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Tight-binding calculations of optical matrix elements for conductivity using nonorthogonal atomic
orbitals: Anomalous Hall conductivity in bcc Fe
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We present a general formula for the tight-binding representation of momentum matrix elements needed for
calculating the conductivity based on the Kubo-Greenwood formula using atomic orbitals, which are in general
not orthogonal to other orbitals at different sites. In particular, the position matrix element is demonstrated
to be important for delivering the exact momentum matrix element. This general formula, applicable to both
orthonormal and nonorthonormal bases, solely needs the information of the position matrix elements and the
ingredients that have already contained in the tight-binding representation. We then study the anomalous Hall
conductivity in the standard example, ferromagnetic bcc Fe, by a first-principles tight-binding Hamiltonian. By
assuming the commutation relation �̂p = (ime/h̄)[Ĥ , �̂r], the obtained frequency-dependent Hall conductivity
is found to be in good agreement with existing theoretical and experimental results. Better agreement with
experiments can be reached by introducing a reasonable bandwidth renormalization, evidencing the strong
correlation among 3d orbitals in bcc Fe. Since a tight-binding Hamiltonian can be straightforwardly obtained
after finishing a first-principles calculation using atomic basis functions that are generated before the self-
consistent calculation, the derived formula is particularly useful for those first-principles calculations.
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I. INTRODUCTION

In solid-state physics, the introduction of the derivative of
the Hamiltonian has many advantages. One famous example
is the Hellmann-Feynman theorem, where the derivative of
the energy eigenvalue with respect to a parameter λ can be
calculated via the expectation value of the derivative of the
Hamiltonian with respect to λ. In the first-principles calcu-
lations based on density functional theory [1,2], Hellmann-
Feynman theorem has been applied for obtaining the forces
on nuclei to study ground-state structures and molecular dy-
namics [3,4]. Another example is the form of the momentum
operator for a periodic system, which can be written as the
derivative of the Hamiltonian Ĥu(�k) with respect to the crystal
momentum �k. Here, Ĥu(�k) is the Hamiltonian whose eigen-
functions correspond to the cell-periodic parts of Bloch wave
functions. This useful expression has been widely adopted
to study conductivity, especially in the intrinsic contribution
to the anomalous Hall effect that has an intimate relationship
to the topology of the electronic structures of studied systems
[5–9].

To study the optical conductivity described by a tight-
binding Hamiltonian Ĥ , it is possible to obtain the momentum
matrix element by just calculating the derivative of the Hamil-
tonian matrix element with respect to the crystal momentum �k
in some specific cases [10,11]. Since the properties of basis
functions for a tight-binding Hamiltonian obtained from a
fitting procedure or a theoretical model are generally unknown
and the derivative has a simple form, for example, tei�k· �R to
i �Rtei�k· �R , having that all the needed ingredients are already
self-contained in the tight-binding representation is attractive
and allows for much easier calculations.

However, to study the conductivity with a general set of Ĥ

and bases, one additional term, the position matrix element,
needs to be taken into account [12]. For the case having zero
onsite contribution due to orbital symmetry together with the
fact that the overlaps between intersite orbitals are negligible
in the studied system, the position operator sandwiched by
atomic orbitals could be neglected, but this approximation
needs to be adopted with caution since the intersite position
matrix elements are usually non-negligible. The nature of
the intra-atomic matrix elements of the position operator can
also be understood from the nonorthogonality of the atomic
orbitals and could play an important role in some cases [13].
Nevertheless, a general formula for the momentum matrix
element expressed by the derivative of Hamiltonian matrix
element with respect to �k and the position matrix element
in the bases of atomic orbitals, which are in general not
orthogonal to other orbitals at different sites, has not been
derived.

The frequency-dependent Hall conductivity in bcc Fe has
been studied by first-principles calculations within the gen-
eralized gradient approximation (GGA) [14], where good
agreement with experiments is found [15,16]. On the other
hand, first-principles studies have also shown that bandwidth
renormalization needs to be taken into account to compare
with the measured quasiparticle bands of bcc Fe in angle-
resolved photoelectron spectroscopy experiments [17,18]. It
is then interesting to see whether the effect of bandwidth
renormalization could give better agreement for the optical
conductivity.

In this study, we focus on the tight-binding representation
of the momentum matrix elements needed for calculating the
optical conductivity based on the Kubo-Greenwood formula
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[19–23], which has been of great interest for not only being
able to unveil the excited properties of solids but also the
connection to the Berry curvature that can reveal the topology
of the electronic structures [5–9]. In Sec. II, we will derive
the general formula for the momentum matrix elements in the
bases of atomic orbitals without assuming the orthonormal
relation among all the orbitals. In Sec. III, the results of
frequency-dependent Hall conductivity for a standard exam-
ple, bcc Fe [15,16], will be discussed. Finally, a summary is
given in Sec. IV.

II. OPTICAL CONDUCTIVITY

In this section, we will discuss the optical conductivity
using the Kubo-Greenwood formula [22] and derive the tight-
binding representation of the momentum matrix element,
〈�km| �̂p|�kn〉, in a nonorthonormal basis. While the intraband
contribution to the conductivity can solely rely on the knowl-
edge of the tight-binding Hamiltonian (〈0M|Ĥ | �RN〉) and
the overlap matrix (〈0M| �RN〉), the interband contribution,
similar to the case using an orthonormal basis [7,12], requires
the knowledge of the position matrix element, 〈0M|�̂r| �RN〉, to
deliver the exact conductivity.

A. Kubo-Greenwood formula

The frequency-dependent optical conductivity, σ (ω), ex-
pressed by the Kubo-Greenwood formula in the bases of
Bloch states can be formulated as

σαβ (ω) = −ih̄

Nk�

∑
�kmn

(f�km − f�kn

ε�km − ε�kn

) 〈�km|ĵα|�kn〉〈�kn|ĵβ |�km〉
ω + ε�km − ε�kn + iη

.

(1)
The current operator ĵα can be written as the momentum
operator −p̂α in the atomic unit. f�kn denotes the occupation
number of the Bloch state |�kn〉 labeled by the crystal momen-
tum �k and the band index n (lowercase letters) with the energy
ε�kn, where the Fermi-Dirac distribution can be applied for f�kn

to introduce the effect of temperature T . The summation of
�k is over the k points inside the first Brillouin zone and the
total number of k points is denoted as Nk . The parameter η

means 0+ but is a tunable parameter in practice. � denotes
the volume of the unit cell. In the case of ε�km → ε�kn for
the degenerate states or the intraband contribution, (f�km −
f�kn)/(ε�km − ε�kn) should be considered as the derivative of the
occupation number with respect to the energy [22], which can
be reformulated as ∂f (ε�kn)/∂ε�kn with

f (ε�kn) = 1

e(ε�kn−μ)/kBT + 1
, (2)

where μ and kB are the chemical potential and Boltzmann
constant, respectively.

B. Optical matrix element

To study the optical conductivity using Eq. (1), the mo-
mentum matrix element, 〈�km| �̂p|�kn〉, needs to be calculated in
a basis. Unlike orthonormal basis functions, the atomic orbital
| �RN〉 labeled by the lattice vector �R and the orbital index
N (capital letters) is in general not orthogonal to the one at

a different site. So the orthonormal relation for the overlap
matrix element S �R′M, �RN ≡ 〈 �R′M| �RN〉 = δ �R′RδMN does not
hold in general. Consequently, the conductivity described
by the tight-binding Hamiltonian represented by such basis
functions is expected to require the knowledge of S �R′M, �RN .
S �R′M, �RN is also expected to be important for calculating the
momentum matrix elements.

The energy eigenvalue ε�kn and the energy eigenstate |�kn〉,
which is expanded by

∑
N C

�kn
N |�kN〉, can be obtained by

solving the generalized eigenvalue problem:∑
N

HMN (�k)C
�kn
N = ε�kn

∑
N

SMN (�k)C
�kn
N , (3)

where HMN (�k) ≡ 〈�kM|Ĥ |�kN〉 and SMN (�k) ≡ 〈�kM|�kN〉. The
〈�kn| �̂p|�kn〉 can be derived by first noting that

ε�kn =
∑
MN

C
�kn∗
M HMN (�k)C

�kn
N . (4)

The expectation value of momentum can be obtained by
taking the derivative of the energy with respect to �k. By
utilizing Eq. (3) and

∂

∂ �k
∑
MN

C
�kn∗
M C

�kn
N SMN (�k) = 0, (5)

the derivative of Eq. (4) with respect to �k can be formulated as

∂ε�kn

∂ �k =
∑
MN

C
�kn∗
M C

�kn
N

(
∂HMN (�k)

∂ �k − ε�kn

∂SMN (�k)

∂ �k

)
, (6)

where all the needed information besides the solution of
Eq. (3) is the Hamiltonian matrix element, 〈0M|Ĥ | �RN〉,
and the overlap matrix element, 〈0M| �RN〉. The resulting
formula is expected by considering Hellmann-Feynman the-
orem for the solution of the generalized eigenvalue problem
[24]. Therefore, the intraband contribution, as for the Drude
conductivity, can be obtained solely by the knowledge of the
tight-binding representation.

We now consider the matrix element for the interband
contribution. By assuming the commutation relation �̂p =
(ime/h̄)[Ĥ , �̂r] (me = 1 and h̄ = 1 in the atomic unit) holds
for the Hamiltonian Ĥ , as derived in Appendix A, the mo-
mentum operator sandwiched by different energy eigenstates
can be formulated as

〈�km| �̂p|�kn〉

=
∑
MN

C
�km∗
M C

�kn
N

(
∂HMN (�k)

∂ �k − ε�km

∂SMN (�k)

∂ �k

)

+ i(ε�km − ε�kn)
∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M|�̂r| �RN〉ei�k· �R,

(7)

where additional information, 〈0M|�̂r| �RN〉, is needed to de-
liver the exact value. Although 〈0M|�̂r| �RN〉 is origin depen-
dent, the second term of the right-hand side of Eq. (7) is origin
independent as discussed in Appendix A. Importantly, the
overlap 〈0M| �RN〉 diminishes rapidly before �r goes to infinity.
The importance of such position matrix elements has already
been realized for calculating the momentum matrix elements
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in an orthonormal basis [7,12]. We also note that the diagonal
momentum matrix element, Eq. (6), can be reached by Eq. (7).

C. Discussions

First, we note that Eq. (7), as shown in Appendix A, can be
alternatively expressed as

〈�km| �̂p|�kn〉
= i

∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M|Ĥ | �RN〉 �Rei�k· �R

+ iε�km

∑
MN

C
�km∗
M C

�kn
N

⎛
⎝∑

�R
〈0N |�̂r| �RM〉ei�k· �R

⎞
⎠

∗

− iε�kn

∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M|�̂r| �RN〉ei�k· �R, (8)

where besides the solution of the generalized eigenvalue
problem, only the Hamiltonian matrix elements and position
matrix elements are required for delivering the exact momen-
tum matrix elements. The overlap matrix element, which was
expected to play an important role in a nonorthonormal basis,
is not needed explicitly.

Since Eq. (8) is also applicable to an orthonormal basis, the
information of position matrix elements is needed to deliver
the exact momentum matrix elements even in an orthonormal
basis, which can also be found in Eq. (7):

〈�km| �̂p|�kn〉

=
∑
MN

C
�km∗
M C

�kn
N

∂HMN (�k)

∂ �k
+ i(ε�km − ε�kn)

∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M|�̂r| �RN〉ei�k· �R (9)

for an orthonormal basis. To study σαβ in the static limit
for analyzing the quantized Hall conductance, the momentum
matrix element is commonly discussed via the cell-periodic
wave function |u�kn〉. Recall that the energy eigenstate |kn〉 can
be written in the Bloch form:

��kn(�r ) = ei�k·�ru�kn(�r ), (10)

where the cell-periodic wave function |u�kn〉 satisfies

Ĥu(�k)|u�kn〉 = ε�kn|u�kn〉. (11)

Thanks to |u�kn〉, the momentum matrix element is

〈�km| �̂p|�kn〉 = 〈u�km|∂Ĥu(�k)

∂ �k |u�kn〉. (12)

The famous TKNN (Thouless, Kohmoto, Nightingale, and
Nijs) formula [6] for studying σαβ (ω → 0) can be derived
by utilizing Eq. (12) and then be used to connect to the
Berry curvature [5–9]. Since the momentum matrix elements
should agree with each other calculated from both methods
associated with two different Hamiltonians, the k-dependent
position matrix element via Fourier transform as a correction
term to ∂HMN (�k)/∂ �k is essential for delivering the same result
of TKNN formula using the Kubo-Greenwood formula by

summing all of the eigenstates of Ĥ . It is worth mention-
ing that TKNN formula requires solely the knowledge of
occupied bands, which can also be well described by first-
principles calculations using atomic basis functions.

Another issue is the commutation relation �̂p = i[Ĥ , �̂r],
which is assumed to be valid in deriving Eq. (7). For the case
where such a relation does not hold, the momentum should
be obtained by �̂p = i[Ĥ − Ĥ ′, �̂r], where the commutator
[Ĥ ′, �̂r] must be taken into account as a correction term to
[Ĥ , �̂r] for delivering the exact value of the momentum matrix
element. An example of Ĥ ′ is the spin-orbit coupling term
discussed elsewhere [10] although the correction is estimated
to be small. In first-principles calculations, full potentials
are commonly replaced by pseudopotentials, and the nonlo-
cal form,

∑
lm |lm〉Vlm〈lm|, which does not commute with

�̂r in general, is also commonly adopted. The error due to
the use of pseudopotentials in calculating momentum matrix
elements could be large and depends on the studied systems
[25,26]. To reach the solution of a full-potential calculation,
for example, −i〈�knfull|∂/∂ �̂r|�knfull〉, from the pseudopotential
solution, −i〈�knpseudo|∂/∂ �̂r|�knpseudo〉, the addition of projec-
tor augmented wave can recover the difference in the wave
functions [23]. It can be found that the correction to either
the commutation relation or the wave functions could require
knowledge way beyond a simple tight-binding representation.
Therefore, we propose that Eq. (7) can serve as a good starting
point to study the optical conductivity. As we will show in
Sec. III, the calculated frequency-dependent conductivity in
bcc Fe using Eq. (7) is in good agreement with the reported
theoretical results [15,16].

Finally, it should be noted that a limited finite number
of atomic basis functions is insufficient to describe a first-
principles Hamiltonian. While the Hamiltonian represented
by the atomic orbitals could usually give a good description
of occupied bands, it is difficult to reproduce accurate un-
occupied bands up to a high energy. Therefore, incomplete
atomic orbitals could lead to inaccurate frequency-dependent
conductivity. For the study of conductivity in bcc Fe, 13
atomic orbitals locating at each atomic site are found to be
enough to describe the frequency range we will study in
Sec. III. The position operator sandwiched by the energy
eigenstates expressed by the atomic orbitals is also expected
to deviate from the accurate position matrix element due to the
incomplete basis set even without adopting pseudopotentials.
However, Eq. (7) is still useful for describing the momentum
matrix elements as long as the Hamiltonian represented by the
finite number of atomic orbitals can well describe the studied
physical quantities. For example, the diagonal momentum
matrix element shown in Eq. (7) can deliver accurate Fermi
velocity, which is associated with ∂ε�kn/∂

�k at the Fermi energy
as confirmed by the relationship between Eq. (7) and Eq. (6).
Equation (7) and Eq. (6) are obtained from �̂p = i[Ĥ , �̂r] and
the generalized eigenvalue problem [Eq. (3)], respectively.
Obviously, the same ∂ε�kn/∂

�k can be reached by the calcu-
lations using different kinds of approaches and is measurable
by angle-resolved photoelectron spectroscopy experiments. In
contrast, a direct calculation of −i〈�kn|∂/∂�r|�kn〉 could deviate
from ∂ε�kn/∂

�k noticeably depending on the adopted bases and
pseudopotentials.
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III. ANOMALOUS HALL CONDUCTIVITY IN BCC FE

For a benchmark calculation, we focus on the anomalous
Hall conductivity for the standard example, bcc Fe. The
intrinsic contribution to the anomalous Hall conductivity in
ferromagnetic bcc Fe has been studied by first-principles cal-
culations using Kubo-Greenwood formula [15], where the re-
sults are in good agreement with other theoretical calculations
and experiments [27–30]. In this section, we will show the
resulting frequency-dependent Hall conductivity using Eq. (7)
and compare with the reported conductivity [15,16]. How to
reach better agreement between theory and experiment will
also be discussed.

A. Computational details

The first-principles calculations were performed using the
OpenMX code, [31] where the GGA, the norm-conserving
relativistic nonlocal pseudopotentials, and optimized pseu-
doatomic basis functions were adopted [14,32–34]. The spin-
orbit coupling was incorporated through j -dependent pseu-
dopotentials [32]. Two, two, and one optimized radial func-
tions were allocated for the s, p, and d orbitals, respectively,
for the Fe atom with a cutoff radius of 6 Bohr. A cutoff energy
of 340 Ha was used for numerical integrations and for the
solution of the Poisson equation. The 30 × 30 × 30 k-point
sampling was adopted for the experimental lattice constant,
2.87 Å. After the self-consistent calculation was done, a
tight-binding Hamiltonian in the bases of the 13 adopted
pseudoatomic orbitals per Fe atom was obtained and used
in calculating the frequency-dependent conductivity using
Eqs. (1) and (7), where η = 0.05 eV and a 150 × 150 × 150 k

mesh were chosen. The electronic temperature was set to 300
K for both of the first-principles and conductivity calculations.
The magnetization direction is along the z direction.

B. Results

The band structure of ferromagnetic bcc Fe near the Fermi
energy including spin-orbit coupling is shown in Fig. 1, where
the eg , t2g , and s + p orbital contributions are presented by
blue, red, and green circles, respectively. Two sets of eg or t2g

bands with similar dispersion separated by a large gap (>2 eV
at �) can be clearly observed and recognized as the spin-up
and spin-down bands before being coupled by the spin-orbit
coupling. The band structure is consistent with the reported
one [15], and therefore the same conductivity is expected
to be obtained within density functional theory. Since our
formula is based on the Kubo-Greenwood formula involving
a summation over all the 13 nonorthogonal pseudoatomic
orbitals per Fe atom, a less efficient computation compared
with the method using Wannier functions is expected [16].
But it should be noted that the pseudoatomic orbitals are gen-
erated before the computation of electronic structure of bcc
Fe in comparison with Wannier functions, which need to be
constructed after finishing first-principles calculations. All the
needed ingredients for Eq. (7) are straightforwardly obtained
in our first-principles calculations using the pseudoatomic
basis functions, and our tight-binding Hamiltonian shares the
same advantage of efficiently calculating the eigenstates at a
dense grid of k points needed for describing the Fermi surface
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FIG. 1. First-principles band structure of ferromagnetic bcc Fe
obtained by adopting 13 pseudoatomic orbitals per Fe atom with
spin-orbit coupling. Only the bands near the Fermi energy, which
is shifted to zero as denoted by EF , are shown. Blue and red circles
indicate the contribution of Fe 3d eg and t2g orbitals, respectively.
The other contribution (s + p) is presented by green circles. The
modified band structure (Mod) with rescaled hopping integrals be-
tween d orbitals (80%) and adjusted onsite energies is presented by
the black curves.

of bcc Fe in comparison with the first-principles plane-wave
calculations.

The calculated frequency-dependent Hall conductivity
using Eqs. (1) and (7) is presented by the black curves in
Fig. 2. First, we compare the spectrum of magnetic circular
dichroism, which corresponds to the imaginary part of ωσxy ,
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FIG. 2. Frequency-dependent Hall conductivity in bcc Fe.
(a) The imaginary part of ωσxy , the magnetic circular dichroism
spectrum, is compared with the experimental data presented by open
circles from Ref. [28] (Exp) as reproduced in Ref. [15] and Ref. [16].
The black curve shows the result calculated using Eqs. (1) and (7)
(Pos), and the green curve shows the result by allowing only 70%
strength of the spin-orbit coupling in the d orbitals (Soc). The result
obtained from the modified band structure with rescaled hopping
integrals between d orbitals (80%) and adjusted onsite energies is
presented by the red dashed curve (Mod). (b) The real part of σxy is
shown and compared with the dc experiment value [27] (solid circle)
and the theoretical results for 0 K (open square) and 300 K (open
circle), as discussed in Ref. [15].
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with the available theoretical and experimental results. As
shown in Fig. 2(a), the curve delivered by Eq. (7) is consistent
with other first-principles calculations [15,16], where the
spectrum is in good agreement with experiment [28] up
to about 1.7 eV. The details of the first-principles results
at higher frequencies [15,16], such as the prominent peak
at ∼2.4 eV and a big drop around 6.5 eV, are also well
reproduced in our calculations. The real part of the Hall
conductivity, as shown in Fig. 2(b), also agrees very well with
the reported one [15], such as the dc limit result and the dip
at ∼2.5 eV. Overall, our calculated real and imaginary parts
of Hall conductivity, which should satisfy a Kramers-Kronig
relation, using Eq. (7) are in good agreement with the reported
theoretical and experimental data [15,16,27–30]. We attribute
the small errors to the hard Fe pseudopotential that is close to
the full potential in our calculations.

Although the general behavior of the conductivity can be
described by GGA, the calculated intensity shown in Fig. 2(a)
is overall higher than the experimental data at energy >

1.7 eV, which is consistent with the previous findings [15,16].
Since the intensity is related to the strength of spin-orbit
coupling, we have calculated the magnetic circular dichroism
spectrum by allowing only 70% strength of the spin-orbit
coupling for the d orbitals in the self-consistent calculation.
As expected, the suppressed spin-orbit coupling lowers the
intensity towards the experimental data as shown by the green
curve in Fig. 2(a). However, the calculated prominent peak
still remains at ∼2.4 eV, which deviates from the experimental
data having the highest intensity at ∼1.7 eV, and it seems
unlikely to reach the 30% error in the spin-orbit coupling.
This suggests that a more complete description of many-body
Coulomb interactions is needed even in the metallic bcc Fe.
The peak at 2.4 eV can be understood from the large number
of unoccupied eg states around 2 eV as shown in Fig. 1 that
provides a channel for electrons to excite to. The energy of
the flatter occupied eg states corresponding to larger density
of states can be found to be lower than −0.4 eV, and therefore
the occupied t2g states have also largely contributed to the
peak at 2.4 eV. To simultaneously lower the overall intensity
and shift the highest intensity in the calculated spectrum, the
Coulomb correlations beyond GGA among all of the Fe 3d

orbitals should be taken into account.
To compare with the measured bands of bcc Fe in the

angle-resolved photoelectron spectroscopy experiments, sig-
nificant bandwidth renormalization needs to be introduced
to the first-principles band structures [17,18]. The bandwidth
renormalization is a signature of strong Coulomb correlations
and can be described by the Gutzwiller density functional
theory, which has revealed a large bandwidth reduction in bcc
Fe, for example, by 36% at the H point [17,18]. We therefore
have rescaled the hopping integrals between the d orbitals by
80% and adjusted the onsite energies of eg and t2g orbitals
to reach consistent �-point band energies calculated by the
Gutzwiller density functional theory [18]. The modified band
structure is presented by the black curves in Fig. 1. We note
that this simple modification of our tight-binding Hamiltonian
cannot reproduce the same Fermi surface as the ones calcu-
lated by GGA and the Gutzwiller density functional theory,
and the modification gives a slightly electron-doped system
(∼0.07e) using the GGA chemical potential. But the modified

tight-binding Hamiltonian can reflect the effect of bandwidth
renormalization in the calculated spectrum of magnetic cir-
cular dichroism. The result is presented by the red dashed
curve in Fig. 2(a), where the lowered overall intensity and the
shifted highest intensity towards the experimental data can be
identified. This suggests that the magnetic circular dichroism
experiment has also evidenced the effect of strong Coulomb
correlations in bcc Fe. We expect that an even better improve-
ment can be achieved by considering the many-body Coulomb
interactions in the electron-hole channel, which is beyond the
scope of this study and should be left for a future work.

IV. SUMMARY

The tight-binding representation of momentum matrix el-
ements for calculating the optical conductivity based on the
Kubo-Greenwood formula using the bases of atomic orbitals,
where the orthonormal relation is not assumed, is derived. To
reach the exact value of the momentum matrix element in the
tight-binding representation, the k-dependent position matrix
element via Fourier transform needs to be taken into account,
which is also needed in an orthonormal basis as well. For the
tight-binding parameters obtained from a fitting procedure,
the position matrix elements are unknown due to lacking the
knowledge of the basis functions and must be parameterized.
For the case where the tight-binding Hamiltonian is obtained
from first-principles calculations using atomic basis functions,
the position matrix elements can be easily calculated since the
atomic basis functions are generated at the step of generating
the pseudopotentials. Once the geometrical structure is deter-
mined, the computational effort for calculating the position
matrix elements is similar to the calculation of overlap matrix
elements.

Although the number of pseudoatomic orbitals in first-
principles calculations is commonly larger than that of the
energy-resolved Wannier functions, they share the same ad-
vantage of calculating the eigenstates at a dense grid of
k points by diagonalizing a tight-binding Hamiltonian in
comparison with the plane-wave calculations. Upon finish-
ing self-consistent first-principles calculations using atomic
basis functions, such as those implemented in SIESTA [35],
Conquest [36], FHI-AIMS [37], CP2K [38], and Atomistix
ToolKit [39], a tight-binding Hamiltonian is straightforwardly
obtained as well as the other needed ingredients for Eq. (7)
and therefore can benefit from our formula. We have studied
the frequency-dependent Hall conductivity in ferromagnetic
bcc Fe and demonstrated that the results are in good agree-
ment with the reported theoretical and experimental data.
By introducing a reasonable bandwidth renormalization by
simply rescaling the hopping integrals, better agreement with
experiments can be reached, evidencing the effect of strong
correlation among 3d orbitals in bcc Fe. We therefore propose
that the derived formula, which is applicable to a nonorthogo-
nal basis, is useful for studying the optical conductivity using
the tight-binding representation.
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APPENDIX: DERIVATION OF MOMENTUM MATRIX
ELEMENT IN NONORTHOGONAL BASIS

The energy eigenstate |�kn〉 can be expanded by the coeffi-
cient of linear combination of atomic orbital, C

�kn
N , and |�kN〉

can be expressed by | �RN〉 via Fourier transform:

|�kn〉 =
∑
N

C
�kn
N |�kN〉

=
∑
�RN

ei�k· �R
√

Nk

C
�kn
N | �RN〉. (A1)

The momentum matrix element 〈�km| �̂p|�kn〉 becomes:

〈�km| �̂p|�kn〉 = i〈�km|(Ĥ �̂r − �̂rĤ )|�kn〉

= i

Nk

∑
�RN �R′M

C
�km∗
M C

�kn
N ei�k·( �R− �R′ )

× 〈 �R′M|(Ĥ �̂r − �̂rĤ )| �RN〉, (A2)

where me = 1 and h̄ = 1 have been adopted for the com-
mutation relation �̂p = ime/h̄[Ĥ , �̂r]. By inserting the identity
operator,

Î =
∑

�R′′M ′ �R′′′N ′

| �R′′M ′〉S−1
�R′′M ′, �R′′′N ′ 〈 �R′′′N ′|, (A3)

we obtain

〈�km| �̂p|�kn〉

= i

Nk

∑
�RN �R′M �R′′M ′ �R′′′N ′

C
�km∗
M C

�kn
N ei�k·( �R− �R′ )

× 〈 �R′M|Ĥ | �R′′M ′〉S−1
�R′′M ′, �R′′′N ′ 〈 �R′′′N ′|�̂r| �RN〉

− i

Nk

∑
�RN �R′M �R′′M ′ �R′′′N ′

C
�km∗
M C

�kn
N ei�k·( �R− �R′ )

× 〈 �R′M|�̂r| �R′′M ′〉S−1
�R′′M ′, �R′′′N ′ 〈 �R′′′N ′|Ĥ | �RN〉. (A4)

Considering the translational symmetry, one can get

〈 �R′′′N ′|�̂r| �RN〉 = 〈 �R′′′ − �R,N ′|(�̂r + �R)|0N〉
= 〈 �R′′′ − �R,N ′|�̂r|0N〉

+ �RS �R′′′N ′, �RN (A5)

and

〈 �R′M|�̂r| �R′′M ′〉 = 〈0M|(�̂r + �R′)| �R′′ − �R′,M ′〉
= 〈0M|�̂r| �R′′ − �R′,M ′〉

+ �R′S �R′M, �R′′M ′ . (A6)

By further noting that∑
j

Sij S
−1
jk =

∑
j

S−1
ij Sjk = δik, (A7)

Eq. (A4) can be rewritten as

〈�km| �̂p|�kn〉
= i

Nk

∑
�RN �R′M

C
�km∗
M C

�kn
N ei�k·( �R− �R′ )( �R − �R′)〈 �R′M|Ĥ | �RN〉

+ i

Nk

∑
�RN �R′M �R′′M ′ �R′′′N ′

C
�km∗
M C

�kn
N ei�k·( �R− �R′ )

× 〈 �R′M|Ĥ | �R′′M ′〉S−1
�R′′M ′, �R′′′N ′ 〈 �R′′′ − �R,N ′|�̂r|0N〉

− i

Nk

∑
�RN �R′M �R′′M ′ �R′′′N ′

C
�km∗
M C

�kn
N ei�k·( �R− �R′ )

× 〈0M|�̂r| �R′′ − �R′,M ′〉S−1
�R′′M ′, �R′′′N ′ 〈 �R′′′N ′|Ĥ | �RN〉.

(A8)

The first term of the right-hand side of Eq. (A8) can
be recognized as the derivative of the Hamiltonian matrix
element with respect to �k:

∂

∂ �k (〈�kM|Ĥ |�kN〉) =
∑
�R �R′

∂

∂ �k
ei�k·( �R− �R′ )

Nk

〈 �R′M|Ĥ | �RN〉

=
∑
�R �R′

i( �R − �R′)
ei�k·( �R− �R′ )

Nk

〈 �R′M|Ĥ | �RN〉.

(A9)

The second and third terms on the right-hand side of Eq. (A8)
can be simplified by considering Eq. (A1), Eq. (A7), and

〈�km|Ĥ = 〈�km|ε�km (A10)

or

Ĥ |�kn〉 = ε�kn|�kn〉. (A11)

The momentum matrix element can then be reformulated as

〈�km| �̂p|�kn〉
=

∑
MN

C
�km∗
M C

�kn
N

∂

∂ �k (〈�kM|Ĥ |�kN〉)

+ iε�km

Nk

∑
�RN �R′M

C
�km∗
M C

�kn
N ei�k·( �R− �R′ )〈 �R′ − �R,M|�̂r|0N〉

− iε�kn

Nk

∑
�RN �R′M

C
�km∗
M C

�kn
N ei�k·( �R− �R′ )〈0M|�̂r| �R − �R′, N〉.

(A12)

After considering translational symmetry, we obtain an ex-
pression by assuming that 〈0M|Ĥ | �RN〉 and 〈0M|�̂r| �RN〉 are
known:

〈�km| �̂p|�kn〉
= i

∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M|Ĥ | �RN〉 �Rei�k· �R

+ iε�km

∑
MN

C
�km∗
M C

�kn
N

⎛
⎝∑

�R
〈0N |�̂r| �RM〉ei�k· �R

⎞
⎠

∗

− iε�kn

∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M|�̂r| �RN〉ei�k· �R. (A13)
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Alternatively, the second term of the right-hand side of Eq. (A13) can be expressed as

iε�km

∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈 �RM|�̂r|0N〉e−i�k· �R = iε�km

∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M|(�̂r − �R)| �RN〉ei�k· �R, (A14)

and then Eq. (A13) can be written as

〈�km| �̂p|�kn〉 =
∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M|Ĥ | �RN〉i �Rei�k· �R + i(ε�km − ε�kn)
∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M|�̂r| �RN〉ei�k· �R

− ε�km

∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M| �RN〉i �Rei�k· �R. (A15)

The above equation can also be simply expressed as

〈�km| �̂p|�kn〉 =
∑
MN

C
�km∗
M C

�kn
N

(
∂HMN (�k)

∂ �k − ε�km

∂SMN (�k)

∂ �k

)
+ i(ε�km − ε�kn)

∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M|�̂r| �RN〉ei�k· �R. (A16)

For the special case of m = n, Eq. (A16) is reduced to

〈�kn| �̂p|�kn〉 =
∑
MN

C
�kn∗
M C

�kn
N

(∂HMN (�k)

∂ �k − ε�kn

∂SMN (�k)

∂ �k
)
,

(A17)

which is exactly ∂ε�kn/∂
�k.

Finally, we demonstrate that the second term of the right-
hand side of Eq. (A15) does not depend on the choice of
the origin as long as the energy eigenstates are orthogonal to
each other, namely 〈�km|�kn〉 = 0 for m �= n, and it is clear
that the first and third terms are origin independent due to
the relative vector �R. In the calculation of 〈0M|�̂r| �RN〉 in two

coordinate systems whose origins differ by a constant vector
�d , a difference can appear:

〈0M|�̂r2| �RN〉 = 〈0M|�̂r1| �RN〉 + �d〈0M| �RN〉. (A18)

As a result, an apparent difference for calculating 〈�km| �̂p|�kn〉
in Eq. (A15) can be found as

i �d (ε�km − ε�kn)
∑
MN

C
�km∗
M C

�kn
N

∑
�R

〈0M| �RN〉ei�k· �R. (A19)

However, following Eq. (A1), Eq. (A19) is just the represen-
tation of 〈�km|�kn〉 in real space regardless of a constant factor
of i �d (ε�km − ε�kn) and must be zero.
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