized that Eq. (3)
is valid even for semiconductors and insulators. In an
arbitrary gapped system, the common chemical potential μ
is pinned at either the top of the valence band or the bottom
of the conduction band, or located in between them. For all
the possible cases, exactly the same discussion above is
valid. Thus, we conclude that Eq. (3) is a general formula to

calculate the absolute binding energy EðbulkÞ
b of solids.

Especially for metals, Eq. (3) can be further reorganized by
noting a rigorous relation derived with the Janak theorem

[23]: Eð0Þ
f ðN−1Þ−Eð0Þ

f ðNÞ¼ R
dn∂Eð0Þ

f =∂n¼−μ0, where
n is an occupation number of a one-particle eigenstate on
the Fermi surface, dn ¼ −ds=S is defined with the area of
the Fermi surface S and an infinitesimal area ds, and the

surface integration is performed over the Fermi surface. By
inserting the above equation into Eq. (3), we obtain the
following formula:

EðmetalÞ
b ¼ Eð0Þ

f ðNÞ − Eð0Þ
i ðNÞ; ð4Þ

which allows us to employ the total energy of the

neutralized final state Eð0Þ
f ðNÞ instead of that of the ionized

state. For metals, Eqs. (3) and (4) should result in an
equivalent binding energy in principle; however, the con-
vergence is different from each other as a function of the
system size, as shown later on.

Since Eð0Þ
i ðNÞ and μ0 in Eq. (3) can be calculated by a

conventional approach with the periodic boundary con-
dition, we now turn to discuss a method of calculating

Eð0Þ
f ðN − 1Þ in Eq. (3) based on the total energy calculation

including many-body effects. Core electrons for which a
core hole is created are explicitly included in the calcu-
lations to treat multiple splittings due to chemical shift,
spin-orbit coupling, and exchange interaction between core
and spin-polarized valence electrons, and to take account of
many-body screening effects. The creation of the core hole
can be realized by expressing the total energy of the final
state by the sum of a conventional total energy EDFT within
DFT and a penalty functional Epen as

Eð0Þ
f ðN − 1Þ ¼ EDFT þ Epen; ð5Þ

with the definition of Epen:

Epen ¼
1

VB

Z

B
dk3

X

μ

fðkÞμ hψ ðkÞ
μ jP̂jψ ðkÞ

μ i; ð6Þ

where
R
B dk

3 is the integration over the first Brillouin

zone whose volume is VB, f
ðkÞ
μ the Fermi function, and ψ ðkÞ

μ

the Kohn-Sham wave function of a two-component spinor.
In Eq. (6) the projector P̂ is defined with an angular
eigenfunction Φ of the Dirac equation under a spherical
potential and a radial eigenfunction R obtained by an
atomic DFT calculation for the Dirac equation as

P̂≡ jRΦM
J iΔhRΦM

J j; ð7Þ
with for J ¼ lþ 1

2
and M ¼ mþ 1

2
:

jΦM
J i¼

�
lþmþ1

2lþ1

�
1=2

jYm
l αiþ

�
l−m
2lþ1

�
1=2

jYmþ1
l βi; ð8Þ

and for J ¼ l − 1
2
and M ¼ m − 1

2
:

jΦM
J i¼

�
l−mþ1

2lþ1

�
1=2

jYm−1
l αi−

�
lþm
2lþ1

�
1=2

jYm
l βi; ð9Þ

whereY is a spherical harmonic function andα and β are spin
basis functions. The variational treatment of Eq. (5) with
respect to ψ leads to the following Kohn-Sham equation:

ν

ϕ ϕ

FIG. 1. Schematic energy diagram for a sample and a spec-
trometer in the XPS measurement.

PRL 118, 026401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 JANUARY 2017

026401-2



ðT̂ þ veff þ P̂Þjψ ðkÞ
μ i ¼ εðkÞμ jψ ðkÞ

μ i; ð10Þ

where T̂ is the kinetic operator and veff the conventional
Kohn-Sham effective potential originated from EDFT. If a
large number (100 Ry was used in this study) is assigned
for Δ in Eq. (7), the targeted core state ΦM

J specified by
the quantum numbers J and M is penalized through the
projector P̂ in Eq. (10), and becomes unoccupied, resulting
in the creation of a core hole for the targeted state. Since the
creation of the core hole is self-consistently performed, the
screening effects by both core and valence electrons, spin-
orbit coupling, and exchange interaction are naturally taken
into account in a single framework. It is also straightforward
to reduce the projector P̂ to the nonrelativistic treatment.
After the creation of the core hole, the final state has one

less electron, leading to charging of the system. In theperiodic
boundary condition, a charged system cannot be treated
in general because of the Coulombic divergence. The
neutralization of the final state may occur in a metal, and
theoretically such aneutralization canbe justified as shownby
Eq. (4). However, it is unlikely that such a charge compen-
sation takes place in an insulator during the escape time of the
photoelectron (∼10−16 sec) [15]. To overcome the difficulty,
we propose a general method of treating the charged state
based on an exact Coulomb cutoff method [24]. It is
considered that the created core hole is isolated in the sample,
resulting in violation of the periodicity of the system. The
isolation of the core hole can be treated by dividing the
charge density ρfðrÞ for the final state into a periodic part
ρiðrÞ and a nonperiodic part ΔρðrÞ½≡ρfðrÞ − ρiðrÞ�, which,
when integratedover the unit cell, is exactly−1,whereρiðrÞ is
the charge density for the initial state without the core hole.
Then, as shown in Fig. 2(a), the Hartree potential VHðrÞ in
the final state is given by

VHðrÞ ¼ VðPÞ
H ðrÞ þ VðNPÞ

H ðrÞ; ð11Þ

where VðPÞ
H ðrÞ is the periodic Hartree potential calculated

using the periodic part ρiðrÞ via a conventional method using
a fast Fourier transform for the Poisson equation.On the other

hand, the nonperiodicHartree potentialVðNPÞ
H ðrÞ is calculated

using ΔρðrÞ and an exact Coulomb cutoff method by

VðNPÞ
H ðrÞ ¼

X

G

~ΔρðGÞ~vðGÞeiG·r; ð12Þ

where ~ΔρðGÞ is the discrete Fourier transform of ΔρðrÞ and
~vðGÞ is given by ð4π=G2Þ½1 − cosðGRcÞ�, which is the
Fourier transform of a cutoff Coulomb potential with the
cutoff radius of Rc [24]. IfΔρðrÞ is localized within a sphere
of a radiusR, as shown in Fig. 2(b), the extent of theCoulomb
interaction is 2R at most in the sphere, which leads to
Rc ¼ 2R. In addition, a condition 4R < L should be satisfied
to avoid the spurious interaction between the core holes. In
practice, we set Rc ¼ 1

2
L, and investigate the convergence of

the binding energy as a function of L. With the treatment the
core hole is electrostatically isolated from the other periodic
images of the core hole even under the periodic boundary
condition.
We implemented the method in a DFT software package

OPENMX [25], which is based on norm-conserving relativ-
istic pseudopotentials [26,27] and pseudoatomic basis

(a)

(b)

FIG. 2. (a) Treatment of the Hartree potential in a system with a
core hole under the periodic boundary condition. (b) Configura-
tion to calculate the nonperiodic part of the Hartree potential
VðNPÞ
H by the exact Coulomb cutoff method for Δρ.
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FIG. 3. Calculated binding energies, relative to the most con-
verged value, of (a) gapped systems and (b) a semimetal (graphene)
and metals as a function of intercore hole distance. The reference
binding energies in (a) and (b) were calculated by Eqs. (3) and (4),
respectively, for the largest unit cell for each system.
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functions [28]. A generalized gradient approximation [29]
to the exchange-correlation functional and an electronic
temperature of 300 K were used. The details of the
implementation are given in the Supplemental Material
[30]. All the molecular and crystal structures used in the
study were taken from experimental ones. Figures 3(a) and
3(b) show relative binding energies of core levels in gapped
systems and metals including a semimetal (graphene),
respectively, as a function of intercore hole distance. For
the gapped systems the convergent results are obtained at
the intercore hole distance of ∼15, 20, and 27 Å for cubic
boron nitride (diamond), bulk NH3, and silicon, respec-
tively. This implies that the difference charge ΔρðrÞ
induced by the creation of the core hole is localized within
a sphere with a radius of R ¼ L=4, e.g.,∼7 Å for silicon. In
fact, the localization of ΔρðrÞ in silicon can be confirmed
by the distribution in real space and the radial distribution
of a spherically averaged Δρ, as shown in Figs. 4(a)
and 4(b). The deficiency of the electron around 0.3 Å
corresponding to the core hole in the 2p states is compen-
sated by an increase of electron density around 1 Å, which
is the screening on the same silicon atom for the core hole.
As a result of the short-range screening, the nonperiodic

Hartree potential VðNPÞ
H ðrÞ deviates largely from −1=r, as

shown in Fig. 4(c). In Fig. 3(a) it is also shown that the
binding energy of the bulk NH3 calculated with Eq. (4)
converges at a value which is larger than that with Eq. (3)
by 1.2 eV, implying that Eq. (4) cannot be applied to
gapped systems. On the other hand, for the metallic cases
we see that Eq. (4) provides a much faster convergence than
Eq. (3), and both Eqs. (3) and (4) seem to give a practically
equivalent binding energy, while the results calculated with
Eq. (3) for TiN and TiC do not reach the sufficient
convergence due to computational limitation [39].
Therefore, Eq. (4) is considered to be the choice for the
practical calculation of a metallic system because of the
faster convergence. By compiling the size of the unit cell
achieving the convergence into the number of atoms in the
unit cell, the use of a supercell including ∼500 and 64
atoms for gapped and metallic systems in three dimensions
might be a practical guideline for achieving a sufficient
convergence by using Eqs. (3) and (4), respectively. The
calculated values of binding energies are well compared
with the experimental absolute values as shown in Table I
for both the gapped and metallic systems, and the mean
absolute (relative) error is found to be 0.4 eV (0.16%) for
the eight cases. We see that the splitting due to spin-orbit
coupling in the silicon 2p states is well reproduced. In
addition, binding energies of a core level for gaseous
molecules are shown in the Supplemental Material [30],
where the mean absolute (relative) error is found to be
0.5 eV (0.22%) for the 23 cases.
In summary, we proposed a general method to calculate

absolute binding energies of core levels in metals and
insulators in the framework of DFT. The method is based
on a penalty functional and an exact Coulomb cutoff
method. The former allows us to calculate multiple split-
tings due to chemical shift, spin-orbit coupling, and
exchange interaction, while the latter enables us to treat
a charged system with a core hole under the periodic
boundary condition. It was also shown that especially for
metals Eq. (4) involving the neutralized final state is
equivalent to Eq. (3) involving the ionized final state,
and that Eq. (4) is computationally more efficient than
Eq. (3). The remarkable agreement with the absolute
binding energies measured in XPS demonstrates the

(a) (b)

(c)

FIG. 4. (a) Difference charge density Δρ in
silicon, induced by the creation of a core hole in
the 2p states, where the unit cell contains 1000
atoms and the intercore hole distance is
27.15 Å. (b) Radial distribution of 4πr2Δ̄ρ,
where Δ̄ρ is a spherically averaged Δρ. (c) Ra-
dial distribution of V̄ðNPÞ

H which is a spherically

averaged VðNPÞ
H .

TABLE I. Calculated binding energy of a core level in bulks.

Material State Calculation (eV) Experiment (eV)

Gapped system
c-BN N-1s 398.87 398.1a

Bulk NH3 N-1s 398.92 399.0b

Diamond C-1s 286.50 285.6c

Si Si-2p1=2 100.13 99.8a

Si Si-2p3=2 99.40 99.2a

Semimetal or metal
Graphene C-1s 284.23 284.4c

TiN N-1s 396.43 397.1d

TiC C-1s 281.43 281.5a

aRef. [40].
bRef. [41].
cRef. [42] (graphite).
dRef. [43].
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validity of the proposed method for a variety of materials.
For a better description of a case where an exchange
interaction plays a dominant role in the splitting, a good
approximation to the exchange-correlation functional
should be adopted and our method provides a natural
way to examine the resulting total energies, while a
possible error by the pseudopotentials and the dependency
of chemical potential on surface structures should also be
addressed in future work. Considering the importance of
the XPS measurement in materials researches, the proposed
method is anticipated to play an indispensable role in
quantitatively analyzing absolute binding energies of core
levels in solids.
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of new functional devices and high-performance materials
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