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Efficient O(N) divide-conquer method with localized single-particle natural orbitals

Taisuke Ozaki and Masahiro Fukuda
Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan

Gengping Jiang
College of Science, Wuhan University of Science and Technology, Wuhan, 430081, China

(Received 28 August 2018; revised manuscript received 5 November 2018; published 26 December 2018)

An efficient O(N ) divide-conquer (DC) method based on localized single-particle natural orbitals (LNOs)
is presented for large-scale density functional theory (DFT) calculations of gapped and metallic systems. The
LNOs are noniteratively calculated by a low-rank approximation via a local eigendecomposition of a projection
operator for the occupied space. Introducing LNOs to represent the long-range region of a truncated cluster
reduces the computational cost of the DC method while keeping computational accuracy. A series of benchmark
calculations and high parallel efficiency in a multilevel parallelization clearly demonstrate that the O(N ) method
enables us to perform large-scale simulations for a wide variety of materials including metals with sufficient
accuracy in accordance with development of massively parallel computers.
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I. INTRODUCTION

First-principles electronic structure calculations based on
the density functional theories (DFT) [1,2] have been playing
a versatile role in a wide variety of materials sciences to
deeply understand the physical and chemical properties of
existing materials and even to design novel materials having
a desired property before actual experiments [3–6]. In recent
years, more complicated materials with secondary structures
such as heterointerfaces [7,8] and dislocations [9] have been
becoming a scope of application by DFT calculations. Since
these complicated structures cannot be easily modeled by
a small unit cell, development of efficient DFT methods in
accordance with development of massively parallel computers
is crucial to realize such large-scale DFT calculations. Among
efficient DFT methods [10–34], O(N ) methods whose com-
putational cost scales linearly as a function of the number
of atoms have enabled us to extend the applicability of DFT
to large-scale systems [12–34]. Nevertheless, applications of
the O(N ) methods to metallic systems have been still limited
because of the fundamental difficulty of a truncation scheme
in real space, which is an idea commonly adopted in most of
the O(N ) methods [12,13], in realizing the O(N ) methods [14]
as discussed in the Appendix. A theoretically proper approach
to go beyond the truncation scheme is to take account of the
contribution from the external region beyond the truncated
region via a self-energy in Green function formalism [26–30].
Another straightforward approach is to use a relatively large
cutoff radius in the truncation scheme in order to reach a
sufficient accuracy. The latter approach might be suited to
the divide-conquer (DC) method [31,32] among the O(N )
methods proposed, so far, in the following twofold aspects.
(i) There is a way to reduce the computational cost in the
framework of the DC method by lowering the dimension of
matrices with an introduction of a Krylov subspace [33,34].
(ii) The computational time of the DC method can be reduced
by a massive parallelization, since the calculations in the DC

method are performed nearly independently for each atom
[35,36]. With the two aspects, the improvement of the DC
method can be a promising direction to develop an accurate,
efficient, and robust O(N ) method applicable to not only
insulators and semiconductors, but also metals. Along this
line, the DC method based on the Krylov subspace has been
proven to be an efficient and accurate O(N ) method by a
wide variety of applications such as dynamics of Li ions in
a lithium ion battery [37–39] and structure optimization of
semicoherent heterointerfaces in steel [7,8]. However, there
exist drawbacks in the generation of the Krylov subspace
[34]. Since the Krylov subspace is generated at the first self-
consistent field (SCF) step and kept unchanged during the
subsequent SCF calculation, calculated quantities such as the
electron density and total energy depend on the initial guess
of electron density or Hamiltonian matrix elements. If the
Krylov subspace is regenerated every SCF step to avoid the
dependency on the initial guess, the computational efficiency
must be largely degraded. In addition, the iterative calcula-
tions in the generation of the Krylov subspace tend to suffer
from numerical round-off error, leading to an uncontrollable
behavior in the SCF calculation if the Krylov subspace is
regenerated every SCF step [34]. Therefore a more robust
approach needs to be developed to improve the DC method,
which overcomes the drawbacks inherent in the DC method
based on the Krylov subspace.

In this paper, we focus on localized single-particle natural
orbitals (LNOs) calculated by a low-rank approximation to
perform a coarse graining of basis functions, and apply the
LNOs to the DC method, which will be referred to as the
DC-LNO method hereafter, to reduce the dimension of ma-
trices without sacrificing the accuracy. The DC-LNO method
overcomes the drawbacks in the DC method based on the
Krylov subspace, while taking account of reduction of the
prefactor in the computational cost and a simple algorithm
with less communication leading to a high parallel efficiency.
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A series of benchmark calculations clearly demonstrates that
the DC-LNO method is an accurate, efficient, and robust
O(N ) method applicable to not only insulators and semicon-
ductors, but also metals in step with recent development of
massively parallel computers.

The paper is organized as follows. In Sec. II, we propose a
method to generate LNOs, and present the DC-LNO method
as an extension of the DC method. In Sec. III, the implemen-
tations of the method are discussed in detail. In Sec. IV, a
series of benchmark calculations is presented. In Sec. V, we
summarize the theory of the DC-LNO method and numerical
aspects.

II. THEORY

A. General

We consider an extension of a divide-conquer (DC) ap-
proach [31,32] by introducing a coarse graining of basis
functions as shown in Fig. 1. For each atom, the Kohn-Sham
(KS) Hamiltonian and overlap matrices are truncated within a
given cutoff radius, and the resultant truncated cluster problem
is solved atom by atom, leading to the O(N ) scaling in the
computational cost. As expected the error of truncation can
be systematically reduced in exchange for the increase of
computational cost as the cutoff radius increases. The number
of atoms in a truncated cluster exceeds 300 atoms in many
cases in order to attain a sufficient accuracy as discussed later
on. To reduce the computational cost we introduce a coarse
graining of basis functions that the original basis functions,
pseudo-atomic orbitals (PAOs) in our case [40,41], are re-
placed by localized single-particle natural orbitals (LNOs) in
the long-range (yellow) region to represent the Hamiltonian
and overlap matrices, while the PAO functions remain un-
changed in the short-range (orange) region. In the following

FIG. 1. Truncation of a system in the DC method with LNOs.
The short-range (orange) and long-range (yellow) regions are repre-
sented by PAOs and LNOs, respectively.

sections, a method of generating LNOs and a DC method with
LNOs is discussed in detail.

B. Generation of LNOs

We present a method of generating LNOs based on a
low-rank approximation via a local eigendecomposition of a
projection operator. The method might be applicable to any
local basis functions, and not limited to the application to the
DC method we discuss in the paper. Even in the conventional
O(N3) calculations, the LNOs can be easily obtained by a
noniterative calculation using the density matrix and overlap
matrix elements. Since a smaller number of LNOs well repro-
duce dispersion of occupied bands, they can be an alternative
basis set for a compact representation for the Hamiltonian
and overlap matrices. Though in this subsection we present
a method of calculating LNOs in a general form starting from
Bloch functions to clarify a mathematical basis of LNOs, it
should be clearly noticed in this place that the density matrix
is directly calculated in the DC-LNO method without calcu-
lating the Bloch functions. The general formulation presented
here provides a theoretical basis of three step algorithm, which
will be discussed in the end of the subsection.

Under the Born-von Karman boundary condition, we ex-
pand a Kohn-Sham (KS) orbital φkμ, indexed with a k-vector
k in the first Brillouin zone and band index μ, using PAOs χ

[33,34], being a real function, as

|φkμ〉 = 1√
NBC

∑
R

eik·R ∑
iα

ckμ,iα|χRiα〉, (1)

where R, NBC, and c are a lattice vector, the number of cells
in the boundary condition, and linear combination of pseu-
doatomic orbital (LCPAO) coefficients, respectively. It is also
noted that 〈r|φ(k)

μ 〉 ≡ φ(k)
μ (r) and 〈r|χRiα〉 ≡ χiα (r − τi − R),

where i and α are atomic and orbital indices, respectively, and
τi is the position of atom i. We assume that Mi PAO functions
are allocated to atom i. Throughout the paper we do not
consider the spin dependency on the formulation for sake of
simplicity, but the generalization is straightforward. By con-
sidering overlap matrix elements SRiα,R′jβ ≡ 〈χRiα|χR′jβ〉,
one can introduce two alternative localized orbitals:

|χ
Riα

〉 =
∑
R′jβ

|χR′jβ〉S−1/2
R′jβ,Riα, (2)

|χ̃Riα〉 =
∑
R′jβ

|χR′jβ〉S−1
R′jβ,Riα, (3)

where S−1/2 and S−1 are calculated from an overlap matrix
S for a supercell consisting of NBC primitive cells in the
Born-von Karman boundary condition. Hereafter, χ and χ̃

will be referred to as Löwdin [42] and dual orbitals [33],
respectively. It is noted that we have the following relations:

〈χ
Riα

|χ
R′jβ

〉 = δRR′δij δαβ, (4)

〈χRiα|χ̃R′jβ〉 = 〈χ̃Riα|χR′jβ〉 = δRR′δij δαβ, (5)

and that the identity operator Î can be expressed in Bloch
functions φ, Löwdin orbitals χ , or PAOs χ and dual orbitals
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χ̃ as

Î =
∑
kμ

|φkμ〉〈φkμ|

=
∑
Riα

|χ
Riα

〉〈χ
Riα

|

=
∑
Riα

|χRiα〉〈χ̃Riα| =
∑
Riα

|χ̃Riα〉〈χRiα|. (6)

We now define a projection operator for the occupied space by

P̂ =
∑
kμ

|φkμ〉f (εkμ)〈φkμ|, (7)

where f and ε are the Fermi-Dirac function and an eigenvalue
of the KS equation, respectively. By using the second line of
Eq. (6), one obtains an alternative expression of the projection
operator as

P̂ =
∑

Riα,R′jβ

|χ
Riα

〉ρ
Riα,R′jβ

〈χ
R′jβ

| (8)

with

ρ
Riα,R′jβ

=
∑
kμ

〈χ
Riα

|φkμ〉f (εkμ)〈φkμ|χ
R′jβ

〉

= 1

NBC

∑
kμ

eik·(R−R′)f (εkμ)bkμ,iαb∗
kμ,jβ, (9)

where bkμ = S1/2ckμ, and ckμ is a column vector whose
elements are LCPAO coefficients {ckμ,iα}. As well, one can
derive another expression of the projection operator by apply-
ing the third line of Eq. (6) to Eq. (7) as

P̂ =
∑

Riα,R′jβ

|χRiα〉ρRiα,R′jβ〈χR′jβ | (10)

with

ρRiα,R′jβ =
∑
kμ

〈χ̃Riα|φkμ〉f (εkμ)〈φkμ|χ̃R′jβ〉

= 1

NBC

∑
kμ

eik·(R−R′)f (εkμ)ckμ,iαc∗
kμ,jβ . (11)

It is noted that ρ is related to ρ by the following relation:

ρ = S1/2ρS1/2. (12)

Remembering that the number of electrons Nele in the su-
percell consisting of NBC primitive cells can be obtained by
the trace of P̂ , and that we have two alternative expressions
Eqs. (8) and (10) for P̂ , one has the following expressions for
Nele:

Nele = 2tr[P̂ ]

= 2
∑
Riα

〈χ
Riα

|P̂ |χ
Riα

〉 = 2tr[S1/2ρS1/2]

= 2tr[ρS] = 2
∑
Riα

〈χ̃Riα|P̂ |χRiα〉, (13)

where the factor of 2 is due to spin degeneracy. Since each
term in the summation over R equally contributes to Nele,

we have Nele = NBCN
(0)
ele , where N

(0)
ele = 2

∑
iα〈χ̃0iα|P̂ |χ0iα〉.

Thus it is enough to consider N
(0)
ele instead of Nele for further

discussion. By introducing a notation for a subset of orbitals
{χ} and {χ̃} with

|χRi ) = (|χRi1〉, |χRi2〉, · · · , |χRiMi
〉), (14)

|χ̃Ri ) = (|χ̃Ri1〉, |χ̃Ri2〉, · · · , |χ̃RiMi
〉), (15)

one can write N
(0)
ele as

N
(0)
ele = 2

∑
i

tr0i[(χ̃0i |P̂ |χ0i )] = 2
∑

i

tr0i[�0i], (16)

where tr0i means a partial trace over orbitals associated with
an atom i in the central cell with R = 0, and �0i is defined by

�0i =
∑
Rj

ρ0i,Rj SRj,0i (17)

with definition of block elements:

ρRi,R′j = (χ̃Ri |P̂ |χ̃R′j ), (18)

SRi,R′j = (χRi |χR′j ). (19)

These block elements ρRi,R′j and SRi,R′j are Mi × Mj ma-
trices, where Mi and Mj are the number of PAO functions
allocated to atoms i and j , respectively. Therefore �0i defined
by Eq. (17) is a Mi × Mi matrix. It should be emphasized
that Eq. (16) giving N

(0)
ele by the sum of the partial trace is

an important relation in calculating LNOs, since it shows that
a local similarity transformation on an atomic site i does not
change N

(0)
ele because of a property of the trace. Noting that �0i

is nonsymmetric, we consider a general eigendecomposition
of a nonsymmetric matrix for �0i among similarity transfor-
mations as

V −1
0i �0iV0i = λ0i , (20)

where λ0i is a diagonal matrix having eigenvalues {λ0iγ }
of �0i as diagonal elements. Since an eigenvalue λ0iγ of
�0i gives the population for the corresponding eigenstate of
�0i , one can distinguish LNOs spanning the occupied space
from others among all the eigenstates of �0i by monitoring
the eigenvalues. To see the idea more clearly, we define an
operator by

�̂0i =
∑

γ

|v0iγ 〉λ0iγ 〈̃v0iγ |, (21)

where |v0iγ 〉 is the γ th column vector of V0i , and 〈̃v0iγ | is the
γ th row vector of V −1

0i . Note that 〈̃v0iγ | is the dual orbital of
|v0iγ 〉, and 〈̃v0iγ |v0iη〉 = δγη. It is easy to confirm that �0i and
λ0i in a matrix form can be obtained by representing �̂0i with
{χ0iα} and {χ̃0iα}, and with {v0iγ } and {̃v0iγ }, respectively.
Thus we have tr0i[�̂0i] = tri0[�0i]. If the eigenvalue λ0iγ is
nearly zero, the contribution of the corresponding eigenstate
|v0iγ 〉 is negligible in the summation of Eq. (21). Therefore
�̂0i can be approximated by excluding eigenstates whose
eigenvalues are less than a threshold value λth that we will
discuss later on. The treatment can be regarded as a low-rank
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approximation [43]. Then, using Eqs. (16) and (21) we can
approximate the projection operator P̂ defined by Eq. (7) as

P̂ �
∑
Ri

λth�λRiγ∑
γ

|vRiγ 〉λRiγ 〈̃vRiγ |, (22)

where terms satisfying a condition λth � λRiγ are taken into
account in the summation over γ . If all the terms are included,
Eq. (22) becomes equivalent to Eq. (7). We now define our
LNOs by {v} whose eigenvalues are larger than or equal to the
threshold value λth. By comparing Eq. (20) with Eq. (16), one
has V −1

0i �0iV0i = V −1
0i (χ̃0i |P̂ |χ0i )V0i . Thus LNOs are defined

by {v}, and it should be noted that {̃v} are the corresponding
dual orbitals. The approximate formula Eq. (22) for P̂ implies
that a set of orbitals {v}, LNOs, well spans the occupied
space, while the number of orbitals is reduced compared
to the original PAOs. It is worth noting that LNOs can be
independently calculated for each atom by a noniterative
calculation via Eqs. (17) and (20). The fact makes the method
of generating LNOs very efficient, and also guarantees that the
resultant LNOs associated with an atom i are expressed by a
linear combination of PAOs allocated to only the atom i [44].

The computational procedure to generate LNOs is summa-
rized as follows. (i) Calculation of �. For each atom i, the
matrix �0i is calculated by Eq. (17), where the summation
over R is limited within a finite range because of the locality
of PAOs in real space. (ii) Diagonalization of �. Since the
matrix �0i is nonsymmetric, the diagonalization in Eq. (20) is
performed by a generalized eigenvalue solver for a nonsym-
metric matrix such as DGEEV in LAPACK [48]. (iii) Selection
of v. Eigenvectors {v0iγ } whose eigenvalues are larger than or
equal to the threshold value λth are selected as LNOs.

Only the overlap and density matrices are required to
calculate LNOs through the steps (i)–(iii) above. Therefore,
either conventional O(N3) methods or O(N ) methods can
be employed as eigenvalue solvers as long as they generate
the density matrix. As for LNOs other than those in the
central cell with R = 0, it is apparent from the derivation
that one can obtain |vRiγ 〉 by parallel translation of |v0iγ 〉
with the lattice vector R. The method can also be extended to
choose another energy window. In the projection operator P̂

defined by Eq. (7), the Fermi-Dirac function is introduced to
choose the occupied space. However, one can choose a proper
energy window in the definition of the projection operator P̂

depending on what we discuss, which enables us to focus on
specific bands such as localized d-bands near the Fermi level.
In this sense, LNOs can be utilized like Wannier functions
(WFs) [49,50], while WFs are obtained through a unitary
transformation of Bloch functions rather than the low-rank
approximation, and they are orthonormal each other unlike
LNOs. It is also worth pointing out that our method shares the
basic idea based on the projection with other methods such as
the quasiatomic orbitals scheme [51–53], a projection method
[54], and a method via selected columns of the density matrix
[55,56].

It might be possible for the method we present in the
paper to be applied for other localized basis functions such as
finite element methods [57,58] and finite difference methods
[59–61]. In those cases one may introduce spatial partitioning
methods such as the Voronoi tessellation to decompose basis

functions rather than focusing on basis functions on a single
grid. A similar procedure can be applied for a set of parti-
tioned basis functions.

C. DC method with LNOs

Here we consider an extension of the DC method [31,32]
using LNOs discussed in the previous subsection. Our the-
oretical basis to formulate the O(N ) DC method is that the
total energy and atomic forces in the KS framework can be
calculated by using electron density n(r), density matrix ρ,
and energy density matrix e defined by

n(r) =
∑

i

⎛
⎝2

∑
α,Rjβ

ρ0iα,Rjβχ0iα (r)χRjβ (r)

⎞
⎠

=
∑

i

ni (r), (23)

ρ = − 1

π
Im

∫ ∞

−∞
G(E + i0+)f (E)dE, (24)

and

e = − 1

π
Im

∫ ∞

−∞
G(E + i0+)f (E)EdE, (25)

where G is the Green function defined by G(Z) ≡ (ZS −
H )−1 with the overlap matrix S and KS matrix H , and the
factor of 2 in Eq. (23) is due to spin degeneracy. It is remarked
that forces on atoms in the DC method are not calculated
variationally, but evaluated by using the formula derived
by assuming that numerically exact KS wave functions are
available as discussed in Ref. [34]. The DC method calculates
the Green function G(Z) approximately by introducing the
truncation scheme as shown in Fig. 1. The KS matrix of the
truncated cluster for atom i are constructed using PAOs and
LNOs as follows:

H (i) =
(

PAO − PAO PAO − LNO
LNO − PAO LNO − LNO

)
, (26)

where the top left and bottom right blocks correspond to
the short-range (orange) region represented by PAOs, and
the long-range (yellow) region represented by LNOs, respec-
tively, as shown in Fig. 1. The top right and the bottom
left block consist of the hopping matrix elements bridging
the two regions, and they are represented by both PAOs and
LNOs. As well, the same structure is found for the overlap
matrix. Noting that the computational bottleneck is mainly
governed by the eigenvalue problem for the truncated clusters,
and that the matrix size can be reduced by introducing LNOs
compared to the conventional DC method, one can expect a
considerable reduction of the computational cost as the size
of the long-range region increases. The idea of reducing the
matrix dimension by introducing an effective representation
of Hamiltonian is similar to that in the O(N ) Krylov subspace
method [34] and the absolutely localized molecular orbitals
(ALMO) method [23]. By solving the eigenvalue problem
H (i)c(i)

μ = ε(i)
μ S (i)c(i)

μ for the truncated cluster of atom i, we
calculate matrix elements associated with the atom i for the
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Green function as [62]

G
(i)
0iα,Rjβ (Z) =

∑
μ

c
(i)
μ,0iα

(
c

(i)
μ,Rjβ

)∗

Z − ε
(i)
μ

. (27)

Matrix elements ρ0iα,Rjβ and e0iα,Rjβ associated with the atom
i can be analytically calculated by inserting Eq. (27) into
Eqs. (24) and (25), respectively. We only have to calculate
ρ0iα,Rjβ and e0iα,Rjβ only if S0iα,Rjβ is nonzero, since the other
elements do not contribute to the total energy and forces on
atoms in case of semilocal functionals such as local density
approximations (LDA) [63,64] and generalized gradient ap-
proximations (GGA) [65]. Then, ni (r) in Eq. (23) is easily
computed from ρ0iα,Rjβ . By applying the procedure for all the
atoms in a system, all the necessary information to calculate
the total energy and forces on atoms are obtained.

The overall procedure of the DC method with LNOs is
summarized as follows: (i) calculation of LNOs. LNOs are
calculated by Eq. (20) for all atoms in the central cell with
R = 0. At every SCF step, LNOs are updated, leading to
self-consistent determination of LNOs. (ii) Construction of
H (i) and S (i). For each atom i the KS and overlap matrices for
a truncated cluster associated with the atom i are constructed
by Eq. (26). (iii) Diagonalization of H (i)c(i)

μ = ε(i)
μ S (i)c(i)

μ by
making use of a parallel eigenvalue solver. (iv) Finding a
common chemical potential to conserve the total number
of electrons in the system using Eq. (27), as discussed in
Ref. [34] in detail. (v) Calculation of density matrix ρ and
energy density matrix e using Eqs. (24), (25), and (27).
(vi) Calculation of electron density n using Eq. (23).

III. IMPLEMENTATIONS

We have implemented the DC-LNO method into the
OPENMX DFT software package [66] which is based on norm-
conserving pseudopotentials (PPs) [67,68] and optimized
pseudo-atomic orbitals (PAOs) [40,41] as basis set. All the
benchmark calculations were performed with a computational
condition of a production level. The basis functions used
are C6.0-s2p2d1, Si7.0-s2p2d1, Ti7.0-s2p2d1, O6.0-s2p2d1,
Li8.0-s3p2, Al7.0-s2p2d1, and Fe5.5-s3p2d2 for carbon,
silicon, titanium, oxygen, lithium, aluminum, and iron, re-
spectively, where in the abbreviation of basis functions such
as C6.0-s2p2d1, C stands for the atomic symbol, 6.0 the
cutoff radius (Bohr) in the generation by the confinement
scheme, and s2p2d1 means the employment of two, two, and
one optimized radial functions for the s, p, and d orbitals,
respectively. The radial functions were optimized by a vari-
ational optimization method [40]. These basis functions we
used can be regarded as double zeta plus polarization basis
sets if we follow the terminology of Gaussian basis functions.
As valence electrons in the PPs we included 2s and 2p, 3s

and 3p, 3s, 3p, 3d, and 4s, 2s and 2p, 1s, 2s, and 2p, 3s,

and 3p, and 3s, 3p, 3d, and 4s states for carbon, silicon,
titanium, oxygen, lithium, aluminum, and iron, respectively.
All the PPs and PAOs we used in the study were taken
from the database (2013) in the OPENMX website [66], which
were benchmarked by the delta gauge method [69]. Real
space grid techniques are used for the numerical integrations
and the solution of the Poisson equation using FFT with

the energy cutoff of 300 Ryd [70]. We used a generalized
gradient approximation (GGA) proposed by Perdew, Burke,
and Ernzerhof to the exchange-correlation functional [65]. An
electronic temperature of 300 K is used to count the number
of electrons by the Fermi-Dirac function for all the systems
we considered.

The short- and long-range regions depicted in Fig. 1 are
determined as follows. (i) We first pick up atoms in a sphere
with a given cutoff radius rL. (ii) Among the atoms selected by
the step (i) we distinguish the first neighboring atoms (FNAs)
having nonzero overlap with the central atom in terms of basis
functions, and remaining atoms other than FNAs are called
the second neighboring atoms (SNAs), where the number
of FNAs and SNAs are NF and NS, respectively. (iii) The
short-range region is determined by adjusting a cutoff radius
rS so that the number of atoms in a sphere with a radius of rS

can be as close as possible to NF + κNS, where the parameter
κ can vary from 0 to 1, and we will discuss the choice of
κ later on. (iv) The long-range region consists of remaining
atoms other than atoms selected by the step (iii). If we assign
FNAs to atoms in the short-range region, the total energy does
not converge to the numerically exact one calculated by the
conventional diagonalization method even if the cutoff radius
rL increases systematically. This is because the error with
the low-rank approximation by Eq. (22) keeps increasing as
the cutoff radius increases. To avoid the situation, we add
a buffer region consisting of about κNS atoms as described
by the step (iii) above, which guarantees the convergence
of the total energy and other quantities as a function of the
cutoff radius rL. Throughout the study, we used κ of 3

10 for
all the systems by taking the accuracy into account more
than the efficiency, and did not adjust the parameter, while
a smaller value, which well balances both the accuracy and
efficiency, can be employed for some systems. The way of
parallelization for the DC-LNO method on parallel computers
will be discussed together with its benchmark calculations
later on.

IV. NUMERICAL RESULTS

A. Band dispersions by LNOs

In order to investigate to what extent LNOs can span
occupied spaces, we compare band dispersions of gapped
and metallic systems calculated with PAOs and LNOs.
Figure 2(a) and 2(b) show band dispersions of diamond and
silicon calculated by a conventional O(N3) diagonalization
method with PAOs and LNOs. For both the cases, the SCF
calculations were performed by using PAOs. For the case of
LNOs, the band dispersions were calculated with the LNOs
after the SCF calculations with PAOs. The number of LNOs
per atom is 4 for both carbon and silicon atoms. It is found
that in both the cases the band dispersions of occupied space
are well reproduced with LNOs compared to those calculated
by PAOs, while a large difference can be seen in conduction
bands between PAOs and LNOs as expected. The good agree-
ment between PAOs and LNOs in describing the occupied
bands implies that the low-rank approximation by Eq. (22) is
reasonably valid. As shown in Table I, we see that the first four
eigenvalues of the matrix � are actually dominant for both
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FIG. 2. Band dispersions of (a) diamond and (b) silicon in the
diamond structure with experimental lattice constants (3.567 and
5.430 Å) calculated by PAOs (black) and LNOs (red). A conventional
O(N 3) method was used for the diagonalization, where the number
of k points for the Brillouin zone sampling is 71 × 71 × 71 for both
the cases. In the case of LNOs, the SCF calculations were performed
by using PAOs, and after determining the SC electron density, LNOs
were used to calculate the band dispersion. The numbers of PAOs
and LNOs per atom are shown in the parenthesis.

diamond and silicon, justifying the low-rank approximation.
The largest and the next three eigenvalues correspond to an
s orbital and p-like orbitals deformed by contribution of d

orbitals, respectively. It is also noted that the eigenvalues
can be negative, which is related to a negative value of
Mulliken populations for delocalized orbitals [71,72]. As well
as the gapped systems, similar calculations were performed
for metals, lithium in the body centered cubic (BCC) structure
and aluminum in the face centered cubic (FCC) structure as

TABLE I. Eigenvalues λ of the matrix � for diamond, silicon,
BCC lithium, and FCC aluminum. The corresponding eigenvectors
were used as LNOs to calculate the band dispersions shown in
Figs. 2–4.

Diamond Si Li Al

λ1 0.514 0.639 0.999 0.551
λ2 0.483 0.430 0.277 0.253
λ3 0.483 0.430 0.075 0.253
λ4 0.483 0.430 0.075 0.253
λ5 0.012 0.018 0.074 0.049
λ6 0.012 0.018 0.001 0.049
λ7 0.012 0.018 0.001 0.049
λ8 0.011 0.012 0.001 0.033
λ9 0.011 0.012 −0.002 0.033
λ10 −0.001 0.002 - −0.002
λ11 −0.001 0.002 - −0.002
λ12 −0.001 0.002 - −0.002
λ13 −0.018 −0.011 - −0.015

(a) (b)
PAO(9)
LNO(2)

-4

-2

0

2

4

6

G H N G P

E
ne

rg
y 

(e
V

)

-4

-2

0

2

4

6

G H N G P

E
ne

rg
y 

(e
V

)

PAO(9)
LNO(5)

FIG. 3. Band dispersions of BCC lithium with an experimental
lattice constant of 3.491 Å calculated by PAOs (black) and (a) two
and (b) five LNOs (red). The number of k points for the Brillouin
zone sampling is 101 × 101 × 101. The other details are the same as
in the caption of Fig. 2.

shown in Figs. 3 and 4, respectively. The band dispersions
calculated with the minimal LNOs are reasonably compared
to those by PAOs, while the use of the five and nine LNOs
for Li and Al atoms fully reproduce the band dispersions
including conduction bands as shown in Figs. 3(b) and 4(b),
respectively. One can confirm again in Table I that eigenvalues
for the minimal LNOs are dominant even for metals, while
the magnitude of the subsequent eigenvalues is relatively
large compared to those of the gapped systems. Thus we
conclude that LNOs can be regarded as a compact basis set
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FIG. 4. Band dispersions of FCC aluminum with an experimen-
tal lattice constant of 4.050 Å calculated by PAOs (black) and (a) four
and (b) nine LNOs (red). The number of k points for the Brillouin
zone sampling is 111 × 111 × 111. The other details are the same as
in the caption of Fig. 2.
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FIG. 5. Absolute error in the total energy (Hatree/atom) for (a) diamond, (b) silicon in the diamond structure, (c) rutile TiO2, (d) BCC
lithium, (e) FCC aluminum, and (f) BCC iron as a function of the number of atoms in a truncated cluster calculated by the DC and DC-LNO
methods. The experimental lattice constants were used for all the cases.

spanning well the occupied space for both gapped and metallic
systems.

B. Total energies by DC-LNO

As a first step of validation of the DC-LNO method with
respect to computational accuracy and efficiency, we show
in Fig. 5 the absolute error in the total energy of gapped
and metallic systems calculated by the DC and the DC-LNO
methods, where the reference energies were calculated by
the conventional O(N3) method with dense k points for the
Brillouin zone sampling as given in the caption of Figs. 2–4.
For all the cases the threshold value λth in Eq. (22) was set
to be 0.1, which gives us the minimal LNOs corresponding to
orbitals of valence electrons. In the gapped systems, diamond,
silicon, and rutile TiO2, the absolute error decreases almost
exponentially as the number of atoms in a truncated cluster
increases. The overall behavior of the error between the DC
and DC-LNO methods is similar, while the error by the DC-
LNO method is accidentally much smaller than that by the
DC method in the case of large truncated clusters of diamond.
Similar to gapped systems, the absolute error for metals
calculated by the DC-LNO method decreases with increasing
number of atoms in a truncated cluster in a similar way to the
DC method. The relatively large oscillating behavior observed
in the metals might be related to long-range characteristics of

the off-diagonal Green functions as discussed in Appendix.
For all the cases including metals, it is found that a truncated
cluster including about 300 atoms is required to attain the
millihartree accuracy corresponding to an error less than a few
millihartree/atom in the total energy. From the comparison
between the DC and DC-LNO methods, we see that the com-
putational accuracy does not degrade largely even if the basis
functions for atoms in the long-range region are approximated
by LNOs, and that thereby the computational accuracy can
be controlled mainly by the size of truncated cluster just
like for the DC method. Since controlling only the single
parameter allows us to balance the computational accuracy
and efficiency, it is expected that the feature makes the DC-
LNO method easy to use for a wide variety of applications.

C. Computational time

Since the total number of basis functions to represent the
Hamiltonian of the truncated cluster is reduced by introduc-
ing LNOs while keeping the accuracy, it is expected that
the computational time can be substantially reduced. In the
whole procedure of the DC-LNO method, the calculation of
LNOs and construction of Hamiltonian and overlap matrices
occupy a small fraction of the whole computational time,
typically less than 10%, and thereby the computational time
is mainly governed by solving of the eigenvalue problem
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FIG. 6. Comparison of computational time of the diagonalization
part per molecular dynamics (MD) step between the DC and DC-
LNO methods for (a) diamond and (b) BCC lithium. Both the
calculations were performed for the primitive cell using 14 MPI
processes per atom on Intel Xeon CPUs E5-2690v4 @ 2.60 GHz.

H (i)c(i)
μ = ε(i)

μ S (i)c(i)
μ for each atom i. Noting that the com-

putational time to solve the eigenvalue problem scales as the
third power of the dimension of the matrices, the ratio of
computational time between the DC-LNO and DC methods
for elemental systems might be estimated by

tDC−LNO

tDC
= [MP(NF + κNS) + ML(1 − κ )NS]3

M3
P (NF + NS)3

, (28)

where MP and ML are the number of PAOs and LNOs associ-
ated with each atom, respectively, and κ is a factor, which is
fixed to 3

10 in this study, to control the size of the buffer region
as discussed in the section Implementations. For example, if
the cutoff radius rL is set to be 8.7 Å in the diamond structure
with the experimental lattice constant of 3.567 Å, NF and NS

are found to be 167 and 298, and the resultant number of
atoms in the short-(long-)range region becomes 275 (190).
Then, tDC-LNO/tDC can be estimated to be 0.37 in the case
that the number of PAOs and LNOs per atom is 13 and 4,
which implies that the computational time of the DC-LNO
method becomes about one-third of that calculated by the DC
method. Figure 6 shows actual timing results of the DC and
DC-LNO methods for (a) diamond and (b) BCC lithium. We
see that the actual tDC-LNO/tDC for the diamond case is 0.40
in the case that the number of atoms is 465 (=167+298) as
shown in Fig. 6(a), which is well compared to the estimated
value of 0.37. As indicated by Eq. (28) and in Figs. 6(a) and
(b), it is concluded that the DC-LNO method becomes much
faster than the DC method as the size of the truncated cluster
increases.
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FIG. 7. Computational time (seconds) of the diagonalization part
per 10 SCF steps for Si in the diamond structure. In the DC-LNO
method, the cutoff radius rL of 11.3 Å was used, resulting in the
truncated cluster containing 293 atoms. In the O(N3) method, the
k grids of 2 × 2 × 2 were used for the Brillouin zone sampling in
all the cases. All the calculations were performed using 1280 MPI
processes on a cluster machine consisting of Intel Xeon CPUs E5-
2680v2 @ 2.80 GHz connected with Infiniband 4X FDR @ 56 Gbps.

In Fig. 7, we further show timing results of the DC-LNO
method as a function of the number of atoms in the unit
cell of Si crystal. It is confirmed from the linear increase of
the computational time that the DC-LNO method is a linear
scaling approach in practice. As a comparison the computa-
tional time is also shown for the conventional diagonalization
method [73]. The crossing point between the two methods
in the computational time is located around 100 atoms when
1280 CPU cores is used. Over 100 atoms the DC-LNO method
is much faster than the conventional diagonalization method.
The reason why the crossing point is located at such a small
number of atoms is partly due to a better parallel efficiency of
the DC-LNO method as discussed in the next section.

D. Parallelization

To minimize the computational time on massively parallel
computers we introduce a multilevel parallelization using
message passing interface (MPI). In our implementation there
are three levels for the parallelization, i.e., atom level, spin
level, and diagonalization level as explained below. (i) Paral-
lelization in the atom level. If the number of MPI processes
is smaller than that of atoms, only the parallelization in the
atom level is taken into account. The allocation of atoms to
MPI processes is performed by a bisection method, which is
based on a projection of atoms onto a principal axis calculated
from an inertia tensor and a modified binary tree of MPI
processes to minimize memory usage and the amount of MPI
communications [36]. (ii) Parallelization in the spin level.
If the number of MPI processes exceeds that of atoms, and
a spin-polarized calculation is performed, the parallelization
in the spin level is introduced on top of the parallelization
in the atom level, where a loop for the spin index is fur-
ther parallelized. (iii) Parallelization in the diagonalization
level. If the number of MPI processes is larger than the

245137-8



EFFICIENT O(N ) DIVIDE-CONQUER METHOD WITH … PHYSICAL REVIEW B 98, 245137 (2018)

0 500 1000 1500 2000
0

500

1000

1500

2000

The number of MPI processes

S
pe

ed
−

up
 r

at
io

Parallel efficiency
70.0%

Ideal

FIG. 8. Speed-up ratio in the MPI parallelization of the DC-LNO
method for a diamond supercell containing 64 atoms, where the
cutoff radius rL of 8.0 Å was used, leading to the numbers of
atoms of 239 and 142 in the short and long-range regions, and the
dimension of matrices of 3675 for the truncated cluster problem. The
calculations were performed using the same cluster machine as for
Fig. 7.

product of the number of atoms and the multiplicity of spin
index, corresponding to 1, 2, and 1 for nonspin polarized,
spin-polarized, and noncollinear calculations, respectively, a
parallelization in the diagonalization level is further taken into
account on top of both the parallelizations in the atom and
spin levels. The parallelization in the diagonalization level
is made by employing a parallel eigenvalue solver ELPA
[73]. It is noted that the parallelization in the diagonalization
level requires a considerable amount of MPI communications,
while the parallelizations in the atom and spin levels have
less MPI communications. So, one would expect a high
parallel efficiency in the atom and spin levels, while the
parallelization in the diagonalization level might be limited
up to several tens of MPI processes. To achieve a better
scaling for the parallelization in the diagonalization level, it
is important to allocate CPU cores in the same computer
node as MPI processes to avoid the internode communication
as much as possible. We have implemented the multilevel
parallelization so that amount of the internode communication
can be minimized especially for the parallelization in the
diagonalization level. In Fig. 8, the speed-up ratio in the MPI
parallelization of the DC-LNO method is shown for nonspin
polarized calculations of a diamond supercell containing 64
atoms. Since the multiplicity of spin index is 1, we see a
nearly ideal behavior up to 64 MPI processes. Beyond 64
MPI processes the parallelization in the diagonalization level
is taken into account on top of the parallelization in the atom
level. A superlinear speed-up is observed at 128 and 256
MPI processes, which might be due to an effective use of
cache by the reduction of memory usage, and a good scaling
is achieved up to 1280 MPI processes at which the parallel
efficiency is calculated to be 70% using the elapsed time at
1 MPI process as reference. Since each computer node has
20 CPU cores in this case, it would be reasonable to observe
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FIG. 9. The kinetic energy of atomic nuclei (kinetic), the internal
total energy (EDFT), and the sum of them as a function of time in
NVE molecular dynamics simulations by the DC-LNO method for
(a) Si and (b) Al, where the time step of 2 fs was used, and random
velocities corresponding to 400 K were given for atomic nuclei at
the first MD step. The simulation cells with experimental lattice
constants for Si and Al contain 64 and 108 atoms, respectively. For
the DC-LNO method, the cutoff radii rL of 11.3 and 10.1 Å were
used for Si and Al, respectively, resulting in the truncated cluster
containing 293 and 249 atoms in the ideal bulk structure. Each energy
curve was shifted by adding a constant.

a good scaling up to 1280 (=64 × 20) MPI processes. Thus
we see that the multilevel parallelization is very effective
to minimize the computational time in accordance with the
recent development of massively parallel computers.

E. Molecular dynamics simulations

To verify the accuracy of forces on atoms calculated by
the DC-LNO method, results of NVE molecular dynamics
(MD) simulations are shown in Fig. 9. We see that the sum of
the kinetic energy of atomic nuclei (kinetic) and the internal
total energy (EDFT), being a conserved quantity, is reasonably
conserved as a function of time, and the fluctuation is about
one tenth of the kinetic energy or the internal total energy. It
should be noted that the approximate conservation of the sum
is achieved for not only Si being a semiconductor, but also Al
being a metal. Thus, it can be concluded that the accuracy
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FIG. 10. Total radial distribution function (RDF) of (a) silicon at 3500 K, (b) aluminum at 2500 K, (c) lithium at 800 K, and (d) SiO2

at 3000 K, calculated by the conventional O(N3) diagonalization and the DC-LNO methods. The MD simulations were performed for cubic
supercells containing 64, 108, 128, and 192 atoms with a fixed lattice constant of 10.86, 12.15, 14.04, 14.25 Å for silicon, aluminum, lithium,
and SiO2, respectively, for 10 ps with the time step of 2 fs. The temperature was controlled by a velocity scaling scheme by Woodkock [74]. The
coordinates for the first 1 ps were excluded to calculate RDF. In the DC-LNO method the cutoff radii rL of 11.3, 10.1, 12.5, and 11.0 were used
for silicon, aluminum, lithium, and SiO2, respectively, resulting in truncated clusters consisting of 293, 249, 339, and 344 (on average) atoms
in the ideal bulk structures. In the conventional O(N3) diagonalization method, k points of 7 × 7 × 7, 8 × 8 × 8, 7 × 7 × 7, and 5 × 5 × 5
were used for the Brillouin zone sampling in silicon, aluminum, lithium, and SiO2, respectively,

of forces on atoms calculated by the DC-LNO method is
sufficient for practical purposes, while it was remarked in
Sec. II that the forces on atoms in the DC-LNO method
are not calculated variationally. Sufficient accuracy of the
calculated forces is achieved by the use of large cutoff radii
in constructing the truncation clusters, which is realized by
both the introduction of LNOs and the massive parallelization
with the multilevel parallelism.

To further demonstrate the applicability of the DC-LNO
method for MD simulations, we show radial distribution
functions (RDFs) in the liquid phases of silicon, aluminum,
lithium, and SiO2 in Fig. 10. Since the electronic structures
exhibit metallic features in the liquid phases of silicon, alu-
minum, and lithium, the MD simulations can be considered
as a severe benchmark to validate the applicability of the
DC-LNO method to metals. The cutoff radii rL we used
corresponds to truncated clusters consisting of about 300
atoms in the ideal bulk structures. It turns out that in all the
cases the DC-LNO method reproduces well the results by the
conventional O(N3) diagonalization method, and that the ob-
tained RDFs are well compared to other computational results
[75–78]. The considerable agreement between the DC-LNO
and conventional methods strongly implies that a sufficient
accuracy in reproducing at least RDF for MD simulations can
be attainable with a cutoff radius rL resulting in truncated
clusters consisting of about 300 atoms for not only insulators
but also metals. Thus adjusting the cutoff radius rL so that the
number of atoms in a truncated cluster can be ∼300 atoms
would be a compromise to balance the computational accu-
racy and efficiency, while the difference between the DC and
DC-LNO methods in terms of the computational efficiency

may not be significant for truncated clusters of this size. It is
crucial to minimize the elapsed time for realization of long
time MD simulations. With the computational condition, the
elapsed time per SCF step for silicon is 1.5 (sec.) on average
using 1280 MPI processes on the same machine used for the
calculations shown in Fig. 8.

V. CONCLUSIONS

We have presented an efficient O(N ) method based on the
DC approach and a coarse graining of basis functions by lo-
calized single-particle natural orbitals (LNOs) for large-scale
DFT calculations. A straightforward way to attain sufficient
accuracy in the DC method is to employ a relatively large
cutoff radius for the truncation of a system, which is the
most fundamental parameter in most of O(N ) methods to
control the computational accuracy and efficiency. We have
adopted the rather brute force approach, and attempted to
decrease the computational cost by introducing LNOs as basis
functions in the long-range region of the truncated cluster,
and to minimize the elapsed time in the computation with the
help of a multilevel parallelization. The method of generating
LNOs is based on a low-rank approximation to the projection
operator for the occupied space by a local eigendecomposition
at each atomic site, and the band structure calculations with
PAOs and LNOs clearly show that the resultant LNOs span
well the occupied space of not only gapped systems but also
metals. It is also worth mentioning that the computational cost
of generating LNOs is almost negligible thank to the indepen-
dent calculation at each atomic site. By replacing PAOs with
LNOs in the long-range region of the truncated cluster in the
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DC method, the computational cost of the DC method can
be reduced without largely sacrificing the accuracy. Noting
that the DC-LNO method holds the simple algorithm of the
original DC method suited for parallel calculations, we have
implemented a multilevel parallelization using MPI by taking
account of the atom level, spin level, and diagonalization
level. It was demonstrated that the speed-up of the DC-LNO
method by the multilevel parallelization can be expected up to
a specific number of MPI processes which corresponds to the
product of the number of atoms, the multiplicity of spin index,
and the number of CPU cores in a single computer node. For
example, if a spin-polarized calculation is performed for a
system consisting of 1000 atoms on a parallel computer with
20 CPU cores per node, a high parallel efficiency might be
expected up to 40 000 MPI processes. As a validation of the
applicability of the DC-LNO method, we have performed MD
simulations for liquid phases of an insulator, semiconductor,
and metals, and confirmed that the RDFs calculated by the
DC-LNOs are in good agreement with those by the con-
ventional O(N3) diagonalization method, which may lead to
its various applications to structural determinations of amor-
phous and liquid structures of complicated materials [79–83].
Considering the simplicity and robustness of the algorithm,
we conclude that the DC-LNO method is an efficient and
accurate approach to large-scale DFT calculations for a wide
variety of materials including metals.
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APPENDIX: ASYMPTOTIC BEHAVIORS
OF THE OFF-DIAGONAL GREEN FUNCTIONS

As an example we show asymptotic behaviors of the off-
diagonal Green functions for an one-dimensional (1D) tight-
binding (TB) model with a single s orbital on each site,
and relate the asymptotic behaviors to electronic structures in
gapped and metallic systems. The analysis interprets evidently
the oscillating behavior of the error in the total energy of the
metallic systems as shown in Fig. 5, and the rapid convergence
in a high electronic temperature [24,33].

Let us consider an orthogonal chain model with the nearest
neighbor interaction t and the on-site energy ε as defined by

Ĥ = ε
∑

i

ĉ
†
i ĉi + t

∑
i

(ĉ†i ĉi+1 + H.c.), (A1)

where t is assumed to be positive. By tridiagonalizing the
Hamiltonian with a Lanczos algorithm starting from a site
(i = 0), and calculating the diagonal Green function via a
continued fraction using the recursion method [84,85], one
obtains a well known result for the diagonal Green function
G00 as follows:

G00(Z) = 1√
(Z − ε)2 − 4t2

. (A2)

The off-diagonal Green functions can be obtained by us-
ing a recurrence relation [86] derived from G(L)(Z)(Z −
H (L) ) = I , where G(L) and H (L) are the Green function and
Hamiltonian matrices represented by the Lanczos vectors, and
by performing a back unitary transformation as

G01(Z) = G00(Z)
γ

2
− 1

2t
, (A3)

G02(Z) = G00(Z)

(
γ 2

2
− 1

)
− γ

2t
, (A4)

G03(Z) = G00(Z)

(
γ 3

2
− 3

2
γ

)
− γ 2 − 1

2t
, (A5)

G04(Z) = G00(Z)

(
γ 4

2
− 2γ 2 + 1

)
− γ 3 − 2γ

2t
, (A6)

where γ = (Z − ε)/t and G0j is the off-diagonal element of
Green function between the sites 0 and j . It turns out that
the off-diagonal Green functions can be expressed by G00 and
γ . To see the asymptotic behavior of the off-diagonal Green
functions, by employing the following formula [87]:

1√
a2 − x2

= 1

a

∞∑
n=0

(2n

n

)
4na2n

x2n (A7)

with the radius of convergence |a|, we Taylor expand G00 at
γ −1 = 0 as

G00(Z) = 1

t

∞∑
n=0

(2n

n

)
4n2−2n

γ −(2n+1)

= 1

t

(
1

γ
+ 2

γ 3
+ 6

γ 5
+ 20

γ 7
+ · · ·

)
, (A8)

where the convergence is guaranteed for |γ | > 2. By inserting
Eq. (A8) into Eqs. (A3)–(A6), and taking the leading terms,
we obtain the following relation:

G0j (Z) ∝ 1

tγ j+1
. (A9)

Thus, we see that G0j approaches to zero asymptotically for
|γ | > 2 as j → ∞. On the other hand the Green functions at
Z = ε corresponding to γ = 0 are given by

G0(2k−1)(ε) = (−1)k

2t
, (A10)

G0(2k)(ε) = (−1)kG00(ε), (A11)

where G00(ε) = −i
2t

. It is found that G0j at γ = 0 exhibits an
oscillating behavior as a function of j , and never decays.

We now relate the asymptotic behaviors of Green functions
to the calculation of density matrix, which is defined by
Eq. (24). Introducing the Matsubara expansion of the Fermi-
Dirac function, and changing the integration path with the
Cauchy theorem, one has [88]

ρ0j = 1

2
δ0j + Im

⎡
⎣2i

β

∞∑
p=1

G0j (αp )

⎤
⎦, (A12)

where αp are Matsubara poles located at μ + i
(2p−1)π

β
with a

chemical potential of μ and β = 1
kBT

. The expression allows
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FIG. 11. Relation between the position of Matsubara poles
(black filled circles), the spectrum range on the real axis (blue filled
rectangles), and the convergent region of the off-diagonal Green
functions whose boundaries are shown by red circles in the complex
plane for (a) metal and (b) insulator. In the simple TB model, the
bandwidth w is given by 4t , and the off-diagonal Green function G0j

decays asymptotically as j increases in the exterior region of the red
circles.

us to figure out a relation between the Matsubara poles, where
the Green functions are evaluated, and the convergent region
of the off-diagonal Green functions as illustrated in Fig. 11.
Remembering that in the simple TB model the bandwidth w

is given by 4t , and assuming that the single band is half-
filled in the metallic case, we may have Matsubara poles
in the red circle, which is the nonconvergent region of the
off-diagonal Green functions as shown in Fig. 11(a). Since
the off-diagonal Green functions evaluated at the Matsubara
poles in the red circle do not simply decay in real space
as j increases, the truncation scheme commonly adopted in
most of O(N ) methods should suffer from the long-range

characteristics of the off-diagonal Green functions, while the
effect can appear in a different way depending on underlying
principles of each O(N ) method. In the DC-LNO method the
truncated eigenvalue problem H (i)c(i)

μ = ε(i)
μ S (i)c(i)

μ is solved
for each atom i, and the integration of Eqs. (24) and (25)
can be easily performed on the real axis since we have the
approximate spectrum representation of Eq. (27). The way of
evaluating the density matrix is numerically equivalent to the
computational method via a generalized formula of Eq. (A12)
to the nonorthogonal basis set, where the Green functions for
the truncated problem are computed at each Matsubara pole
by the inverse calculation, since the Green function computed
through the spectrum representation is exactly the same as
the one computed by the inverse calculation. Therefore the
oscillating behavior of error in the total energy calculation ob-
served in Figs. 5(d)–5(f) should be attributed to the long-range
characteristics of the off-diagonal Green functions. It can also
be understood that the use of a higher electronic temperature
suppresses the deficiency since all the Matsubara poles can
be placed in the exterior region of the red circles beyond a
critical temperature [24,33]. On the other hand, we model an
insulator by considering two bands as shown in Fig. 11(b),
where each of them is expressed by the 1D TB model and the
bands are separated by a finite gap. Unlike the metallic case,
all the Matsubara poles are located in the exterior region of
the red circles. The feature guarantees that ρ0j decays as j

increases since all the Green functions in the summation of
Eq. (A12) decay as j increases, theoretically justifying that
the truncation scheme is valid for gapped systems, although
our benchmark calculations imply that the use of a large cutoff
radius diminishes the effect of the long-range characteristics
of the off-diagonal Green functions even to metals at least for
the calculations of density matrix and energy density matrix
in a practical sense.
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