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Variationally optimized atomic orbitals for large-scale electronic structures
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A simple and practical method for variationally optimizing numerical atomic orbitals used in density func-
tional calculations is presented based on the force theorem. The derived equation provides the same procedure
for the optimization of atomic orbitals as that for the geometry optimization. The optimized orbitals well
reproduce convergent results calculated by a larger number of unoptimized orbitals. In addition, we demon-
strate that the optimized orbitals significantly reduce the computational effort in the geometry optimization,
while keeping a high degree of accuracy.
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I. INTRODUCTION

During the last decade, to extend the applicability of de
sity functional theories~DFT! to realistic large systems, grea
efforts have been made for developing O(N) methods of the
eigenvalue problem1–6 and for making efficient and accura
localized orbitals7–10 as a basis set being suitable for O(N)
methods. Among these studies, one of important and u
solved problems is how atomic orbitals as a basis set
constructed to maximize both the computational efficien
and accuracy. One expects that a basis set such as d
valence orbitals with polarized orbitals for valence electro
provides a way for balancing a relatively small compu
tional effort and a considerable degree of accuracy. Alo
this line, accurate basis sets were constructed in sev
ways.7–10. Kennyet al.constructed a basis set, so that atom
orbitals span the subspace defined by selected and occu
states of reference systems as much as possible.7 Junquera
et al. optimized the shape and cutoff radii of atomic orbita
for reference systems by using the downhill simpl
method.8 However, the transferability of these optimized o
bitals might be restricted to systems similar to the refere
systems used for the optimization in terms of atomic en
ronments and states such as the coordination number an
charge state. A more complete treatment is to optim
atomic orbitals of each atom located on different enviro
ments in a given system.10 In addition, the complete optimi
zation procedure should be simple and efficient practica
In this paper, to overcome the difficulty, we present a sim
and practical method, based on the force theorem, for va
tionally optimizing numerical atomic orbitals of each atom
a given system.

II. VARIATIONAL OPTIMIZATION

Let us expand a Kohn-Sham~KS! orbital cm of a given
system using numerical atomic orbitalsf ia in a form of
linear combination of atomic orbitals~LCAO!:

cm~r !5(
ia

cm,iaf ia~r2r i !, ~1!
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wherei is a site index,a[(plm) an organized orbital index
and f ia[YlmRiplm . For simplicity we consider only
nonspin-polarized systems and an non-Bloch expressio
the one-particle wave functions, but the extentions of
below description to spin-polarized systems and Bloch w
functions are straightforward. Note that a radial wave fun
tion Riplm depends on not only an angular momentum qu
tum numberl, but also a site indexi, a multiplicity indexp,
and a magnetic quantum numberm. To give a variational
degree of freedom off ia , we furthermore expandf ia using
primitive orbitalsx ih as follows:

f ia~r !5(
q

aiaqx ih~r !, ~2!

whereh[(qlm), in which the indicesl and m denote the
same as those of the indexa, andx ih[YlmRiql8 . Note that a
primitive radial wave functionRiql8 , which is discussed late
on, is independent onm, and that the coefficientsaiaq are
independent variables on the eigenstatem. Substituting Eq.
~2! into Eq. ~1!, we have

cm~r !5(
ia

(
q

cm,iaaiaqx ih~r2r i !. ~3!

Although the expansion of a KS orbital by Eq.~3! is linear-
ized for each variablecm,ia or aiaq , however, the primitive
orbitals x ih are expanded by the product of two variabl
cm,ia andaiaq in a nonlinearized form. Therefore, it is diffi
cult to directly find the minimum of the KS total energyEtot
for the ground state with respect tocm,ia andaiaq as a gen-
eralized eigenvalue problem which can be derived in
usual LCAO. To avoid the difficulty, here, we propose a tw
step optimization scheme, in which the coefficientsaiaq are
optimized aftercm,ia are determined with a set of fixedaiaq .
Considering]Etot /]cm,ia50 for the KS total energyEtot
with the orthonormalization relation̂cmucn&5dmn among
one-particle wave functionscm and fixed contraction coeffi-
cientsaiaq , we have a well-known KS matrix equation wit
respect to the coefficientcm,ia as follows:

(
j b

^f iauĤuf j b&cm, j b5«m(
j b

^f iauf j b&cm, j b , ~4!
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whereĤ is a KS Hamiltonian and«m is a KS eigenvalue of
the system. There is no restriction to solve Eq.~4! or to find
]Etot /]cm,ia50. So, we can use any solution method whi
could be an exact diagonalization method, iterative meth
such as Car-Parinello~CP! method11 and conjugate gradien
~CG! method,12 and O(N) methods. On the other hand, r
gardingcm,ia as dependent variables onaiaq and assuming
that the Kohn-Sham equation is solved self-consistently w
respect tocm,ia , we can derive the following equation base
on the force derivation of nonorthogonal orbitals as follow

]Etot

]aiaq
5

dEtot

dr~r !

dr~r !

daiaq

54(
m

nm (
ia, j b

cm,iacm, j bK ]f ia

]aiaq
uĤuf j bL

14(
m

nm (
ia, j b

]cm,ia

]aiaq
cm, j b^f iauĤuf j b&

52(
j b

~Q ia, j b^x ihuĤuf j b&2Eia, j b^x ihuf j b&!, ~5!

where nm is an occupancy number for the eigenstatem,
Q ia, j b a bond order, andEia, j b an energy bond order. Th
final equation in Eq.~5! is derived by taking into account Eq
~4! and the orthonormalization relation̂cmucn&5dmn . It
should be noted that Eq.~5! excludes any derivative, and tha
Q ia, j b and Eia, j b only have to be evaluated for the co
tracted atomic orbitalf ia in Eq. ~5!, which implies that ad-
ditional computational costs are not required to evaluate
~5!. Once we obtain a self-consistent solution of the Koh
Sham equation, Eq.~4!, with a set of given coefficients
aiaq , then Eq.~5! gives the gradient ofEtot with respect to
aiaq within small computational costs. This fact shows a
parently that the atomic orbitals can be optimized variati
ally in the same two step procedure as that of the geom
optimization in terms ofaiaq instead of atomic positions
Therefore, the contraction coefficientsaiaq are optimized it-
eratively, coupled with the self-consistent solution of Eq.~4!,
as follows:

Step 1: self2consistently solving Eq.~4!,

Step 2: aiaq
(n11)5aiaq

(n) 2lS ]Etot

]aiaq
D

a(n)

, ~6!

nªn11,

where an optimuml is determined, so that the norm of th
gradients ata5a(n11),

NG
(n11)5(

ia,q
S ]Etot

]aiaq
D

a(n11)

2

, ~7!

becomes a minimum with respect tol under the fixedQ ia, j b
and Eia, j b . Substituting Eqs.~5! and ~6! into Eq. ~7!, and
considering ]NG

(n11)/]l50 with the fixed Q ia, j b and
Eia, j b , we havel5B/A for the minimum ofNG

(n11) with
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A5(
iaq

S (
j bq8

Diaq, j bq8S ]Etot

]aj bq8
D

a(n)
D 2

, ~8!

B5 (
iaq, j bq8

Diaq, j bq8S ]Etot

]aiaq
D

a(n)
S ]Etot

]aj bq8
D

a(n)

, ~9!

where

Diaq, j bq85Q ia, j bHih, j h82Eia, j bSih, j h8 ~10!

with Hih, j h8[^x ihuĤux j h8& andSih, j h8[^x ihux j h8&. Taking
into account the sparseness of both the Hamitonian and o
lap matrices in the real space, we find that the computatio
efforts to evaluate Eqs.~8! and ~9! scale linearly. Therefore
we can easily evaluatel, leading no intensive computationa
demands. After achieving the self-consistent field~SCF! for
Eq. ~4! with respect to the coefficientscm,ia by an usual SCF
procedure, the contraction coefficientsaiaq are updated by
Eq. ~6! and renormalized so thatf ia is normalized. Thus, the
two step optimization scheme enables us to optimize the c
traction coefficientsaiaq along the stationary minimum line
of the KS total energy functional with respect tocm,ia , while
keeping^cmucn&5dmn . It is found that about five iterative
procedures of the two step optimization, which includes
solution of Eq.~4! and the optimization ofaiaq by Eq. ~6!,
are enough to accomplish a sufficient convergence ofaiaq
for our test systems. Again it should be mentioned that
bond order and the energy bond order are required for o
the contracted atomic orbitalf ia in Eq. ~5!. This is a crucial
point to make our optimization procedure efficient, since
Kohn-Sham equation based on Eq.~4! can be solved for not
large x ih , but smallf ia . Once the contraction coefficient
aiaq are fixed after the orbital optimization, the Hamiltonia
and overlap matrices are directly constructed for the sm
f ia without constructing the elements for the larger prim
tive orbitals, since we can directly utilize the contracted
bital f ia as a numerical table because of the use of num
cal orbitals, which is also a reason why the optimizati
scheme could be totally efficient.

A rather technical but important problem still remains
the application of the two step optimization method.
avoid the orbital optimization to a local minimum, we hav
developed the following careful procedure to provide a go
initial guess for a set of coefficientsaiaq :

~I! The partition of the system. A cluster is construct
including the nearest neighboring atomsj for each atomi.

~II ! Solving of the Kohn-Sham equation of each clust
By non self-consistently solving the Kohn-Sham equation
each cluster which is centered on an atomi, we obtain the
coefficientsdn,iqlm for the atomi of an one-particle wave
function

wn
( i )5 (

jqlm
dn, jqlmx jqlm ~11!

with an eigenvalueen
( i ) .
8-2
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~III ! Construction ofa from d. Then,ai0lmq is given as

ai0lmq5N(
n

sgn~dn,i0lm!dn,iqlmf @~en
( i )2m i !/kBT#,

~12!

wheref is the Fermi function,m i a local chemical potentia
for the clusteri, andN a normalization factor. For 0,p, the
coefficientsaiplmq are generated by the Gram-Schmidt o
thonormalization fromai0lmq and dn,iqlm in order of the
magnitude off @(en

( i )2m i)/kBT#(qudn,iqlmu.
To find a good initial guess for the coefficientsaiaq , we

tried to estimate the ratio of coefficientsaiaq of the eigen-
states of the whole system expanded byx ih from the local
cluster for each atomi by the above treatment. Then, th
eigenstates of the cluster are weighted by the Fermi funct
so that the contribution of the lower states is taken into
count as much as possible. Also, the contraction coefficie
aiplmq for 0,p are generated using the Gram-Schm
method to avoid the overcompleteness of contracted b
orbitals. We found that the procedure provides good ini
coefficientsaiaq in all of our test systems, and did not ob
serve that the orbital optimization is trapped to any seri
local minimum, while the other trial was trapped to a loc
minimum often. The additional cost for the above proced
~I!–~III ! is almost negligible, when the orbital optimizatio
method is applied as a preconditioning of the geometry
timization as discussed later on.

III. PRIMITIVE ORBITALS

The primitive orbitalsx ih we used are eigenstates of a
atomic Kohn-Sham equation with confineme
pseudopotentials.8,13 To vanish the radial wave functionRiql8
of the outside of the confinement radiusr c , we modify the
atomic core potentialVcore(r ) in the all electron calculation
of an atom and the generation of pseudopotential as follo

Vcore~r !55
2

Z

r
for r<r 1 ,

(
n50

3

bnr n for r 1,r<r c ,

h for r c,r ,

~13!

whereb0 , b1 , b2, andb3 are determined, so that the valu
and the first derivative are continuous at bothr 1 and r c .
Figure 1 shows radial wave functions forl 50 of a carbon
atom under the confinement pseudo potential. The eig
states construct an orthonormal basis set at the same at
position and vanish beyondr c within the double precision
Because of the complete vanishing tail of numerical orbita
we find that nonzero elements of Hamiltonian and over
matrices can be exactly proportional to the number of ato
In Fig. 2 the total energy for a carbon dimer calculated us
the eigenstates as a basis set is shown as a function o
number of orbitals for various cutoff radiir c . Factorized
norm conserving pseudopotentials13 and the local density
approximation ~LDA !14 to the exchange-correlation inte
15510
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actions were used in our all DFT calculations. Also t
real space grid techniques were used with the energy cu
of 113 ~Ryd! for numerical integrations.8 As the cutoff ra-
dius and the number of orbitals increase, the total ene
converges systematically. Thus, we see that the primitive
bitals x ih itself are systematic basis sets controlled by t
simple parameters, the cutoff radius and the number of or
als, in the same manner as spherical wave basis sets9 In
addition, a relatively small number of orbitals may be need
to obtain the convergent result compared to the spher
wave basis sets, since the primitive basis set is prepared
each element, unlike the spherical wave basis sets.9 These
are reasons why we use the eigenstates of an atomic K
Sham equation with the confinement pseudopotentials as
primitive orbitals. A systematic study for convergence pro
erties as a function of the cutoff radius and the num
of orbitals will be presented for several elements includ
first row elements, alkaline metals, and transition met
elsewhere.

For the later discussion, here, we introduce an abbre
tion of the basis orbital asC4.5-s62* p62, whereC indicates
the atomic symbol, 4.5 is the cutoff radiusr c ~a.u.! used in
the generation, s62 means that two optimized orbitals

FIG. 1. The radial wave function forl 50 of a carbon atom
under the confinement pseudopotential defined by Eq.~13!, where
4.5 ~a.u.!, 4.3 ~a.u.!, and 3.03104 ~Hartree! are used forr c , r 1, and
h, respectively.

FIG. 2. The total energy for a carbon dimer calculated using
eigenstates as a basis set as a function of the number of bas
bitals per atom for the cutoff radiusr c of 3.5, 4.0, 4.5, 5.0, 5.5, and
6.0 ~a.u.!.
8-3
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constructed from six primitive orbitals for thes orbital, and
the asterisk signifies the restricted optimization that the
dial wave functionR is independent on the indexm. In case
of snn such ass66, corresponding to no optimization, snn
can be simplified as sn.

IV. NUMERICAL RESULTS

Figure 3 shows the convergence properties of total e
gies for a carbon dimer C2, a methane molecule CH4, and
the diamond as a function of the number of unoptimiz
and optimized orbitals. The orbital optimization was do
by five iterative steps according to Eq.~6!, in which each
step includes ten SCF loops. We see that the unoptim
orbitals provide systematic and rapid convergent results
not only molecules C2 and CH4, but also a bulk system
diamond, as the number of orbitals increase. Moreover,
markable convergent results are obtained using the optim
orbitals for all systems. The small optimized orbitals rapid
converge to the total energies calculated by a larger num
of unoptimized orbitals, which implies that the comput
tional effort can be reduced significantly with a high degr
of accuracy. For three systems the effect of the restric
for the orbital optimization is almost negligible, which e

FIG. 3. The total energy for a carbon dimer C2, a methane CH4,
and the diamond as a function of the number of unoptimized~un-
opt! orbitals and optimized orbitals with~rest! and without~unrest!
the restriction. The total energy and the number of orbitals are
fined as those per atom for C2 and the diamond, and as those p
molecule for CH4. The energy cutoff of 113, 113, and 222~Ryd!
were used for the numerical integrations in C2 , CH4, and the dia-
mond, respectively. The two step convergence of C2 is due to the
inclusion ofd orbitals.
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courages us to use the restriction, since the restricted opt
zation guarantees the rotational invariance of the total
ergy. In Fig. 4 the radial parts of the minimal orbita
obtained by the restricted optimization for the diamond
shown with those of the lowest primitive orbitals of a carb
atom for comparison. It is observed that the tails of both
optimizeds andp orbitals shrink compared to the primitiv
orbitals, which clearly reveals that the basis orbital can
tomatically vary within the cutoff radius to minimize th
total energy.

Finally, as an illustration of the orbital optimization, w
performed the geometry optimization with the orbital optim
zation as a preconditioning for the most stable conforme
a neutral glycine molecule15,16 which is the smallest amino
acid. Before doing the geometry optimization, the orbital o
timization was performed by five iterative steps, which i
cludes ten SCF loops per step, for an initial structure o
mized by a molecular mechanics~MM’s !. Then, the
geometry optimization was done using the optimized orbit
by fifty steepest decent~SD! steps with a variable prefacto
for accelerating the convergence, which includes twenty S
loops per step. The optimized geometrical parameters
given in Table I together with the total energy and the co
putational time per MD step. In the case of the unoptimiz
orbitals SN, TN, and TNDP, as the number of orbitals
crease, we find the decrease of the total energy and the
vergent geometrical parameters comparable to the exp
mental16 and the other theoretical values.15 Although there
are some deviations in the optimized parameters calcul
using TNDP from the other theoretical values,15 the devia-
tions may be attributed to the pseudo potentials rather t
the basis orbitals, since we verified that the optimized para
eters of the glycine depend on the cutoff radii in the pseu
potential generation. Comparing to the unoptimized and
timized minimal orbitals SN and SN8, it is found that the
geometrical parameters are significantly improved with

e-

FIG. 4. The radial wave function of the minimal orbitals o
tained by the restricted optimization for the diamond and the low
primitive orbitals of a carbon atom. The optimization was done
the same conditions as those in Fig. 3.
8-4
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TABLE I. Optimized geometrical parameters~Å and degrees! of the most stable conformer of a neutral glycine molecule.A denotes the
atomic symbol C, N, or O. The computational time per MD step was measured using one CPU on a Sharp Mebius PC-GP1-C7U. T
cutoff of 113~Ryd! was used for the numerical integrations in all calculations. The results by the other theory were taken from Ref.
the experimental values from Ref. 16.

SN TN TNDP SN8 SNP8 Other theory Expt.
H4.0-s1 H4.0-s3 H4.0-s3p2 H4.0-s31* H4.0-s31* p21* LDA/DZP

A4.5-s1p1 A4.5-s3p3 A4.5-s3p3d2 A4.5-s31* p31* A4.5-s32* p31* d21* Full potential

r (C-C) 1.555 1.535 1.528 1.515 1.528 1.510 1.532
r (N-C) 1.530 1.480 1.490 1.502 1.444 1.439 1.469
r (C5O) 1.353 1.231 1.235 1.281 1.238 1.218 1.207
r (C-O) 1.498 1.365 1.349 1.416 1.350 1.348 1.357
r (O-H) 1.144 0.998 0.987 1.010 0.995 0.988
/(NCC) 104.8 106.5 108.2 108.4 108.8 114.8 112.1
/(CC5O) 136.8 127.9 128.3 128.9 125.9 124.9 125.1
/(COH) 96.8 107.9 105.7 105.8 106.8 105.6
C5O•••N 3.132 2.998 2.905 2.998 2.882 2.827

Energy~Hartree! 255.662 255.981 256.106 255.818 256.036
Time~s!/MD step 32 86 217 34 84
e
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increasing the computational time. In case of the optimiz
orbitals SNP8 remarkable improvements are obtained in bo
the geometrical parameters and the computational time.
optimized orbitals SNP8 provide a convergent result comp
rable to TNDP with a great reduction of the computation
time. The computational time required for the orbital optim
zation of SN8 occupies only 3% of that of the whole calcu
lation. So the orbital optimization can be regarded as a p
conditioning before doing the geometry optimization or t
molecular dynamics. Of course, it is possible to perform
orbital optimization during the geometry optimization. It
worth mentioning that the orbital optimization can be co
bined with an O(N) method,1–6 since only Q ia, j b and
Eia, j b , which are calculated by the O(N) method, are re-
quired in Eq.~5!. Therefore, the orbital optimization can b
applied to large-scale systems in O(N) operations.
s.
.
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V. CONCLUSIONS

To conclude, we have developed a simple and pract
method based on the force theorem for variationally optim
ing numerical atomic orbitals used in density functional c
culations. The optimization algorithm similar to the geom
etry optimization allows us to fully optimize atomic orbita
within a cutoff radius for each atom in a given system. T
illustration of geometry optimization with the orbital optim
zation for a small molecule clearly shows that the small o
timized orbitals promise to greatly reduce the computatio
effort with a high degree of accuracy.
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