
User’s manual of OpenMX Ver. 3.5

E

P

N

O

Contributors

T. Ozaki (JAIST),

H. Kino (NIMS),

J. Yu (SNU),

M. J. Han (SNU),

N. Kobayashi (Tsukuba Univ.),

M. Ohfuchi (Fujitsu Labs.)

F. Ishii (Kanazawa Univ.)

T. Ohwaki (Nissan)

H. Weng (JAIST)

M. Toyoda (JAIST)

K. Terakura (JAIST)

July 25, 2011

Contents

1 About OpenMX 5

2 Installation 7
2.1 Including libraries . 7
2.2 Serial version . 7
2.3 MPI version . 8
2.4 OpenMP/MPI version . 8
2.5 FFTW2 or FFTW3 . 9
2.6 Other options, -Dblaswrap and -lI77 . 9
2.7 Platforms . 9
2.8 Tips for installation . 10

3 Test calculation 11

4 Automatic running test 17

5 Automatic running test with large-scale systems 18

6 Input file 20
6.1 An example: methane molecule . 20
6.2 Keywords . 23

7 Output files 37

8 Functional 40

9 Basis sets 41
9.1 Primitive basis function . 41
9.2 Optimized basis function . 43
9.3 Empty atom scheme . 43
9.4 Specification of a directory storing PAO and VPS files 44

10 Pseudopotentials 45

11 Cutoff energy 47
11.1 Convergence . 47
11.2 A tip for calculating the energy curve for bulks . 48
11.3 Fixing the relative position of regular grid . 49

12 SCF convergence 50

13 Restarting 53

14 Geometry optimization 54
14.1 Steepest decent optimization . 54
14.2 EF, BFGS, RF, and DIIS optimizations . 55
14.3 Constrained relaxation . 57

1

15 Molecular dynamics 59
15.1 NVE molecular dynamics . 59
15.2 NVT molecular dynamics by a velocity scaling . 59
15.3 NVT molecular dynamics by the Nose-Hoover method 60
15.4 Constraint molecular dynamics . 61
15.5 Initial velocity . 62

16 Visualization 63

17 Band dispersion 64

18 Density of states 67
18.1 Conventional scheme . 67
18.2 For calculations with lots of k-points . 69

19 Orbital optimization 71

20 Order(N) method 74
20.1 Divide-conquer method . 74
20.2 Generalized divide-conquer method . 77
20.3 Krylov subspace method . 77

21 MPI parallelization 80
21.1 O(N) calculation . 80
21.2 Cluster calculation . 80
21.3 Band calculation . 81
21.4 a-axis should be the longest axis . 82
21.5 Maximum number of processors . 82

22 OpenMP/MPI hybrid parallelization 83

23 Large-scale calculation 85

24 Electric field 87

25 Charge doping 88

26 Virtual atom with fractional nuclear charge 89

27 LCAO coefficients 90

28 Charge analysis 91
28.1 Mulliken charge . 91
28.2 Voronoi charge . 92
28.3 Electro-static potential fitting . 92

29 Non-collinear DFT 95

2

30 Relativistic effects 97
30.1 Fully relativistic . 97
30.2 Scalar relativistic treatment . 98

31 Orbital magnetic moment 99

32 LDA+U 101

33 Constraint DFT for non-collinear spin orientation 104

34 Zeeman terms 105
34.1 Zeeman term for spin magnetic moment . 105
34.2 Zeeman term for orbital magnetic moment . 105

35 Macroscopic polarization by Berry’s phase 107

36 Exchange coupling parameter 111

37 Optical conductivity 113

38 Electric transport calculations 114
38.1 General . 114
38.2 Step 1: The calculations for leads . 116
38.3 Step 2: The NEGF calculation . 117
38.4 Step 3: The transmission and current . 122
38.5 Periodic system under zero bias . 124
38.6 Interpolation of the effect by the bias voltage . 125
38.7 Parallelization of NEGF . 125
38.8 Examples . 126
38.9 Automatic running test of NEGF . 127

39 Maximally Localized Wannier Function 129
39.1 General . 129
39.2 Analysis . 134
39.3 Monitoring Optimization of Spread Function . 135
39.4 Examples for generating MLWFs . 138
39.5 Output files . 139
39.6 Automatic running test of MLWF . 142

40 Analysis of difference in two Gaussian cube files 143

41 Analysis of difference in two geometrical structures 144

42 Analysis of difference charge density induced by the interaction 146

43 Automatic determination of the cell size 148

44 Selection of lapack routine 149

3

45 Interface for developers 150

46 Automatic force tester 151

47 Automatic memory leak tester 152

48 Examples of the input files 154

49 Known problems 155

50 OpenMX Forum 156

51 Others 157

4

1 About OpenMX

OpenMX (Open source package for Material eXplorer) is a software package for nano-scale material
simulations based on density functional theories (DFT) [1], norm-conserving pseudopotentials [2, 20,
21], and pseudo-atomic localized basis functions [23]. Since the code is designed for the realization of
large-scale ab initio calculations on parallel computers, it is anticipated that OpenMX can be a useful
and powerful tool for nano-scale material sciences in a wide variety of systems such as bio-materials,
carbon nanotubes, magnetic materials, and nanoscale conductors. The distribution of the program
package and the source codes follow the practice of the GNU General Public License (GPL) [47], and
they are downloadable from http:http://www.openmx-square.org/

Features and capabilities of OpenMX Ver. 3.5 are as follows:

• Total energy and forces by cluster, band, and O(N) methods

• Local density approximation (LDA, LSDA) [2, 3, 4] and generalized gradient approximation
(GGA) [5] to the exchange-correlation potential

• Norm-conserving pseudopotentials [2, 20, 21]

• Variationally optimized pseudo-atomic basis functions [23]

• Fully and scalar relativistic treatment within pseudopotential scheme [10, 19, 13]

• Non-collinear DFT [6, 7, 8, 9]

• Constraint DFT for non-collinear spin and orbital orientation [11]

• Collinear LDA+U and non-collinear LDA+U methods [16]

• Macroscopic polarization by Berry’s phase [12]

• Divide-conquer (DC) method [28], generalized DC method, and Krylov subspace method for
O(N) eigenvalue solver

• Simple, RMM-DIIS [31], GR-Pulay [30], Kerker [32], and RMM-DIIS with Kerker’s metric [31]
charge mixing schemes

• Exchange coupling parameter [14, 15]

• Optical conductivity

• Charge doping

• Uniform electric field

• Full and constrained geometry optimization

• Electric transport calculation by a non-equilibrium Green’s function method

• Construction of maximally localized wannier functions

• NVE ensemble molecular dynamics

5

• NVT ensemble molecular dynamics by a velocity scaling [17] and the Nose-Hoover methods [18]

• Mulliken, Voronoi, and ESP fitting analysis of charge and spin densities

• Analysis of wave functions and electron (spin) densities

• Dispersion analysis by the band calculation

• Density of states (DOS) and projected DOS

• Flexible data format for the input

• Completely dynamic memory allocation

• Parallel execution by Message Passing Interface (MPI)

• Parallel execution by OpenMP

• Useful user interface for developers

• Evaluation of two-center integrals using Fourier transformation [27]

• Evaluation of three-center integrals by a projector expansion method [24]

• Solution of Poisson’s equation using FFT [26]

Considerable functionalities are available for calculations of physical properties such as magnetic,
dielectric, electric transport properties as listed above. Not only conventional diagonalization schemes
are provided for clusters, molecules, slab, and solids, but also linear scaling methods are supported as
the eigenvalue solver. Three calculation parts in OpenMX are mainly time-consuming:

• Evaluation of Hamiltonian matrix elements

• Solution of Poisson’s equation

• Diagonalization of the generalized secular equation

For the first and second parts, the computational time always scales as O(N) and O(N log(N)) for
any eigenvalue solver, where N is the number of atoms, basis functions, or grid points. When the
conventional diagonalization scheme (cluster and band methods) is used, the computational time for
the third part scales as O(N3). On the other hand, the O(N) methods can solve the eigenvalue
problem in O(N) operation in exchange for accuracy. For large scale calculations parallel execution
by MPI or OpenMX is supported for parallel machines. The hybrid parallelization by OpenMP/MPI
is also supported which is suitable for PC cluster consisting of multicore processors. All work arrays
in the program codes are dynamically allocated with the minimum memory size required by an input
file. The execution environment is unix and linux. For the execution of OpenMX, you are required
to possess pseudo-atomic basis orbitals and pseudopotentials. These input data can be calculated
using ADPACK which is a program package for atomic density functional calculations. Conveniently,
the data for several elements and ADPACK are available from a web site (http://www.openmx-
square.org/). We are continuously working toward development. Motivated contributors who want to
develop the open source codes are welcome. If so, the contact information is available in the above
website.

6

2 Installation

2.1 Including libraries

OpenMX uses two or three library packages. The following two libraries are indispensable.

• LAPACK (and BLAS) (http://www.netlib.org/)

• FFTW (http://www.fftw.org/)

If you try to perform the MPI execution, in addition to above two libraries, you need to install a MPI
package such as

• MPICH (http://www-unix.mcs.anl.gov/mpi)

• LAM (http://www.lam-mpi.org/)

If these library packages are not installed on your machine, before the installation of OpenMX, you
are required to install them. If these libraries packages are available on your machine, you can proceed
the following procedure for the installation. Then, after downloading openmx3.5.tar.gz, decompress
it as follows:

% tar zxvf openmx3.5.tar.gz

When it is completed, you can find four directories (source, work, DFT DATA, DFT DATA06) under
the directory, openmx3.5. The directories, ’source’, ’work’, ’DFT DATA’ and ’DFT DATA06’, contain
source files, input files, and data files for the pseudo-atomic basis functions and the pseudopotentials
of Ver. 2004 and 2006, respectively.

2.2 Serial version

To proceed the installation of the serial version, move to the directory, ’source’, and modify the makefile
in ’source’ to specify the compiler and libraries by CC and LIB. The default for the specification of
CC and LIB in makefile is as follows:

CC = gcc -O3 -Dnompi -Dnoomp -I/usr/local/include -I/home/ozaki/include

LIB = -L/usr/local/lib -lfftw3 -llapack -lblas -lg2c -static

where ’-Dnompi’ means that MPI is not used, and ’-Dnoomp’ means that OpenMP is not used. These
options must be added if you want to generate the serial version in all cases when you change a
compiler. You have to set the CC and LIB appropriately on your computational environment so that
the compilation and linking can be correctly performed and the executable file can be well optimized.
After specifying the CC and LIB, install as follows:

% make install

When the compilation is completed normally, then you can find the executable file, openmx, in the
directory, ’work’. You may change the compiler to make the executable file efficient, and if the intel
compiler, icc, is used, the specification may be like this:

CC = icc -O3 -Dnompi -Dnoomp

7

2.3 MPI version

As well as the case of the serial version, to generate the MPI version only thing you have to do is to
specify CC and LIB in the makefile in ’source’. To proceed the installation of the MPI version, move
to the directory, ’source’, and specify CC and LIB in the makefile as follows:

CC = mpicc -Dnoomp -O3 -I/usr/local/include

LIB = -L/usr/local/lib -lfftw3 -llapack -lblas -lg2c -static

Of course, the specification depends on your computer environment. After specifying CC appropriately,
then install as follows:

% make install

When the compilation is completed normally, then you can find the executable file, openmx, in the
directory, ’work’. To make the execution of OpenMX efficient, you can change a compiler and compile
options appropriate for your computational environment, which can generate an optimized executable
file. Several examples for CC and LIB can be found in makefile in the ’source’ directory for your
convenience.

2.4 OpenMP/MPI version

To generate the OpenMP/MPI hybrid parallelized version, only thing you have to do is to specify CC
and LIB in the makefile in ’source’. To proceed the installation of the OpenMP/MPI version, move
to the directory, ’source’, and specify CC and LIB in the makefile, for example, as follows:

For icc

CC = mpicc -openmp -O3 -I/usr/local/include

LIB = -L/usr/local/lib -lfftw3 -llapack -lblas -lg2c -static

For pgcc

CC = mpicc -mp -O3 -I/usr/local/include

LIB = -L/usr/local/lib -lfftw3 -llapack -lblas -lg2c -static

Of course, the specification depends on your computer environment. Also, it is noted that older
versions of icc and pgcc do not support the compiler option for OpenMP. After specifying CC appro-
priately, then install as follows:

% make install

When the compilation is completed normally, then you can find the executable file, openmx, in the
directory, ’work’. To make the execution of OpenMX efficient, you can change a compiler and compile
options appropriate for your computational environment, which can generate an optimized executable
file. It should be mentioned that the compilation of only OpenMP without MPI is also possible.

8

2.5 FFTW2 or FFTW3

OpenMX Ver. 3.5 supports both FFTW2 and FFTW3. In OpenMX Ver. 3.5, we assume FFTW3 as
defaul. Then, you may link FFTW3 in your makefile as follows:

LIB = -L/usr/local/lib -fftw3 -llapack -lblas -lg2c -static

If you want to use FFTW2, you need to add ’-Dfftw2’ for the compile option as follows:

CC = gcc -O3 -Dfftw2 -Dnompi -Dnoomp

LIB = -L/usr/local/lib -fftw -llapack -lblas -lg2c -static

Since the computational time for FFT employed in OpenMX is a small fraction in the total computa-
tional time, you can use either FFTW2 or FFTW3 without loosing significant efficiency.

2.6 Other options, -Dblaswrap and -lI77

In some environment, adding two options -Dblaswrap and -lI77 is required, while we do not fully
understand why such a dependency exists. In such a case, add two options for CC and LIB as follows:

CC = gcc -O3 -Dnompi -Dnoomp -Dblaswrap

LIB = -L/usr/local/lib -fftw3 -llapack -lblas -lg2c -lI77 -static

Other options, -Df77, -Df77 , -Df77 , -DF77, -DF77 , -DF77

When lapack and blas routines are linked, the specification of the routine name could depend on
the machine environment. The variation could be capital or small letter, or with or without of the
underscore. To choose a proper name of lapack and blas routines on your computational environment,
you can specify an option by -Df77, -Df77 , -Df77 , -DF77, -DF77 , or -DF77 . If the capital letter
is needed in calling the lapack routines, then choose ’F’, and choose a type of the underscore by none,
’ ’, or ’ ’. The default set is ’-Df77 ’.

2.7 Platforms

So far, we have confirmed that OpenMX Ver. 3.5 runs normally on the following machines:

• Pentium4

• Xeon

• Opteron

• Itanium2

• Cray XT5

• Sun Fire V890

9

2.8 Tips for installation

Since most problems in installation of OpenMX come from compilation of LAPACK and BLAS and
its linking, tips for installation on several platforms are given below.

• Intel Pentium 4 and Xeon (32 bit)

A simple way is to use highly optimized ATLAS library (libatlas p4.a) provided by Dr. Axel
Kohlmeyer (Thanks to Dr. Axel Kohlmeyer) on the following website.

http://www.theochem.ruhr-uni-bochum.de/ axel.kohlmeyer/cpmd-linux.html#atlas

Then, you may link these libraries in makefile of OpenMX as follows:

CC = mpicc -openmp -O3 -I/usr/local/include
LIB = -L/usr/local/lib -lfftw3 -latlas p4 -static

• Intel Pentium D and Xeon (EM64T)

A simple way is to use highly optimized ATLAS library (libatlas x86 64.a) provided by Dr. Axel
Kohlmeyer (Thanks to him) on the following website.

http://www.theochem.ruhr-uni-bochum.de/ axel.kohlmeyer/cpmd-linux.html#atlas

Then, you may link these libraries in makefile of OpenMX as follows:

CC = mpicc -openmp -O3 -I$(HOME)/include -I$(HOME)/include
LIB = -L$(HOME)/lib -lfftw3 -latlas x86 64 -static

• AMD Opteron

A simple way is to use ACML library (acml-3-6-0-gnu-64bit.tgz) provided by AMD on the
following website.

http://developer.amd.com/acml.aspx

Then, you may link these libraries in makefile of OpenMX as follows:

CC = mpicc -mp -fast -I$(HOME)/include
LIB = -L$(HOME)/lib -lfftw3 -lacml -L/opt/gcc33/lib64 -lg2c

• Intel Itanium

A simple way is to use MKL library. Then, you may link these libraries in makefile of OpenMX
as follows:

CC = mpicc -openmp -O3 -I$(HOME)/include -I/opt/intel/mkl/include -Wl,–allow-multiple-
definition

LIB = -L$(HOME)/lib -lfftw3 -L/opt/intel/mkl/lib/64 -lmkl lapack -lmkl ip -lguide -L/usr/lib
-lpthread -static

10

3 Test calculation

If the installation is completed normally, please move to the directory ’work’ and perform the program,
openmx, using an input file, Methane.dat, which can be found in the directory ’work’ as follows:

% ./openmx Methane.dat > met.std &

If you use the MPI version:

% mpirun -np 1 openmx Methane.dat > met.std &

Or if you use the MPI/OpenMP version:

% mpirun -np 1 openmx Methane.dat -nt 1 > met.std &

The test input file, Methane.dat, is for performing the SCF calculation of a methane molecule with
a fixed structure (No MD). The calculation is performed in only about 19 seconds by using a 2.8 GHz
Xeon machine, although it is dependent on a computer. When the calculation is completed normally,
11 files and one directory

met.std standard output of the SCF calculation

met.out input file and standard output

met.xyz final geometrical structure

met.ene values computed at every MD step

met.memory0 analysis for used memory

met.md geometrical structures at every MD step

met.md2 geometrical structure of the final MD step

met.cif cif file of the initial structure for Material Studio

met.tden.cube total electron density in the Gaussian cube format

met.v0.cube Kohn-Sham potential in the Gaussian cube format

met.vhart.cube Hartree potential in the Gaussian cube format

met_rst/ directory storing restart files

are output to the directory, ’work’. The output data to a standard output is stored to the file, met.std
which is helpful to know the calculation flow of SCF procedure. The file, met.out, includes computed
results such as the total energy, forces, the Kohn-Sham eigenvalues, Mulliken charges, the convergence
history for the SCF calculation, and analyzed computational time. A part of the file, met.out, is
shown below. It is found that the eigenvalues energy converges by ten iterations within 1.0e-8 Hartree
of the eigenvalues energy.

SCF history at MD= 1

11

SCF= 1 NormRD= 1.000000000000 Uele= -3.799184452246

SCF= 2 NormRD= 0.294505017736 Uele= -3.180922853695

SCF= 3 NormRD= 0.088735677892 Uele= -3.371991788328

SCF= 4 NormRD= 0.021096020042 Uele= -3.435330322070

SCF= 5 NormRD= 0.006019683784 Uele= -3.449516147408

SCF= 6 NormRD= 0.000784960310 Uele= -3.452522027174

SCF= 7 NormRD= 0.000002401488 Uele= -3.453266301971

SCF= 8 NormRD= 0.000000599833 Uele= -3.453266643608

SCF= 9 NormRD= 0.000000184742 Uele= -3.453266654138

SCF= 10 NormRD= 0.000000562332 Uele= -3.453266655628

Also, the total energy, chemical potential, Kohn-Sham eigenvalues, the Mulliken charges, dipole mo-
ment, forces, fractional coordinate, and analysis of computational time are output in ’met.out’ as
follows:

Total energy (Hartree) at MD = 1

Uele. -3.453266655628

Ukin. 5.824571448666

UH0. -14.517598384684

UH1. 0.012112580595

Una. -6.365977496421

Unl. 0.681047544610

Uxc0. -1.609135574068

Uxc1. -1.609135574068

Ucore. 9.551521413583

Uhub. 0.000000000000

Ucs. 0.000000000000

Uzs. 0.000000000000

Uzo. 0.000000000000

Uef. 0.000000000000

Utot. -8.032594041787

Note:

Utot = Ukin+UH0+UH1+Una+Unl+Uxc0+Uxc1+Ucore+Uhub+Ucs+Uzs+Uzo+Uef

Uene: band energy

Ukin: kinetic energy

UH0: electric part of screened Coulomb energy

UH1: difference electron-electron Coulomb energy

12

Una: neutral atom potential energy

Unl: non-local potential energy

Uxc0: exchange-correlation energy for alpha spin

Uxc1: exchange-correlation energy for beta spin

Ucore: core-core Coulomb energy

Uhub: LDA+U energy

Ucs: constraint energy for spin orientation

Uzs: Zeeman term for spin magnetic moment

Uzo: Zeeman term for orbital magnetic moment

Uef: electric energy by electric field

(see also PRB 72, 045121(2005) for the energy contributions)

Chemical potential (Hartree) 0.000000000000

Eigenvalues (Hartree) for SCF KS-eq.

Chemical Potential (Hartree) = 0.00000000000000

Number of States = 8.00000000000000

HOMO = 4

Eigenvalues

Up-spin Down-spin

1 -0.64275532805563 -0.64275532805563

2 -0.36132252595285 -0.36132252595285

3 -0.36127775831387 -0.36127775831387

4 -0.36127771549143 -0.36127771549143

5 0.26426269019400 0.26426269019400

6 0.26445588063823 0.26445588063823

7 0.26445588290286 0.26445588290286

8 0.31938640324811 0.31938640324811

Mulliken populations

Total spin S = 0.000000000000

13

Up spin Down spin Sum Diff

1 C 2.363735209 2.363735209 4.727470417 0.000000000

2 H 0.409066202 0.409066202 0.818132405 0.000000000

3 H 0.409066194 0.409066194 0.818132388 0.000000000

4 H 0.409066200 0.409066200 0.818132400 0.000000000

5 H 0.409066195 0.409066195 0.818132389 0.000000000

Decomposed Mulliken populations

1 C Up spin Down spin Sum Diff

multiple

s 0 0.598003833 0.598003833 1.196007665 0.000000000

sum over m 0.598003833 0.598003833 1.196007665 0.000000000

sum over m+mul 0.598003833 0.598003833 1.196007665 0.000000000

px 0 0.588514078 0.588514078 1.177028156 0.000000000

py 0 0.588703212 0.588703212 1.177406425 0.000000000

pz 0 0.588514085 0.588514085 1.177028171 0.000000000

sum over m 1.765731376 1.765731376 3.531462752 0.000000000

sum over m+mul 1.765731376 1.765731376 3.531462752 0.000000000

2 H Up spin Down spin Sum Diff

multiple

s 0 0.409066202 0.409066202 0.818132405 0.000000000

sum over m 0.409066202 0.409066202 0.818132405 0.000000000

sum over m+mul 0.409066202 0.409066202 0.818132405 0.000000000

3 H Up spin Down spin Sum Diff

multiple

s 0 0.409066194 0.409066194 0.818132388 0.000000000

sum over m 0.409066194 0.409066194 0.818132388 0.000000000

sum over m+mul 0.409066194 0.409066194 0.818132388 0.000000000

4 H Up spin Down spin Sum Diff

multiple

s 0 0.409066200 0.409066200 0.818132400 0.000000000

sum over m 0.409066200 0.409066200 0.818132400 0.000000000

sum over m+mul 0.409066200 0.409066200 0.818132400 0.000000000

5 H Up spin Down spin Sum Diff

multiple

s 0 0.409066195 0.409066195 0.818132389 0.000000000

sum over m 0.409066195 0.409066195 0.818132389 0.000000000

sum over m+mul 0.409066195 0.409066195 0.818132389 0.000000000

14

Dipole moment (Debye)

Absolute D 0.00000009

Dx Dy Dz

Total 0.00000004 0.00000005 -0.00000007

Core 0.00000000 0.00000000 0.00000000

Electron 0.00000004 0.00000005 -0.00000007

Back ground -0.00000000 -0.00000000 0.00000000

xyz-coordinates (Ang) and forces (Hartree/Bohr)

<coordinates.forces

5

1 C 0.00000 0.00000 0.00000 -0.000000037541 0.000...

2 H -0.88998 -0.62931 0.00000 -0.048431334064 -0.034...

3 H 0.00000 0.62931 -0.88998 0.000000053600 0.034...

4 H 0.00000 0.62931 0.88998 -0.000000012054 0.034...

5 H 0.88998 -0.62931 0.00000 0.048431331537 -0.034...

coordinates.forces>

Fractional coordinates of the final structure

1 C 0.00000000000000 0.00000000000000 0.00000000000000

2 H 0.86968043640398 0.89633135611159 0.00000000000000

3 H 0.00000000000000 0.10366864388841 0.86968043640398

4 H 0.00000000000000 0.10366864388841 0.13031956359602

5 H 0.13031956359602 0.89633135611159 0.00000000000000

15

Computational Time (second)

Elapsed.Time. 18.554

Min_ID Min_Time Max_ID Max_Time

Total Computational Time = 0 18.554 0 18.554

readfile = 0 16.096 0 16.096

truncation = 0 0.728 0 0.728

MD_pac = 0 0.010 0 0.010

DFT = 0 1.376 0 1.376

*** In DFT ***

Set_OLP_Kin = 0 0.119 0 0.119

Set_Nonlocal = 0 0.198 0 0.198

Set_Hamiltonian = 0 0.087 0 0.087

Poisson = 0 0.118 0 0.118

Diagonalization = 0 0.023 0 0.023

Mixing_DM = 0 0.002 0 0.002

Force = 0 0.288 0 0.288

Total_Energy = 0 0.111 0 0.111

Set_Aden_Grid = 0 0.027 0 0.027

Set_Orbitals_Grid = 0 0.111 0 0.111

Set_Density_Grid = 0 0.053 0 0.053

Others = 0 0.237 0 0.237

The files, met.tden.cube, met.v0.cube, met.vhart.cube, are the total electron density, the Kohn-
Sham potential, and the Hartree potential, respectively, which are output in the Gaussian cube format.
Since the Gaussian cube format is one of well used grid formats, you can visualize the files using
free molecular modeling software such as gOpenMol [48], Molekel [49], and XCrysDen [50]. The
visualization will be illustrated in the latter section.

16

4 Automatic running test

In addition to a running test of the Section ’Test calculation’, if you want to check whether most
functionalities of OpenMX have been successfully installed on your computer or not, we recommend
for you to perform an automatic running test. To do this, you can run OpenMX as follows:

For the serial running

% ./openmx -runtest

For the MPI parallel running

% mpirun -np 4 openmx -runtest

For the OpenMP/MPI parallel running

% mpirun -np 4 openmx -runtest -nt 1

In this parallel running, you can specify other options for mpirun. Then, OpenMX will run with 14 test
files, and compare calculated results with the reference results which are stored in ’work/input example’.
The comparison (absolute difference in the total energy and force) is stored in a file ’runtest.result’
in the directory ’work’. The reference results were calculated using single processor of a 2.6 GHz
Opteron machine. If the difference is within last seven digits, we may consider that the installation is
successful. As an example, ’runtest.result’ generated by the automatic running test is shown below:

1 input example/Benzene.dat Elapsed time(s)= 46.32 diff Utot= 0.000000000001 diff Force= 0.000000000000

2 input example/C60.dat Elapsed time(s)= 103.76 diff Utot= 0.000000000002 diff Force= 0.000000000001

3 input example/CO.dat Elapsed time(s)= 109.15 diff Utot= 0.000000000000 diff Force= 0.000000000000

4 input example/Cr2.dat Elapsed time(s)= 69.06 diff Utot= 0.000000000000 diff Force= 0.000000000000

5 input example/Crys-MnO.dat Elapsed time(s)= 135.83 diff Utot= 0.000000000004 diff Force= 0.000000000000

6 input example/GaAs.dat Elapsed time(s)= 137.91 diff Utot= 0.000000000000 diff Force= 0.000000000000

7 input example/Glycine.dat Elapsed time(s)= 40.18 diff Utot= 0.000000000000 diff Force= 0.000000000000

8 input example/Graphite4.dat Elapsed time(s)= 21.02 diff Utot= 0.000000000000 diff Force= 0.000000000000

9 input example/H2O-EF.dat Elapsed time(s)= 35.39 diff Utot= 0.000000000000 diff Force= 0.000000000000

10 input example/H2O.dat Elapsed time(s)= 41.26 diff Utot= 0.000000000000 diff Force= 0.000000000000

11 input example/HYb.dat Elapsed time(s)= 107.79 diff Utot= 0.000000000002 diff Force= 0.000000000000

12 input example/Methane.dat Elapsed time(s)= 25.67 diff Utot= 0.000000000003 diff Force= 0.000000002246

13 input example/Mol MnO.dat Elapsed time(s)= 110.44 diff Utot= 0.000000000000 diff Force= 0.000000000000

14 input example/Ndia2.dat Elapsed time(s)= 19.52 diff Utot= 0.000000000000 diff Force= 0.000000000000

Total elapsed time (s) 1003.29

The comparison was made using 6 processors on the same machine. As you may know, the floating
point operation depends on not only computational environment, but also the number of processors
used in parallel execution. So we see in above example that there is a small difference even using
the same machine. In addition, since two work arrays in OpenMX are allocated as single-precision
floating point numbers for saving the size of working memory, the difference between 32 bits and 64
bits machines can be large in this ’runtest’. The elapsed time of each job is also output, so it is helpful
for comparison of the computational speed depending on computational environment. In the directory
’work/input example’ you can find ’runtest.result’ files generated on several platforms.

If you want to make reference files by yourself, please execute OpenMX as follows:

17

% ./openmx -maketest

Then, for *.dat files in ’work/input example’, OpenMX will generate *.out files in ’work/input example’.
So, you can add a new dat file which is used in the next running test. But, please make sure that the
previous out files in ’work/input example’ will be overwritten by this procedure. For advanced testers
for checking the reliability of code, see also the Sections ’Automatic force tester’ and ’Automatic
memory leak tester’.

5 Automatic running test with large-scale systems

In some cases, one may want to know machine performance for more time consuming calculations.
For this purpose, an automatic running test with relatively large-scale systems can be performed by

For the serial running

% ./openmx -runtestL

For the MPI parallel running

% mpirun -np 4 openmx -runtestL

For the OpenMP/MPI parallel running

% mpirun -np 4 openmx -runtestL -nt 1

Then, OpenMX will run with 20 test files, and compare calculated results with the reference results
which are stored in ’work/large example’. The comparison (absolute difference in the total energy and
force) is stored in a file ’runtestL.result’ in the directory ’work’. The reference results were calculated
using 40 MPI processes of a 2.6GHz Opteron cluster machine. If the difference is within last seven
digits, we may consider that the installation is successful. As an example, ’runtestL.result’ generated
by the automatic running test is shown below:

18

1 large example/5 5 13COb2.dat Elapsed time(s)= 1740.27 diff Utot= 0.000000000038 diff Force= 0.000000000002

2 large example/B2C62 Band.dat Elapsed time(s)= 5035.37 diff Utot= 0.000000015973 diff Force= 0.000000006675

3 large example/CG15c-Kry.dat Elapsed time(s)= 1298.85 diff Utot= 0.000000001480 diff Force= 0.000000002069

4 large example/DIA512-1.dat Elapsed time(s)= 615.16 diff Utot= 0.000000033780 diff Force= 0.000000009994

5 large example/FM.dat Elapsed time(s)= 4533.59 diff Utot= 0.000000000018 diff Force= 0.000000000000

6 large example/FeBCC.dat Elapsed time(s)= 4128.44 diff Utot= 0.000000005436 diff Force= 0.000000000002

7 large example/GEL.dat Elapsed time(s)= 764.81 diff Utot= 0.000000000006 diff Force= 0.000000000000

8 large example/GFRAG.dat Elapsed time(s)= 801.09 diff Utot= 0.000000000002 diff Force= 0.000000000001

9 large example/GGFF.dat Elapsed time(s)=19139.17 diff Utot= 0.000000000026 diff Force= 0.000000000004

10 large example/MCCN.dat Elapsed time(s)= 2201.42 diff Utot= 0.000000000104 diff Force= 0.000000000065

11 large example/Mn12 148 F.dat Elapsed time(s)= 1538.40 diff Utot= 0.000000000014 diff Force= 0.000000000000

12 large example/N1C999.dat Elapsed time(s)= 3765.41 diff Utot= 0.000000013076 diff Force= 0.000000017373

13 large example/Ni63-O64.dat Elapsed time(s)= 2540.13 diff Utot= 0.000000000220 diff Force= 0.000000000126

14 large example/Pt63.dat Elapsed time(s)= 1718.62 diff Utot= 0.000000016353 diff Force= 0.000000000012

15 large example/SialicAcid.dat Elapsed time(s)= 204.23 diff Utot= 0.000000000278 diff Force= 0.000000000139

16 large example/aAFM.dat Elapsed time(s)= 5934.01 diff Utot= 0.000000000021 diff Force= 0.000000000001

17 large example/cAFM.dat Elapsed time(s)= 3994.10 diff Utot= 0.000000000022 diff Force= 0.000000000001

18 large example/gAFM.dat Elapsed time(s)= 5326.87 diff Utot= 0.000000000017 diff Force= 0.000000000001

19 large example/nsV4Bz5.dat Elapsed time(s)= 2675.28 diff Utot= 0.000000000394 diff Force= 0.000000000147

20 large example/opt 4T2L n.dat Elapsed time(s)=27734.05 diff Utot= 0.000000000006 diff Force= 0.000000000005

Total elapsed time (s) 95689.26

The comparison was made using 20 processes by MPI and 2 threads by OpenMP (totally 40 cores)
on the same machine. Since the automatic running test requires considerable memory size, you may
encounter a segmentation fault on computational environment with small memory. Also the above
example implies that the total elapsed time is more than 1 day even using 40 cores.

19

6 Input file

6.1 An example: methane molecule

An input file Methane.dat in the directory ’work’ is shown below. This input file has a flexible data
format, in which a parameter is given behind a keyword, the order of keywords is arbitrary, and a
blank and a comment can be also described freely. For the keywords and options, both capital, small
letters, and the mixture are acceptable, although these options in below example are written in a
specific form.

#

SCF calculation of a methane molecule by the LDA

and the cluster method

#

#

File Name

#

System.CurrrentDirectory ./ # default=./

System.Name met

level.of.stdout 1 # default=1 (1-3)

level.of.fileout 1 # default=1 (0-2)

#

Definition of Atomic Species

#

Species.Number 2

<Definition.of.Atomic.Species

H H4.0-s1 H_TM

C C4.5-s1p1 C_TM_PCC

Definition.of.Atomic.Species>

#

Atoms

#

Atoms.Number 5

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU|FRAC

<Atoms.SpeciesAndCoordinates

1 C 0.000000 0.000000 0.000000 2.0 2.0

2 H -0.889981 -0.629312 0.000000 0.5 0.5

3 H 0.000000 0.629312 -0.889981 0.5 0.5

4 H 0.000000 0.629312 0.889981 0.5 0.5

5 H 0.889981 -0.629312 0.000000 0.5 0.5

Atoms.SpeciesAndCoordinates>

Atoms.UnitVectors.Unit Ang # Ang|AU

#<Atoms.UnitVectors

10.0 0.0 0.0

0.0 10.0 0.0

20

0.0 0.0 10.0

#Atoms.UnitVectors>

#

SCF or Electronic System

#

scf.XcType LDA # LDA|LSDA-CA|LSDA-PW|GGA-PBE

scf.SpinPolarization off # On|Off|NC

scf.ElectronicTemperature 100.0 # default=300 (K)

scf.energycutoff 120.0 # default=150 (Ry)

scf.maxIter 60 # default=40

scf.EigenvalueSolver cluster # DC|GDC|Cluster|Band

scf.Kgrid 1 1 1 # means n1 x n2 x n3

scf.Mixing.Type rmm-diis # Simple|Rmm-Diis|Gr-Pulay|Kerker|Rmm-Diisk

scf.Init.Mixing.Weight 0.30 # default=0.30

scf.Min.Mixing.Weight 0.001 # default=0.001

scf.Max.Mixing.Weight 0.400 # default=0.40

scf.Mixing.History 7 # default=5

scf.Mixing.StartPulay 4 # default=6

scf.criterion 1.0e-8 # default=1.0e-6 (Hartree)

scf.lapack.dste dstevx # dstevx|dstedc|dstegr,default=dstevx

#

1D FFT

#

1DFFT.NumGridK 900 # default=900

1DFFT.NumGridR 900 # default=900

1DFFT.EnergyCutoff 2500.0 # default=3600 (Ry)

#

Orbital Optimization

#

orbitalOpt.Method off # Off|Unrestricted|Restricted

orbitalOpt.InitCoes Symmetrical # Symmetrical|Free

orbitalOpt.initPrefactor 0.1 # default=0.1

orbitalOpt.scf.maxIter 15 # default=12

orbitalOpt.MD.maxIter 7 # default=5

orbitalOpt.per.MDIter 20 # default=1000000

orbitalOpt.criterion 1.0e-4 # default=1.0e-4 (Hartree/borh)

#

output of contracted orbitals

#

CntOrb.fileout off # on|off, default=off

Num.CntOrb.Atoms 1 # default=1

<Atoms.Cont.Orbitals

21

1

Atoms.Cont.Orbitals>

#

SCF Order-N

#

orderN.HoppingRanges 6.0 # default=5.0 (Ang)

orderN.NumHoppings 2 # default=2

#

MD or Geometry Optimization

#

MD.Type nomd # Nomd|Opt|NVE|NVT_VS|NVT_NH

Constraint_Opt|DIIS

MD.Opt.DIIS.History 4

MD.Opt.StartDIIS 5 # default=5

MD.maxIter 1 # default=1

MD.TimeStep 1.0 # default=0.5 (fs)

MD.Opt.criterion 1.0e-5 # default=1.0e-4 (Hartree/bohr)

#

restart using a restart file, *.rst

#

scf.restart off # on|off,default=off

#

MO output

#

MO.fileout off # on|off

num.HOMOs 1 # default=1

num.LUMOs 1 # default=1

MO.Nkpoint 1 # default=1

<MO.kpoint

0.0 0.0 0.0

MO.kpoint>

#

DOS and PDOS

#

Dos.fileout off # on|off, default=off

Dos.Erange -10.0 10.0 # default = -20 20

Dos.Kgrid 1 1 1 # default = Kgrid1 Kgrid2 Kgrid3

#

22

output Hamiltonian and overlap

#

HS.fileout off # on|off, default=off

6.2 Keywords

The specification of each keyword is given below. The list does not include all the keywords in
OpenMX. Some of keywords will be explaned in each corresponding section.

File name

System.CurrrentDir
The output directory of output files is specified by this keyword. The default is ’./’.

System.Name
The file name of output files is specified by this keyword.

DATA.PATH
The path to the VPS and PAO directories can be specified in your input file by the following keyword:

DATA.PATH ../DFT_DATA06/ # default=../DFT_DATA/

Both the absolute and relative specifications are available.

level.of.stdout
The amount of informations output to the standard output information in the middle of calculation
is controlled by the keyword, level.of.stdout. In case of ’level.of.stdout=1’, minimum informations. In
case of ’level.of.stdout=2’, additional informations together with the minimum output information.
’level.of.stdout=3’ is for developers. The default is 1.

level.of.fileout
The amount of informations output to the files in the middle of calculation is controlled by the key-
word ’level.of.fileout’. In case of ’level.of.fileout=0’, minimum informations (no Gaussian cube and
grid files). In case of ’level.of.fileout=1’, standard output. In case of ’level.of.fileout=2’, additional
informations together with the standard output. The default is 1.

Definition of Atomic Species

Species.Number
The number of atomic species including the system is specified by the keyword ’Species.Number’.

Definition.of.Atomic.Species
Please specify atomic species by giving both the file name of pseudo-atomic basis orbitals and pseu-

23

dopotentials which must be existing in the directories ’DFT DATA/PAO’ and ’DFT DATA/VPS’,
respectively. For example, they are specified as follows:

<Definition.of.Atomic.Species

H H4.0-s11p11 H_TM

C C4.5-s11p11 C_TM

Definition.of.Atomic.Species>

The beginning of the description must be ’<Definition.of.Atomic.Species’, and the last of the descrip-
tion must be ’Definition.of.Atomic.Species>’. In the first column, you can give any name to specify the
atomic species. The name is used in the specification of atomic coordinates by ’Atoms.SpeciesAndCoordinates’.
In the second column, the file name of the pseudo-atomic basis orbitals without the file extension and
the number of primitive orbitals and contracted orbitals are given. Here we introduce an abbreviation
of the basis orbital we used as H4.0-s11p11, where H4.0 indicates the file name of the pseudo-atomic
basis orbitals without the file extension which must exist in the directory, ’DFT DATA/PAO’, s11
means that one optimized orbitals are constructed from one primitive orbitals for the s-orbital, which
means no contraction. Also, in case of s11, corresponding to no contraction, you can use a simple
notation ’s1’ instead of ’s11’. Thus, ’H4.0-s1p1’ is equivalent to ’H4.0-s11p11’. In the third column,
the file name for the pseudopotentials without the file extension is given. Also the file must exist in
the directory, ’DFT DATA/VPS’. It can be possible to assign as the different atomic species for the
same atomic element by specifying the different basis orbitals and pseudopotentials. For example, you
can define the atomic species as follows:

<Definition.of.Atomic.Species

H1 H4.0-s1p1 H_TM

H2 H4.0-s2p2d1 H_TM_PCC

C1 C4.5-s2p2 C_TM

C2 C4.5-s2p2d2 C_TM_PCC

Definition.of.Atomic.Species>

The flexible definition may be useful for the decrease of computational efforts, in which only high
level basis functions are used for atoms belonging to the essential part which determines the electric
properties in the system, and lower level basis functions are used for atoms in the other inert parts.

Atoms

Atoms.Number
The total number of atoms in the system is specified by the keyword ’Atoms.Number’.

Atoms.SpeciesAndCoordinates.Unit
The unit of the atomic coordinates is specified by the keyword ’Atoms.SpeciesAndCoordinates.Unit’.
Please specify ’Ang’ when you use the unit of Angstrom, and ’AU’ when the unit of atomic unit. The
fractional coordinate is also available by ’FRAC’. Then, please specify the coordinates spanned by a,
b, and c-axes given in ’Atoms.UnitVectors’. In the fractional coordinates, the coordinates can range
from -0.5 to 0.5, and the coordinates beyond its range will be automatically adjusted after reading

24

the input file

Atoms.SpeciesAndCoordinates
The atomic coordinates and the number of spin charge are given by the keyword
’Atoms.SpeciesAndCoordinates’ as follows:

<Atoms.SpeciesAndCoordinates

1 C 0.000000 0.000000 0.000000 2.0 2.0

2 H -0.889981 -0.629312 0.000000 0.5 0.5

3 H 0.000000 0.629312 -0.889981 0.5 0.5

4 H 0.000000 0.629312 0.889981 0.5 0.5

5 H 0.889981 -0.629312 0.000000 0.5 0.5

Atoms.SpeciesAndCoordinates>

The beginning of the description must be ’<Atoms.SpeciesAndCoordinates’, and the last of the de-
scription must be ’Atoms.SpeciesAndCoordinates>’. The first column is a sequential serial number
for identifying atoms. The second column is given to specify the atomic species which must be given
in the first column of the specification of the keyword ’Definition.of.Atomic.Species’ in advance. In
the third, fourth, and fifth columns, x-, y-, z-coordinates are given. The sixth and seventh columns
give the number of up and down initial spin charges for each atom, respectively. The sum of up and
down charges must be the number of valence electrons for the atomic element. When you calculate
spin-polarized systems using ’LSDA-CA’ or ’LSDA-PW’, you can give the initial spin charges for each
atom, which might be those of the ground state, to accelerate the SCF convergence.

Atoms.UnitVectors.Unit
The unit of the vectors for the unit cell is specified by the keyword ’Atoms.UnitVectors.Unit’. Please
specify Ang when you use the unit of Angstrom, and AU when the unit of atomic unit.

Atoms.UnitVectors
The vectors, a, b, and c of the unit cell are given by the keyword ’Atoms.UnitVectors’ as follows:

<Atoms.UnitVectors

10.0 0.0 0.0

0.0 10.0 0.0

0.0 0.0 10.0

Atoms.UnitVectors>

The beginning of the description must be ’<Atoms.UnitVectors’, and the last of the description must
be ’Atoms.UnitVectors>’. The first, second, and third rows correspond to the vectors, a, b, and c of
the unit cell, respectively. If the keyword is absent in the cluster calculation, a unit cell is automatically
determined so that the isolated system can not overlap with the image systems in the repeated cells.
See also the Section ’Automatic determination of the cell size’.

SCF or Electronic System

scf.XcType

25

The keyword ’scf.XcType’ specifies the exchange-correlation potential. Currently, ’LDA’, ’LSDA-CA’,
’LSDA-PW’, and ’GGA-PBE’ are available, where ’LSDA-CA’ is the local spin density functional of
Ceperley-Alder [2], ’LSDA-PW’ is the local spin density functional of Perdew-Wang, in which the
gradient of density is set to zero in their GGA formalism [4]. Note: ’LSDA-CA’ is faster than ’LSDA-
PW’. ’GGA-PBE’ is a GGA functional proposed by Perdew et al [5].

scf.SpinPolarization
The keyword ’scf.SpinPolarization’ specifies the non-spin polarization or the spin polarization for the
electronic structure. If the calculation for the spin polarization is performed, then specify ’ON’. If
the calculation for the non-spin polarization is performed, then specify ’OFF’. When you use LDA for
the keyword ’scf.XcType’ the keyword ’scf.SpinPolarization’ must be off. In addition to these options,
’NC’ is supported for the non-collinear DFT calculation. For this calculation, see also the Section
’Non-collinear DFT’.

scf.partialCoreCorrection
The keyword ’scf.partialCoreCorrection’ is a flag for a partial core correction (PCC) in calculations of
exchange-correlation energy and potential. ’ON’ means that the PCC is made, and ’OFF’ is none. In
any cases, the flag should be ’ON’, since pseudopotentials generated with PCC should be used with
the PCC, and also the PCC does not affect the result for pseudopotentials without the PCC because
of zero PCC charge in this case.

scf.Hubbard.U
In case of LDA+U calculations, the keyword ’scf.Hubbard.U’ should be switched on (on|off). The
default is off.

scf.Hubbard.Occupation
In the LDA+U method, three occupation number operators ’onsite’, ’full’, and ’dual’, are available
which can be specified by the keyword ’scf.Hubbard.Occupation’.

Hubbard.U.values
An effective U-value on each orbital of species is defined by the keyword as follows:

<Hubbard.U.values # eV

Ni 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 4.0 2d 0.0

O 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 0.0

Hubbard.U.values>

The beginning of the description must be ’<Hubbard.U.values’, and the last of the description must
be ’Hubbard.U.values>’. For all the basis orbitals specified by the ’Definition.of.Atomic.Species’, you
have to give an effective U-value in above format. The ’1s’ and ’2s’ mean the first and second s-orbital,
and the number behind ’1s’ is the effective U-value for the first s-orbital. The same rule is applied to
p- and d-orbitals.

scf.Constraint.NC.Spin
The keyword ’scf.Constraint.NC.Spin’ should be switched on (on|off) when the constraint DFT for
the non-collinear spin orientation is performed.

scf.Constraint.NC.Spin.v
The keyword ’scf.Constraint.NC.Spin.v’ gives a prefactor (eV) of the penalty functional in the con-

26

straint DFT for the non-collinear spin orientation.

scf.ElectronicTemperature
The electronic temperature (K) is given by the keyword ’scf.ElectronicTemperature’. The default is
300 (K).

scf.energycutoff
The keyword ’scf.energycutoff’ specifies the cutoff energy which is used in the calculation of matrix
elements associated with difference charge Coulomb potential and exchange-correlation potential and
the solution of Poisson’s equation using fast Fourier transform (FFT). The default is 150 (Ryd).

scf.Ngrid
The keyword ’scf.Ngrid’ gives the number of grids to discretize the a-, b-, and c-axes. Although
’scf.energycutoff’ is usually used for the discretization, if you specify the number of grids by ’scf.Ngrid’,
they are used for the discretization instead of those by ’scf.energycutoff’.

scf.maxIter
The maximum number of SCF iterations is specified by the keyword ’scf.maxIter’. The SCF loop is
terminated at the number specified by ’scf.maxIter’ even when a convergence criterion is not satisfied.
The default is 40.

scf.EigenvalueSolver
The solution method for the eigenvalue problem is specified by the keyword ’scf.EigenvalueSolver’.
An O(N) divide-conquer method ’DC’, an O(N) generalized divide-conquer method ’GDC’, O(N)
Krylov subspace method ’Krylov’, the cluster calculation ’Cluster’, and the band calculation ’Band’
are available.

scf.lapack.dste
The keyword specifies a lapack routine which is used to evaluate eigenvalues and eigenvectors of the
tridiagonalized matrix in the cluster, band, and O(N) calculations. Three lapack routines, dstegr,
dstedc, and dstevx are available. For further details, see the Section ’Selection of lapack routine’. The
default is ’dstevx’, and we strongly recommend for to use dstevx for both the stability and efficiency,
since it is possible to calculate only eigenvectors of occupied and unoccupied but low energy exited
states instead of calculating all the eigenvectors for saving the computational time.

scf.Kgrid
When you specify the band calculation ’Band’ for the keyword ’scf.EigenvalueSolver’, then you need
to give a set of numbers (n1,n2,n3) of grids to discretize the first Brillouin zone in the k-space by
the keyword ’scf.Kgrid’. For the reciprocal vectors ã, b̃, and c̃ in the k-space, please provide a set of
numbers (n1,n2,n3) of grids as n1 n2 n3.

scf.Mixing.Type
A mixing method of the electron density (or the density matrix) to generate an input electron density
at the next SCF step is specified by keyword, scf.Mixing.Type. A simple mixing method (’Simple’),
’GR-Pulay’ method (Guaranteed-Reduction Pulay method) [30], ’RMM-DIIS’ method [31], ’Kerker’
method [32], and ’RMM-DIISK’ method [31] are available. The simple mixing method used here is
modified to accelerate the convergence, referring to a convergence history. When ’GR-Pulay’, ’RMM-
DIIS’, ’Kerker’, or ’RMM-DIISK’ is used, the following recipes are helpful to obtain faster convergence

27

of SCF calculations:

• Use a rather larger value for ’scf.Mixing.StartPulay’. Before starting the Pulay like mixing,
achieve a convergence at some level. An appropriate value may be 10 to 30 for ’scf.Mixing.StartPulay’.

• Use a rather larger value for ’scf.ElectronicTemperature’ in case of metallic systems. When
’scf.ElectronicTemperature’ is small, numerical instabilities appear often.

• Look for an appropriate value for scf.Mixing.History. In most cases, ’scf.Mixing.History=7’ can
be a good value.

Among these mixing schemes, the robustest one might be ’RMM-DIISK’.

scf.Init.Mixing.Weight
The keyword, scf.Init.Mixing.Weight, gives a mixing weight first used by the simple mixing method,
the GR-Pulay method, the RMM-DIIS, the Kerker, and the RMM-DIISK.
The valid range is 0 <scf.Init.Mixing.Weight< 1. The default is 0.3.

scf.Min.Mixing.Weight
The keyword ’scf.Min.Mixing.Weight’ gives the lower limit of a mixing weight in the simple and Kerker
mixing methods. The default is 0.001.

scf.Max.Mixing.Weight
The keyword ’scf.Max.Mixing.Weight’ gives the upper limit of a mixing weight in the simple and
Kerker mixing methods. The default is 0.4.

scf.Kerker.factor
The keyword gives a Kerker factor which is used in the Kerker and RMM-DIISK mixing schemes. The
default is 1.0. For further details, See the Section ’SCF convergence’.

scf.Mixing.History
In the GR-Pulay method [30], the RMM-DIIS method [31], the Kerker [32], and the RMM-DIISK [31],
the input electron density at the next SCF step is estimated based on the output electron densities
in the several previous SCF steps. The keyword ’scf.Mixing.History’ specifies the number of previous
SCF steps which are utilized in the estimation. For example, if ’scf.Mixing.History’ is specified to be
3, and when the SCF step is 6th, the electron densities of 5, 4, and 3 SCF steps are taken into account.
The default is 6.

scf.Mixing.StartPulay
The SCF step which starts the GR-Pulay, the RMM-DIIS, the Kerker, and the RMM-DIISK methods
is specified by the keyword ’scf.Mixing.StartPulay’. The SCF steps before starting these Pulay-type
methods are then performed by the simple or Kerker mixing methods. The default is 6.

scf.Mixing.EveryPulay
The residual vectors in the Pulay-type mixing schemes tend to become linearly dependent each other
as the mixing steps accumulate, and the linear dependence among the residual vectors makes the
convergence difficult. A way of avoiding the linear dependence is to do the Pulay-type mixing oc-
casionally during the Kerker mixing. With this prescription, you can specify the frequency using
the keyword ’scf.Mixing.EveryPulay’. For example, in case of ’scf.Mixing.EveryPulay=5’, the Pulay-
mixing is made at every five SCF iteration, while Kerker-type mixing is used at the other steps.

28

’scf.Mixing.EveryPulay=1’ corresponds to the conventional Pulay-type mixing. It is noted that the
keyword ’scf.Mixing.EveryPulay’ is supported for only ’RMM-DIISK’, and the default value is 5.

scf.criterion
The keyword ’scf.criterion’ specifies a convergence criterion (Hartree) for the SCF calculation. The
SCF iteration is ended when a condition, dUele<scf.criterion, is satisfied, where dUele is defined as
the absolute deviation between the eigenvalue energy at the current and previous SCF steps. The
default is 1.0e-6 (Hartree).

scf.Electric.Field
The keyword ’scf.Electric.Field’ gives a uniform external electric field given by a sawtooth waveform.
For example, when an electric field of 1.0 GV/m (109 V/m) is applied along the a-axis, specify in your
input file as follows:

scf.Electric.Field 1.0 0.0 0.0 # default=0.0 0.0 0.0 (GV/m)

The sign of electric field is taken as that applied to electrons. The default is 0.0 0.0 0.0.

scf.system.charge
The keyword ’scf.system.charge’ gives the amount of the electron and hole dopings. The plus and
minus signs correspond to hole and electron dopings, respectively. The default is 0.

scf.SpinOrbit.Coupling
When the spin-orbit coupling is included, the keyword should be ’ON’, otherwise please set in ’OFF’.
In case of the inclusion of the spin-orbit coupling, you have to use j-dependent pseudopotentials. See
also the Section ’Relativistic effects’ as for the j-dependent pseudopotentials.

1D FFT

1DFFT.EnergyCutoff
The keyword ’1DFFT.EnergyCutoff’ gives the energy range to tabulate the Fourier transformed radial
functions of pseudo-atomic orbitals and of the projectors for non-local potentials. The default is 3600
(Ryd).

1DFFT.NumGridK
The keyword ’1DFFT.NumGridK’ gives the the number of radial grids in the k-space. The values
of the Fourier transformation for radial functions of pseudo-atomic orbitals and of the projectors for
non-local potentials are tabulated on the grids, ranging from zero to 1DFFT.EnergyCutoff, as a func-
tion of radial axis in the k-space. The default is 900.

1DFFT.NumGridR
The keyword ’1DFFT.NumGridR’ gives the the number of radial grids in the real space which is used
in the numerical grid integrations of the Fourier transformation for radial functions of pseudo-atomic
orbitals and of the projectors for non-local potentials. The default is 900.

Orbital Optimization

29

orbitalOpt.Method
The keyword ’orbitalOpt.Method’ specifies a method for the orbital optimization. When the orbital
optimization is not performed, then choose ’OFF’. When the orbital optimization is performed, the
following three options are available, the unrestricted optimization ’Unrestricted’, the restricted opti-
mization ’Restricted’, and orbital optimization restricted to species ’Species’. In the ’Unrestricted’, the
radial functions of basis orbitals are optimized without any constraint. Thus, all the radial functions
could differ from each other, which could depend on the following indices, atomic number, angular
moment quantum number, magnetic quantum number, and orbital multiplicity. In the ’Restricted’,
the radial functions of basis orbitals are optimized with a constraint that the radial wave function R

is independent on the magnetic quantum number. We prefer ’Restricted’ to ’Unrestricted’, since the
restricted optimization guarantees the rotational invariance of the total energy. In the ’Species’, basis
orbitals in atoms with the same species name, that you define in ’Definition.of.Atomic.Species’, are
optimized as the same orbitals. If you want to assign the same orbitals to atoms with almost the same
chemical environment, and optimize these orbitals, this scheme is useful.

orbitalOpt.InitCoes
The keyword ’orbitalOpt.InitCoes’ specifies a way for setting the initial contraction coefficients. If
’Symmetrical’ is chosen, then the initial contraction coefficients is symmetrically given so that the
total energy can be invariant for the rotation of system. If ’Free’ is chosen, then the initial contraction
coefficients could be unsymmetrical.

orbitalOpt.scf.maxIter
The maximum number of SCF iterations in the orbital optimization is specified by the keyword ’or-
bitalOpt.scf.maxIter’.

orbitalOpt.MD.maxIter
The maximum number of iterations for the orbital optimization is specified by the keyword ’or-
bitalOpt.MD.maxIter’. The iteration loop for the orbital optimization is terminated at the number
specified by ’orbitalOpt.MD.maxIter’ even when a convergence criterion is not satisfied.

orbitalOpt.criterion
The keyword ’orbitalOpt.criterion’ specifies a convergence criterion ((Hartree/borh)2) for the orbital
optimization. The iterations loop is finished when a condition, Norm of derivatives<orbitalOpt.criterion,
is satisfied.

CntOrb.fileout
If you want to output the optimized radial orbitals to files, then the keyword ’CntOrb.fileout’ must
be ON.

Num.CntOrb.Atoms
The keyword ’Num.CntOrb.Atoms’ gives the number of atoms whose optimized radial orbitals are
output to files.

Atoms.Cont.Orbitals
The keyword ’Atoms.Cont.Orbitals’ specifies the atom number, which was given by the first column in
the specification of the keyword ’Atoms.SpeciesAndCoordinates’ for the output of optimized orbitals
as follows:

30

<Atoms.Cont.Orbitals

1

2

Atoms.Cont.Orbitals>

The beginning of the description must be ’<Atoms.Cont.Orbitals’, and the last of the description
must be ’Atoms.Cont.Orbitals>’. The number of lines should be consistent with the number speci-
fied in the keyword ’Atoms.Cont.Orbitals’. For example, the name of files are C 1.pao and H 2.pao,
where the symbol corresponds to that given by the first column in the specification of the keyword
’Definition.of.Atomic.Species’ and the number after the symbol means that of the first column in the
specification of the keyword ’Atoms.SpeciesAndCoordinates’. These outout files, C 1.pao and H 2.pao,
can be an input data for pseudo-atomic orbitals as it is.

SCF Order-N

orderN.HoppingRanges
The keyword ’orderN.HoppingRanges’ defines the radius of a sphere which is centered on each atom.
The logically truncated cluster for each atom is constructed for the atom inside the sphere in the DC,
GDC, and Krylov subspace methods.

orderN.NumHoppings
The keyword ’orderN.NumHoppings’ gives the number, n, of hopping which is required to construct
the logically truncated cluster in the DC, GDC, and Krylov subspace methods. The cluster of size, n,
is defined by all the neighbors that can be reached by n hops, where the cutoff distance is given by
the sum of the cutoff distances r1 and r2 of basis orbitals belonging to atoms 1 and 2.

orderN.KrylovH.order
The dimension of Krylov subspace of Hamiltonian in each truncated cluster is given by the ’or-
derN.KrylovH.order’.

orderN.KrylovS.order
In case of ’orderN.Exact.Inverse.S=off’, the inverse is approximated by a Krylov subspace method for
the inverse, where the dimension of the Krylov subspace of overlap matrix in each truncated cluster
is given by the keyword ’orderN.KrylovS.order’. The default value is orderN.KrylovH.order×4.

orderN.Exact.Inverse.S
In case of ’orderN.Exact.Inverse.S=on’, the inverse of overlap matrix for each truncated cluster is
exactly evaluated. Otherwise, see the keyword ’orderN.KrylovS.order’. The default is ’on’ (on|off).

orderN.Recalc.Buffer
In case of ’orderN.Recalc.Buffer=on’, the buffer matrix is recalculated at every SCF step. Otherwise,
the buffer matrix is calculated at the first SCF step, and fixed at subsequent SCF steps. The default
is ’off’ (on|off).

orderN.Expand.Core
In case of ’orderN.Expand.Core=on’, the core region is defined by atoms within a sphere with radius

31

of 1.2 × rmin, where rmin is the distance between the central atom and the nearest atom. In case
of ’orderN.Expand.Core=off’, the central atom is considered as the core region. The default is ’on’
(on|off).

MD or Geometry Optimization

MD.Type
Please specify the type of the molecular dynamics calculation or the geometry optimization. Currently,
NO MD (Nomd), MD with the NVE ensemble (NVE), MD with the NVT ensemble by a velocity scal-
ing scheme (NVT VS)[17], MD with the NVT ensemble by a Nose-Hoover scheme (NVT NH) [18],
the geometry optimization by the steepest decent (SD) method (Opt), and DIIS optimization method
(DIIS) are available.

MD.Fixed.XYZ
In the geometry optimization and the molecular dynamics simulations, it is possible to separately fix
the x-, y-, and z-coordinates of the atomic position to the initial position in your input file by the
following keyword:

<MD.Fixed.XYZ

1 1 1 1

2 1 0 0

MD.Fixed.XYZ>

The example is for a system consisting of two atoms. If you have N atoms, then you have to provide
N-th rows in this specification. The 1st column is the same sequential number to specify atom as in
the specification of the keyword ’Atoms.SpeciesAndCoordinates’. The 2nd, 3rd, 4th columns are flags
for the x-, y-, z-coordinates. ’1’ means that the coordinate is fixed, and ’0’ relaxed. It should be noted
that the definition of the switch is opposite compared to the previous constraint schemes. In above
example, the x-, y-, z-coordinates of the atom ’1’ are fixed, only the x-coordinate of the atom ’2’ is
fixed. The default setting is that all the coordinates are relaxed. The fixing of atomic positions are
valid all the geometry optimizers and molecular dynamics schemes.

MD.maxIter
The keyword ’MD.maxIter’ gives the number of MD iterations.

MD.TimeStep
The keyword ’MD.maxIter’ gives the time step (fs).

MD.Opt.criterion
When ’Opt’ is chosen for the keyword ’MD.Type’, then the keyword ’MD.Opt.criterion’ specifies a
convergence criterion (Hartree/bohr). The geometry optimization is finished when a condition, the
maximum force is smaller than ’MD.Opt.criterion’, is satisfied.

MD.Opt.DIIS.History
The keyword ’MD.Opt.DIIS.History’ gives the number of previous steps to estimate the optimized
structure used in the geometry optimization by ’DIIS’. The default value is 4.

32

MD.Opt.StartDIIS
The geometry optimization step which starts ’DIIS’ is specified by the keyword ’MD.Opt.StartDIIS’.
The geometry optimization steps before starting DIIS type methods is performed by the steepest
decent method. The default value is 5.

MD.TempControl
The keyword specifies temperature for atomic motion in MD of the NVT ensembles. In ’NVT VS’,
the temperature for nuclear motion can be controlled by

<MD.TempControl

3

100 2 1000.0 0.0

400 10 700.0 0.4

700 40 500.0 0.7

MD.TempControl>

The beginning of the description must be ’<MD.TempControl’, and the last of the description must
be ’MD.TempControl>’. The first number ’3’ gives the number of the following lines to control the
temperature. In this case you can see that there are three lines. Following the number ’3’, in the
consecutive lines the first column means the number of MD steps and the second column gives interval
of MD steps which determine ranges of MD steps and intervals at which the velocity scaling is made.
For above example, a velocity scaling is performed at every two MD steps until 100 MD steps, at every
10 MD steps from 100 to 400 MD steps, and at every 40 MD steps from 400 to 700 MD steps. The
third and fourth columns give a given temperature (K) and a scaling parameter α in the interval. For
further details see the Section ’Molecular dynamics’. On the other hand, in NVT NH, the temperature
for nuclear motion can be controlled by

<MD.TempControl

4

1 1000.0

100 1000.0

400 700.0

700 600.0

MD.TempControl>

The beginning of the description must be ’<MD.TempControl’, and the last of the description must
be ’MD.TempControl>’. The first number ’4’ gives the number of the following lines to control the
temperature. In this case you can see that there are four lines. Following the number ’4’, in the
consecutive lines the first and second columns give the number of MD steps and a given temperature
for nuclear motion. The temperature between the interval is given by a linear interpolation.

NH.Mass.HeatBath
In ’NVT NH’, a mass of heat bath is given by this keyword. The default mass is 20, where we use a
unit that the weight of a proton is 1.0.

MD.Init.Velocity

33

For molecular dynamics simulations, it is possible to provide the initial velocity of each atom by the
following keyword:

<MD.Init.Velocity

1 3000.000 0.0 0.0

2 -3000.000 0.0 0.0

MD.Init.Velocity>

The example is for a system consisting of two atoms. If you have N atoms, then you have to provide
N-th rows in this specification. The 1st column is the same sequential number to specify atom as in
the specification of the keyword ’Atoms.SpeciesAndCoordinates’. The 2nd, 3rd, and 4th columns are
x-, y-, and z-components of the velocity of each atom. The unit of the velocity is m/s. The keyword
’MD.Init.Velocity’ is compatible with the keyword ’MD.Fixed.XYZ’.

Band dispersion

Band.dispersion
When you evaluate the band dispersion, please specify the keyword ’Band.dispersion’ ON.

Band.KPath.UnitCell
The keyword ’Band.KPath.UnitCell’ gives unit vectors, which are used in the calculation of the band
dispersion, as follows:

<Band.KPath.UnitCell

3.56 0.0 0.0

0.0 3.56 0.0

0.0 0.0 3.56

Band.KPath.UnitCell>

The beginning of the description must be ’<Band.KPath.UnitCell’, and the last of the description
must be ’Band.KPath.UnitCell>’. If ’Band.KPath.UnitCell’ exist, the reciprocal lattice vectors for the
calculation of the band dispersion are calculated by the unit vectors specified in ’Band.KPath.UnitCell’.
If ’Band.KPath.UnitCell’ does not exist, the reciprocal lattice vectors, which are calculated by the unit
vectors specified in ’Atoms.UnitVectors’, is employed for the calculation of the band dispersion. In case
of fcc, bcc, base centered cubic, and trigonal cells, the reciprocal lattice vectors for the calculation
of the band dispersion should be specified using the keyword ’Band.KPath.UnitCell’ based on the
consuetude in the band calculations.

Band.Nkpath
The keyword ’Band.Nkpath’ gives the number of paths for band dispersion.

Band.kpath
The keyword ’Band.kpath’ specifies the paths of band dispersion as follows:

<Band.kpath

34

15 0.0 0.0 0.0 1.0 0.0 0.0 g X

15 1.0 0.0 0.0 1.0 0.5 0.0 X W

15 1.0 0.5 0.0 0.5 0.5 0.5 W L

15 0.5 0.5 0.5 0.0 0.0 0.0 L g

15 0.0 0.0 0.0 1.0 1.0 0.0 g X

Band.kpath>

The beginning of the description must be ’<Band.kpath’, and the last of the description must be
’Band.kpath>’. The number of lines should be consistent with ’Band.Nkpath’. The first column is
the number of grids at which eigenvalues are evaluated on the path. The following (n1, n2, n3) and
(n1’, n2’, n3’), spanned by the reciprocal lattice vectors, specifies the start and end points of the path
in the first Brillouin zone. If ’Band.KPath.UnitCell’ exists, the reciprocal lattice vectors for the calcu-
lation of the band dispersion are calculated by the unit vectors specified in ’Band.KPath.UnitCell’. If
’Band.KPath.UnitCell’ does not exist, the reciprocal lattice vectors, which are calculated by the unit
vectors specified in ’Atoms.UnitVectors’ is employed for the calculation of the band dispersion. The
final two alphabets give the name of the start and end points of the path.

Restarting

scf.restart
If you want to restart the SCF calculation using a previous file ’* rst/*’ which should be generated in
advance, then set the keyword ’scf.restart’ to ’ON’.

Outout of molecular orbitals (MOs)

MO.fileout
If you want to output molecular orbitals (MOs) to files, then set the keyword ’MO.fileout’ to ’ON’.

num.HOMOs
The keyword ’num.HOMOs’ gives the number of the highest occupied molecular orbitals (HOMOs)
that you want to output to files

num.LUMOs
The keyword ’num.LUMOs’ gives the number of the highest occupied molecular orbitals (LUMOs)
that you want to output to files

MO.Nkpoint
When you have specified ’MO.fileout=ON’ and scf.EigenvalueSolver=Band, the keyword ’MO.Nkpoint’
gives the number of the k-points at which you want to output MOs to files

MO.kpoint
The keyword ’MO.kpoint’ specifies the k-point, at which MOs are evaluated for the output to files, as
follows:

<MO.kpoint

35

0.0 0.0 0.0

MO.kpoint>

The beginning of the description must be ’<MO.kpoint’, and the last of the description must be
’MO.kpoint>’. The k-points are specified by (n1, n2, n3) which is spanned by the reciprocal lattice
vectors, where the the reciprocal lattice vectors are determined in the same way as Band.kpath

DOS and PDOS

Dos.fileout
If you want to evaluate density of states (DOS) and projected local density of states (LDOS), please
set in ’Dos.fileout=ON’.

Dos.Erange
The keyword, Dos.Erange, determines the energy range for the DOS calculation as

Dos.Erange -10.0 10.0

The first and second values are the lower and upper bounds of the energy range (eV) for the DOS
calculation, respectively.

Dos.Kgrid
The keyword, Dos.Kgrid, gives a set of numbers (n1,n2,n3) of grids to descretize the first Brillouin
zone in the k-space, which is used in the DOS calculation.

Interface for developers

HS.fileout
If you want to use Kohn-Sham Hamiltonian, overlap, and density matrices, please set in ’HS.fileout=ON’.
Then, these data are stored to *.scfout in a binary form. The utilization of these data is illustrated
in the Section, Interface for developers.

Voronoi charge

Voronoi.charge
If you want to calculate Voronoi charges, then set the keyword ’Voronoi.charge’ in ’ON’. The result is
found in ’*.out’.

36

7 Output files

In case of ’level.of.fileout=0’, the following files are generated, where * means System.Name.

• *.out

The history of SCF calculations, the history of geometry optimization, Mulliken charges, the
total energy, and the dipole moment.

• *.memory0, *.memory1,...,*.memory#,..

Analysis of the size of memory used in processor #.

• *.xyz

The final geometrical structure obtained by MD or the geometry optimization, which can be
read in gOpenMol or xmakemol.

• *.bulk.xyz

If scf.EigenvalueSolver=Band, atomic coordinates including atoms in copied cells are output,
which can be read in gOpenMol or xmakemol.

• * rst/

The directory storing restart files.

• *.md

Geometrical coordinates at every MD step, which can be read in gOpenMol or xmakemol.

• *.md2

Geometrical coordinates at the final MD step with the species names that you specified .

• *.cif

Initial geometrical coordinates in the cif format suited for Material Studio.

• *.ene

Values computed at every MD step. The values are found in the routine, ’iterout.c’

In case of ’level.of.fileout=1’, the following Gaussian cube files are generated, in addition to files
generated in ’level.of.fileout=0’, where * means System.Name.

• *.tden.cube

Total electron density in a form of the Gaussian cube format

• *.sden.cube

If spin-polarized calculations using LSDA-CA, LSDA-PW, or GGA-PBE are performed, then
spin electron density is output in a Gaussian cube format.

• *.v0.cube

The Kohn-Sham potential excluding the non-local potential for up-spin in a Gaussian cube
format.

37

• *.v1.cube

The Kohn-Sham potential excluding the non-local potential for down-spin in a Gaussian cube
format in the spin-polarized calculation.

• *.vhart.cube

The Hartree potential in a Gaussian cube format.

In case of level.of.fileout=2, the following files are generated in addition to files generated in
level.of.fileout=1, where * means System.Name.

• *.vxc0.cube

The exchange-correlation potential for up-spin in a Gaussian cube format.

• *.vxc1.cube

The exchange-correlation potential for down-spin in a Gaussian cube format.

• *.grid

The real space grids which are used numerical integrations and the solution of Poisson’s equation.

If ’MO.fileout=ON’ and ’scf.EigenvalueSolver=Cluster’, the following files are also generated:

• *.homo0 0.cube, *.homo0 1.cube, ...

The HOMOs are output in a Gaussian cube format. The first number below homo means a spin
state (up=0, down=1). The second number specifies the eigenstates, i.e., 0, 1, and 2 correspond
HOMO, HOMO-1, and HOMO-2, respectively.

• *.lumo0 0.cube, *.lumo0 1.cube, ...

The LUMOs are output in a Gaussian cube format. The first number below lumo means a spin
state (up=0, down=1). The second number specifies the eigenstates, i.e., 0, 1, and 2 correspond
LUMO, LUMO+1, and LUMO+2, respectively.

If MO.fileout=ON and scf.EigenvalueSolver=Band, the following files are also generated:

• *.homo0 0 0 r.cube, *.homo1 0 1 r.cube, ... *.homo0 0 0 i.cube, *.homo1 0 1 i.cube, ...

The HOMOs are output in a Gaussian cube format. The first number below homo means the
k-point number, which is specified by the keyword ’MO.kpoint’. The second number is a spin
state (up=0, down=1). The third number specifies the eigenstates, i.e., 0, 1, and 2 correspond
HOMO, HOMO-1, and HOMO-2, respectively. The ’r’ and ’i’ mean the real and imaginary parts
of the wave function.

• *.lumo0 0 0 r.cube, *.lumo1 0 1 r.cube, ... *.lumo0 0 0 i.cube, *.lumo1 0 1 i.cube, ...

The LUMOs are output in a Gaussian cube format. The first number below lumo means the
k-point number, which is specified in the keyword, MO.kpoint. The second number is a spin
state (up=0, down=1). The third number specifies the eigenstates, i.e., 0, 1, and 2 correspond
LUMO, LUMO+1, and LUMO+2, respectively. The ’r’ and ’i’ mean the real and imaginary
parts of the wave function.

38

If ’Band.Nkpath’ is not 0 and ’scf.EigenvalueSolver=Band’, the following file is also generated:

• *.Band

A data file for making the band dispersion.

If ’Dos.fileout=ON’, the following files are also generated:

• *.Dos.val

A data file of eigenvalues for calculating the density of states.

• *.Dos.vec

A data file of eigenvectors for calculating the density of states.

If scf.SpinPolarization=NC and level.of.fileout=1 or 2, the following files are also generated:

• *.nco.txt

A vector file which stores a non-collinear orbital moment projected on each atom by means of
Mulliken analysis, which can be visualized using ’Plot Vector File’ in gOpenMol.

• *.nc.txt

A vector file which stores a non-collinear spin moment projected on each atom by means of
Mulliken analysis, which can be visualized using ’Plot Vector File’ in gOpenMol.

• *.nc.txt

A vector file which stores a non-collinear spin moment on real space grids, which can be visualized
using ’Plot Vector File’ in gOpenMol.

39

8 Functional

In OpenMX, local density approximations (LDA, LSDA) [2, 3, 4] and a generalized gradient approxi-
mation (GGA) [5] to the exchange-correlation potential are used. Using a keyword ’scf.XcType’, you
can choose the exchange-correlation type.

scf.XcType LDA # LDA|LSDA-CA|LSDA-PW|GGA-PBE

Currently, ’LDA’, ’LSDA-CA’, ’LSDA-PW’, and ’GGA-PBE’ are available, where ’LSDA-CA’ is the
local spin density functional of Ceperley-Alder [2], ’LSDA-PW’ is the local spin density functional
of Perdew-Wang, in which the gradient of density is set in zero in their GGA formalism [4]. Note:
’LSDA-CA’ is faster than ’LSDA-PW’. ’GGA-PBE’ is GGA proposed by Perdew et al [5]. The GGA
is implemented by the first order finite difference in real space. The relevant keyword to specify the
spin (un)polarized and non-collinear calculations is ’scf.SpinPolarization’.

scf.SpinPolarization off # On|Off|NC

If the calculation for the spin polarization is performed, then specify ’ON’. If the calculation for the non-
spin polarization is performed, then specify ’OFF’. When you use LDA for the keyword ’scf.XcType’
the keyword ’scf.SpinPolarization’ must be off. In addition to these options, ’NC’ is supported for the
non-collinear DFT calculation. For this calculation, see also the Section ’Non-collinear DFT’.

LDA+U functionals are also available. For the details, see the Section ’LDA+U’.

40

9 Basis sets

9.1 Primitive basis function

The primitive basis functions used in OpenMX are the ground and exited states of a pseudo-atom
with a confinement pseudopotential [23] shown in Fig. 1. The functions are numerical table function
stored in a file of which file extension is ’pao’. You will see that the ground state is nodeless and
the first exited state has one node, and the number of nodes increases in the further excited states.
The one-particle Kohn-Sham functions are expressed by the linear combination of the atomic type
basis functions where each basis function is the product of the radial function and a real spherical
harmonics function. The selection of the basis sets is one of important issues to perform reliable
calculations. However, the use of a large number of basis orbitals requires an extensive computational
resource such as memory size and computational time. So, users are required to use small but accurate
basis sets at some level which depends on calculated properties and computer power. As a criterion
of the selection, we offer databases (http://www.openmx-square.org/) of basis sets, and convergence
properties of the total energy and the equilibrium bond length of dimer molecules. As an example, the
convergence properties of a carbon dimer are shown in Fig. 2. You might find that the convergence
properties are determined by two simple parameter: a cutoff radius of basis orbitals and the number of
basis orbitals, which suggests a large cutoff radius and number of basis orbitals provide more accurate
results with high computational demands. The database suggests that basis orbitals with a higher
angular momentum are needed to achieve the sufficient convergence for elements, such as F and Cl,
in the right side of the periodic table, and that a large cutoff radius of basis orbitals should be used
for elements, such as Li and Na, in the left side of the periodic table. If you want to use basis orbitals

0 1 2 3 4 5

−4.0

−2.0

0.0

2.0

4.0

−1.0

0.0

1.0

r (a.u.)

P
se

ud
o

po
te

nt
ia

l (
H

ar
tr

ee
)

R
adial W

ave F
unction

node=0node=1
node=2

node=3

Figure 1: Primitive basis functions for s-orbitals of a carbon pseudo-atom with a confinement pseu-
dopotential.

41

−10.90

−10.80

−10.70

−10.60

−10.50

0 5 10 15 20 25 30 35 40 45
1.16

1.24

1.32

1.40

T
ot

al
 E

ne
rg

y
(H

ar
tr

ee
)

rc=3.5 (a.u.)
rc=4.0 (a.u.)
rc=4.5 (a.u.)
rc=5.0 (a.u.)
rc=5.5 (a.u.)
rc=6.0 (a.u.)

E
qu

ili
br

iu
m

 B
on

d
Le

ng
th

 (
A

)

rc=3.5 (a.u.)
rc=4.0 (a.u.)
rc=4.5 (a.u.)
rc=5.0 (a.u.)
rc=5.5 (a.u.)
rc=6.0 (a.u.)

(a)

(b)

C2

C2

Exp.

s+p s+p+d

s+p+ds+p

Number of Bases per Atom

Figure 2: Convergence properties of (a) the total energy and (b) the equilibrium bond length for a
carbon dimer with respect to basis set

stored in the database, then copy them to the directory, ’openmx3.5/DFT DATA/PAO/’. You can
freely utilize these data in terms of GNU-GPL, but we cannot offer any warranty on these data. Also
it is possible to generate pseudo-atomic basis functions using ADPACK by yourself. The basis set is
specified by a keyword ’Definition.of.Atomic.Species’ as follows:

<Definition.of.Atomic.Species

H H4.0-s2p1 H_LDA

C C4.5-s2p2 C_LDA

Definition.of.Atomic.Species>

where an abbreviation ’H4.0-s2p1’ of the basis function is introduced, where H4.0 indicates the file
name of the pseudo-atomic basis orbitals without the file extension which must exist in the directory
’DFT DATA/PAO’, and ’s2p1’ means that two s-orbitals and one p-orbital in the file are used. In
this case, totally eight basis functions (2x1+1x3=5) are assigned for ’H’. See also the Section ’Input
file’ for the details.

42

9.2 Optimized basis function

Starting from the primitive basis functions, you can optimize the radial shape variationally so that
the accuracy can be increased. See the details in the Section ’Orbital optimization’.

9.3 Empty atom scheme

The primitive basis and optimized basis functions are usually assigned to atoms. Moreover, it is
possible to assign basis functions in any vacant region using an ’empty’ atom. You will find the
empty atom ’E’ in the database (http://www.openmx-square.org/). Using the basis functions and
pseudopotential, though the pseudopotential is a flat zero potential, you can put the basis functions
at any place independently of atomic position. The empty atom scheme enables us to treat a vacancy
state and a nearly free electron state on metal surfaces within the LCAO method. As an example,
a calculation of a F-center in NaCl with a Cl vacancy is shown in Fig. 3. We see that the highest
occupied state at Γ point is the F-center state. You can follow the calculation using NaCl FC.dat in the
directory ’work’. The geometry optimization and molecular dynamics simulations are also supported
for the empty atom. So, the position of empty atoms can be optimized variationally.

Figure 3: The isosurface map of the highest occupied state at Γ point for NaCl with a Cl-site vacancy,
which shows a F-center in NaCl with a Cl vacancy. The isosurface map was drawn using XCrysDen
with the isovalue of 0.042 [50]. The calculation was done with the system charge of -1 using a keyword
’scf.system.charge’. The watery and silver colors correspond sodium and chlorine atoms, and the
yellow small ball shows the position of empty atom.

43

9.4 Specification of a directory storing PAO and VPS files

The path to the VPS and PAO directories can be specified in your input file by the following keyword:

DATA.PATH ../DFT_DATA06/ # default=../DFT_DATA/

Both the absolute and relative specifications are available. PAO files in the the database (2004) should
not be used for the VPS in the database (2006) unless you understand well the content, since semicore
states included in several elements are different from each other. So, the consistency in the version of
PAO and VPS must be kept. For that reason, it would be better to store PAO and VPS files of each
version in different directories. In this case, the keyword is useful.

44

10 Pseudopotentials

The core Coulomb potential in OpenMX is replaced by a tractable norm-conserving pseudopoten-
tial proposed by Troullier and Martine [20]. Although the pseudopotentials can be generated us-
ing ADPACK which is a program package for atomic density functional calculations and avail-
able from a web site (http://www.openmx-square.org/), for your convenience we offer databases
(http://www.openmx-square.org/) of the pseudopotentials. They are database (2004) and database
(2006). If you want to use pseudopotentials stored in the database, then copy them to the directory,
’openmx3.5/DFT DATA/VPS/’ or ’openmx3.5/DFT DATA06/VPS/’. You can freely utilize these
data in terms of GNU-GPL, but we cannot offer any warranty on these data. The assignation of pseu-
dopotentials can be made using a keyword ’Definition.of.Atomic.Species’ as in the case of specification
of basis functions as follows:

<Definition.of.Atomic.Species

H H4.0-s2p1 H_CA

C C4.5-s2p2 C_CA

Definition.of.Atomic.Species>

The pseudopotential file can be specified in the third column, and the file must be existing in the
directory ’DFT DATA/VPS’ or ’DFT DATA06/VPS/’. In the specification of atomic coordinates, it
is required to give the number of electrons for up- and down-spins at each atom as follows:

<Atoms.SpeciesAndCoordinates

1 C 0.000000 0.000000 0.000000 2.0 2.0

2 H -0.889981 -0.629312 0.000000 0.5 0.5

3 H 0.000000 0.629312 -0.889981 0.5 0.5

4 H 0.000000 0.629312 0.889981 0.5 0.5

5 H 0.889981 -0.629312 0.000000 0.5 0.5

Atoms.SpeciesAndCoordinates>

where the sixth and seventh columns give the number of up and down initial spin charges for each
atom, respectively. The sum of up and down charges for the atomic element should be the number of
electrons which is taken into account in the pseudopotential generation. Then, the proper number for
each pseudopotential can be found in the pseudopotential file, *.vps. For example, you will see the
following line in the file ’C CA.vps’ for carbon atom in the database (2006).

valence.electron 4.0000

The number ’4.0’ corresponds to the number of electrons which is taken into account in the pseudopo-
tential generation. So, we see in above example that the sum of up (2.0) and down (2.0) spins charges
is 4.0 for ’C’ in the specification of ’Atoms.SpeciesAndCoordinates’.

When you make pseudopotentials using ADPACK by yourself, you should pay attention to the
following points.

• Check whether unphysical calculations have been caused by the ghost states or not. Because
of the use of the separable form, the ghost states often appear. You should check whether the

45

pseudopotentials are appropriate or not by performing calculations of simple systems before you
calculate systems that you are interested in. To avoid the generation of the ghost states, the
multiple separable form proposed by Blochl could be useful [22].

• Make smooth core densities for the partial core correction. If not so, numerical instabilities
appear often, since a high energy cutoff is needed for accurate numerical integrations.

You will find the further details in the manual of the program package ’ADPACK’.

46

11 Cutoff energy

11.1 Convergence

The computational effort and accuracy depend on the cutoff energy, which is controlled by the keyword
’scf.energycutoff’, for the numerical integrations and the solution of Poisson’s equation [24]. Figure 4
shows the convergence property of the total energy of a methane molecule with respect to the cutoff
energy, where the input file is Methane.dat used in the Section ’Input file’. Since the cutoff energy
is not for basis set, but for the numerical integrations, the total energy does not have to converge
from the upper energy region with respect to the cutoff energy like that of plane wave basis set. In
most cases, the cutoff energy of 150-200 Ryd is an optimum choice. However, it should be noted that
there is a subtle problem which requires the cutoff energy more than 300-500 Ryd. Calculations of a
very flat potential minimum and a small energy difference among different spin orders could be such
a subtle problem.

Structural parameters and the dipole moment of a water molecule, calculated with a different
cutoff energy, are shown in Table 1, where the input file was H2O.dat in the directory ’work’. The
fully convergent result is obtained using around 150 Ryd. Although a sufficient cutoff energy depends
on elements, 150-200 Ryd might be enough to achieve the convergence for most cases. However, we
recommend that you would check the convergence of total energy for your systems. For the other cutoff
energy, 1DFFT.EnergyCutoff, we commonly use 3600 (Ryd) which is quite enough for the convergence
with no high computational demands.

0 200 400 600 800 1000
−8.08

−8.04

−8

−7.96

−7.92

Cutoff energy (Ryd)

T
ot

al
 e

ne
rg

y
(H

ar
tr

ee
)

Cutoff energy Total energy

10
20
40
80

120
160
200
300
400
600

−7.938616222815
−8.072168008123
−8.027966845072
−8.031120813635
−8.032594041787
−8.032633059825
−8.032757891175
−8.032868295647
−8.032889877521
−8.032889519268

(Hartree) (Hartree)

1000 −8.032875087323

Figure 4: Convergence property of the total energy of a methane molecule with respect to cutoff
energy

47

Table 1: Convergence properties of structural parameters, dipole moment of a water molecule
with respect to cutoff energy. The input file is H2O.dat in the directory ’work’.

Ecut(Ryd) r(H-O) (Å) 6 (H-O-H) (deg) Dipole moment (Debye)
60 0.971 105.1 1.849
90 0.971 104.7 1.855
120 0.971 104.7 1.856
150 0.971 104.7 1.856
180 0.971 104.7 1.856
Exp. 0.957 104.5 1.85

11.2 A tip for calculating the energy curve for bulks

When the energy curve for bulk system is calculated as a function of the lattice parameter, a sudden
change of the number of real space grids is a serious problem which produces an erratic discontinuity
on the energy curve. In fact, we see the discontinuity in cases of 200 and 290 (Ryd) in Fig. 5 when
the cutoff energy is fixed. The discontinuity occurs at the lattice parameter where the number of grids
changes. To avoid the discontinuity on the energy curve, a keyword ’scf.Ngrid’ is available.

scf.Ngrid 32 32 32 # n1, n2, and n3 for a-, b-, and c-axes

When the number of grids is explicitly specified by the keyword, the axis is discretized by the number
without depending on the keyword ’scf.energycutoff’. We see in Fig. 5 that the fixed grids with
32x32x32 gives a smooth curve.

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

-174.18

-174.16

-174.14

-174.12

12

16

20

24

28

32

200 Ryd

290 Ryd

Fixed (32x32x32)

a/a0

T
o
ta

l
E

n
e
rg

y
 (

H
a
rt

re
e
)

N
u

m
b

e
r o

f G
rid

s
 a

lo
n

g
 a

, b
, a

n
d

 c
a

x
e

s

Figure 5: The total energy of bcc iron as a function of lattice parameter, where the equilibrium lattice
constant a0 is 2.87 Å. A cubic unit cell including two atoms was considered. The input file is Febcc2.dat
in the directory ’work’.

48

11.3 Fixing the relative position of regular grid

OpenMX Ver. 3.5 uses the regular real space grid for the evaluation of Hamiltonian matrix elements
associated with the Hartree potential by the difference charge density and exchange-correlation po-
tential and solution of Poisson’s equation. Thus, the total energy depends on the relative position
between atomic coordinates and the regular grid. When one calculate interaction energy or energy
curve as a function of atomic coordinates, it is quite important to keep the relative position in all the
calculations required for the evaluation of the interaction energy. In the calculation for one of the
structures, you will find ’Grid Origin’ in the standard output which gives x-, y-, and z-components of
the origin of the regular grid as:

Grid_Origin xxx yyy zzz

Then, in order to keep the relative position, you have to include the following keyword ’scf.fixed.grid’
in your input file for all the systems in the calculations required for the evaluation of the interaction
energy:

scf.fixed.grid xxx yyy zzz

where ’xxx yyy zzz’ is the coordinate of the origin you got in the calculation for one of the structures.
The procedure largely suppresses the numerical error involved in the regular grid.

In addition, as discussed in the previous subsection ’A tip for calculating the energy curve for
bulks’, the number of grids should be fixed by the keyword ’scf.Ngrid’ when the lattice parameters are
also changed in the evaluation of interaction energy.

49

12 SCF convergence

Five charge mixing schemes in OpenMX Ver. 3.5 are available by the keyword ’scf.Mixing.Type’:

• Simple mixing (Simple)

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight

• Residual minimization method in the direct inversion iterative subspace (RMM-DIIS) [31]

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight,
scf.Mixing.History, scf.Mixing.StartPulay

• Guaranteed reduction Pulay method (GR-Pulay) [30]

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight,
scf.Mixing.History, scf.Mixing.StartPulay

• Kerker mixing (Kerker) [32]

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight,
scf.Kerker.factor

• RMM-DIIS with Kerker metric (RMM-DIISK) [31]

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight,
scf.Mixing.History, scf.Mixing.StartPulay, scf.Mixing.EveryPulay, scf.Kerker.factor

In the first three schemes density matrices (real space) are mixed to generate the input density matrix
which can be easily converted into (spin) charge density. On the other hand, the charge mixing is
made in Fourier space in the last two schemes. Generally, it is easier to achieve SCF convergence
in large gap systems using any mixing scheme. However, it would be difficult to achieve a sufficient
SCF convergence in smaller gap and metallic systems, since a charge sloshing problem in the SCF
calculations becomes serious often. To handle such difficult systems, two mixing schemes are currently
available: Kerker and RMM-DIISK methods. The two mixing schemes could be an effective way for
achieving the SCF convergence of metallic systems. When ’Kerker’ or ’RMM-DIISK’ is used, the
following prescriptions are helpful to obtain the convergence of SCF calculations:

• Increase of ’scf.Mixing.History’. A relatively larger vaule 30-50 may lead to the convergence. In
addition, ’scf.Mixing.EveryPulay’ should be set 1.

• Use a rather larger value for ’scf.Mixing.StartPulay’. Before starting the Pulay type mixing,
achieve a convergence at some level. An appropriate value may be 10 to 30 for ’scf.Mixing.StartPulay’.

• Use a rather larger value for ’scf.ElectronicTemperature’ in case of metallic systems. When
’scf.ElectronicTemperature’ is small, numerical instabilities appear often.

In addition, the charge sloshing, which comes from charge components with long wave length,
can be significantly suppressed by tuning Kerker’s factor α by the keyword ’scf.Kerker.factor’, where
Kerker’s metric is defined by

〈A|B〉 =
∑
q

A∗qBq

wq

50

wq =
|q|2

|q|2 + q2
0

q0 = α|qmin|

where qmin is the q vector with the minimum magnitude except 0-vector. A larger α significantly
suppresses the charge sloshing, but leads to slower convergence. Since an optimum value depends on
system, you may tune an appropriate value for your system, while the default value is 1.0.

Furthermore, the behavior of ’RMM-DIISK’ can be controlled by the following keyword:

scf.Mixing.EveryPulay 5 # default = 5

0 10 20 30 40 50
10−12

10−9

10−6

10−3

100

0 10 20 30 40 50 60 70 80 90 100
10−12

10−9

10−6

10−3

100

0 10 20 30 40 50 60 70 80 90 100

10−6

10−3

100

103

Number of SCF iterations

N
or

m
 o

f r
es

id
ua

l d
en

si
ty

 m
at

rix
 o

r
ch

ar
ge

 d
en

si
ty

Number of SCF iterations

(a)

(b)

Simple
RMM−DIIS
GR−Pulay
Kerker
RMM−DIISK

Simple
RMM−DIIS
GR−Pulay
Kerker
RMM−DIISK

Number of SCF iterations

(c)

Simple
RMM−DIIS
GR−Pulay
Kerker
RMM−DIISK

Figure 6: Convergence properties of the norm of residual density matrix or charge density in the SCF
calculations using five mixing schemes of (a) a sialic acid molecule, (b) a Pt13 cluster, and (c) a Pt63

cluster. The input files are SialicAcid.dat, Pt13.dat, and Pt63.dat in the directory ’work’.

51

The residual vectors in the Pulay-type mixing schemes tend to become linearly dependent each other
as the mixing steps accumulate, and the linear dependence among the residual vectors makes the
convergence difficult. A way of avoiding the linear dependence is to do the Pulay-type mixing oc-
casionally during the Kerker mixing. With this prescription, you can specify the frequency using
the keyword ’scf.Mixing.EveryPulay’. For example, in case of ’scf.Mixing.EveryPulay=5’, the Pulay-
mixing is made at every five SCF iteration, while Kerker-type mixing is used at the other steps.
’scf.Mixing.EveryPulay=1’ corresponds to the conventional Pulay-type mixing. It is noted that the
keyword ’scf.Mixing.EveryPulay’ is supported for only ’RMM-DIISK’, and the default value is five.

The above prescription works in some cases. But the most recommended prescription to accelerate
the convergence is the following:

• Increase of ’scf.Mixing.History’. A relatively larger vaule 30-50 may lead to the convergence. In
addition, ’scf.Mixing.EveryPulay’ should be set 1.

Since the Pulay type mixing such as RMM-DIIS and RMM-DIISK is based on a quasi Newton method,
the convergence speed is governed by how a good Hessian matrix can be found. As ’scf.Mixing.History’
increases, the calculated Hessian may become more accurate.

In Fig. 6 a comparison of five mixing schemes is shown in the SCF convergence for (a) a sialic
acid molecule, (b) a Pt13 cluster, and (c) a Pt63 cluster, where the norm of residual density matrix
or charge density can be found as NormRD in the file *.out and the input files are SialicAcid.dat,
Pt13.dat, and Pt63.dat in the directory ’work’. We see that ’RMM-DIISK’ works with robustness for
all the systems shown in Fig. 6. In most cases, ’RMM-DIISK’ will be the best choice, while the use
of ’Kerker’ is required with a large ’scf.Kerker.factor’ and a small ’scf.Max.Mixing.Weight’ in quite
difficult cases in which the convergence is hardly obtained.

52

13 Restarting

After finishing your first calculation or achieving the self consistency (SC), you may want to continue
the calculation or to calculate density of states, band dispersion, molecular orbitals, and etc. using
the SC charge in order to save the computational time. To do this, a keyword ’scf.restart’ is available.

scf.restart on # on|off,default=off

When the keyword ’scf.restart’ is switched on, restart files generated by your first calculation will be
used as the input Hamiltonian or charge density in the second calculation, while ’System.Name’ in
the second calculation should be the same as in the first calculation. The restart files are stored in
a directory ’* rst’ below the ’work’ directory, where * means System.Name. The restart files in the
’* rst’ contain all the information for both the density matrix mixing schemes and k-space mixing
schemes. So, it is possible to use another mixing scheme in the second calculation. In the geometry
optimization and molecular dynamics simulations, the restart files generated at the previous steps are
automatically utilized at the next step to accelerate the convergence using an extrapolation scheme
[33, 34]. As an example, we illustrate the restarting procedure using a input file C60.dat which can
be found in the directory ’work’. In Fig. 7, we see that the second calculation is accelerated due to
the use of the restart file.

Input file for the restart calculation

An input file, *.dat#, is generated at every MD step for the restart calculation with the final
structure and the same ’Grid Origin’ explained in the Sec. ’Fixing the relative position of regular grid’.
Using the file, *.dat#, it can be possible to continue MD calculations and geometry optimization from
the last step.

53

0 5 10 15 20 25 3010−10

10−8

10−6

10−4

10−2

100

N
or

m
 o

f r
es

id
ua

l c
ha

rg
e

de
ns

ity

Number of SCF iterations

First calc.
Second calc.

C60 molecule

Figure 7: SCF convergence of a C60 molecule. In the second calculation, the restart files generated by
the first calculation were used. The input file is C60.dat in the directory ’work’.

14 Geometry optimization

14.1 Steepest decent optimization

An example of the geometry optimization is illustrated in this Section. As the initial structure, we
considered the methane molecule given in the Section ’Input file’, but the x-coordinate of the carbon
atom of a methane molecule was moved to 0.3 Å as follows:

<Atoms.SpeciesAndCoordinates

1 C 0.300000 0.000000 0.000000 2.0 2.0

2 H -0.889981 -0.629312 0.000000 0.5 0.5

3 H 0.000000 0.629312 -0.889981 0.5 0.5

4 H 0.000000 0.629312 0.889981 0.5 0.5

5 H 0.889981 -0.629312 0.000000 0.5 0.5

Atoms.SpeciesAndCoordinates>

Then, a keyword ’MD.type’ was specified as ’Opt’, and set to 200 for a keyword ’MD.maxIter’. The
’Opt’ is based on a simple steepest decent method with a variable prefactor. Figure 8 (a) shows the
convergence history of the norm of the maximum force on atom as a function of the number of the
optimization steps. We see that the norm of the maximum force on atom smoothly converges. Using
Methane2.dat in the directory ’work’, you can trace the calculation.

54

0 20 40 60 80 100

10−4

10−2

100

0 20 40 60 80

10−4

10−2

100

N
or

m
 o

f M
ax

im
um

 F
or

ce
 (

H
ar

tr
ee

/B
oh

r)

Methane molecule

(a)

Number of Geomergy Optimization Steps

Bulk Si
(b)

Opt Opt

Figure 8: The norm of the maximum force on atom of (a) a methane molecule (b) silicon in the
diamond structure as a function of the number of MD steps. The initial structures were ones distorted
from the the equilibrium structures. The input files are Methane2.dat and Si8.dat in the directory
’work’, respectively.

14.2 EF, BFGS, RF, and DIIS optimizations

Although ’Opt’ is a robust scheme, the convergence speed is very slow in general. Much faster schemes
based on a quasi Newton method are available for the geometry optimization. They are the eigenvector
following (EF) method [36], the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [38], the rational
function (RF) method [37], and a direct inversion iterative sub-space (DIIS) method [35], implemented
in the Cartesian coordinate. In the EF and RF methods, the approximate Hessian is updated by the
BFGS method. Thus, five geometry optimizers, Opt, EF, BFGS, RF and DIIS, are available in
OpenMX Ver. 3.5, which can be specified by ’MD.Type’. The relevant keywords are listed below:

MD.Type EF # Opt|DIIS|BFGS|RF|EF

MD.Opt.DIIS.History 3 # default=3

MD.Opt.StartDIIS 5 # default=5

MD.Opt.EveryDIIS 200 # default=200

MD.maxIter 100 # default=1

MD.Opt.criterion 1.0e-4 # default=0.0003 (Hartree/bohr)

Then, you can control these schemes by two keywords:

MD.Opt.DIIS.History 7 # default=7

MD.Opt.StartDIIS 5 # default=5

55

The keyword ’MD.Opt.DIIS.History’ specifies the number of the previous steps to update an optimum
Hessian matrix. The default value is 7. Also, the geometry optimization step at which ’EF’, ’BFGS’,
’RF’, or ’DIIS’, starts is specified by the keyword ’MD.Opt.StartDIIS’. The geometry optimization
steps before starting the these methods is performed by the steepest decent method as in ’Opt’. The
default value is 5.

The initial step in the optimization is automatically tuned by monitoring the maximum force in the
initial structure, while it was specified by the keyword ”MD.Initial.MaxStep” in the version 3.2 (the
keyword ’MD.Initial.MaxStep’ is not available in OpenMX Ver. 3.5). As shown in the Fig. 9 which
shows the number of geometry steps to achieve the maximum force of below 0.0001 hartree/bohr in
molecules and bulks, in most cases the EF method seems to be the most robust and efficient scheme.

56

0

40

80

120

160

200

0

40

80

120

160

200

Methane Glycine C60 Sialic
acid

Water
dimer

Nitro
C6H6

Si7C Diamond
surface

B2C62 TiO2 V2O5 NaCl

N
um

be
r

of
 o

pt
im

iz
at

io
n

st
ep

s
to

 a
ch

ie
ve

 1
0−

4 h
ar

tr
ee

/b
oh

r

EF
BFGS
RF
DIIS

EF
BFGS
RF
DIIS

(a)

(b)

Figure 9: The number of optimization steps to achieve 10−4 hartree/bohr for (a) molecular systems
and (b) bulk systems using four kinds of optimization methods.

14.3 Constrained relaxation

It is possible to optimize geometrical structures with a constraint in which atoms can be fixed in the
initial position. The constraint can be applied separately to the x-, y-, and z-coordinates of the atomic
position to the initial position in your input file by the following keyword ’MD.Fixed.XYZ’:

<MD.Fixed.XYZ

1 1 1 1

2 1 0 0

MD.Fixed.XYZ>

The example is for a system consisting of two atoms. If you have N atoms, then you have to provide
N-th rows in this specification. The 1st column is the same sequential number to specify atom as in
the specification of the keyword ’Atoms.SpeciesAndCoordinates’. The 2nd, 3rd, 4th columns are flags

57

for the x-, y-, z-coordinates. ’1’ means that the coordinate is fixed, and ’0’ relaxed. It should be noted
that the definition of the switch is opposite compared to the previous constraint schemes supported
in OpenMX3.0. In above example, the x-, y-, z-coordinates of the atom ’1’ are fixed, only the x-
coordinate of the atom ’2’ is fixed. The default setting is that all the coordinates are relaxed. The
fixing of atomic positions are valid for all the geometry optimizers and molecular dynamics schemes.
The constrained relaxation may be useful for a refinement of the local structure in large-scale systems.

58

15 Molecular dynamics

You can perform three molecular dynamics simulations, constant energy molecular dynamics (NVE),
constant temperature molecular dynamics by a velocity scaling (NVT VS), and constant temperature
molecular dynamics by the Nose-Hoover method (NVT NH).

15.1 NVE molecular dynamics

A constant energy molecular dynamics is performed by the following keyword ’MD.Type’:

MD.Type NVE # NOMD|Opt|NVE|NVT_VS|NVT_NH

Calculated quantities at every MD step are stored in an output file ’*.ene’, where * means Sys-
tem.Name. Although you can find the details in ’iterout.c’, several quantities are summarized for your
convenience as follows:

1: MD step

2: MD time

14: kinetic energy of nuclear motion, Ukc (Hartree)

15: DFT total energy, Utot (Hartree)

16: Utot + Ukc (Hartree)

17: Fermi energy (Hartree)

which means that the first and second columns correspond to MD step and MD time, and so on.

15.2 NVT molecular dynamics by a velocity scaling

A velocity scaling scheme [17] is supported to perform NVT ensemble molecular dynamics by the
following keyword:

MD.Type NVT_VS # NOMD|Opt|NVE|NVT_VS|NVT_NH

Then, in this NVT molecular dynamics the temperature for nuclear motion can be controlled by

<MD.TempControl

3

100 2 1000.0 0.0

400 10 700.0 0.4

700 40 500.0 0.7

MD.TempControl>

The beginning of the description must be <MD.TempControl, and the last of the description must
be MD.TempControl>. The first number ’3’ gives the number of the following lines to control the
temperature. In this case you can see that there are three lines. Following the number ’3’, in the
consecutive lines the first column means the number of MD steps and the second column gives interval
of MD steps which determine ranges of MD steps and intervals at which the velocity scaling is made.
For above example, a velocity scaling is performed at every two MD steps until 100 MD steps, at every
10 MD steps from 100 to 400 MD steps, and at every 40 MD steps from 400 to 700 MD steps. The
third and fourth columns give a given temperature Tgive (K) and a scaling parameter α in the interval,

59

while the temperature in the interval is given by a linear interpolation. In this velocity scaling, velocity
is scaled by

s =

√
Tgiven + (Tcalc − Tgiven) ∗ α

Tcalc

v′i = vi × s

where Tgiven and Tcalc are a given and calculated temperatures, respectively. After the final MD step
given in the specification ’MD.TempControl’, the NVT ensemble is switched to a NVE ensemble. Cal-
culated quantities at every MD step are stored in an output file ’*.ene’, where * means System.Name.
Although you can find the details in ’iterout.c’, several quantities are summarized for your convenience
as follows:

1: MD step

2: MD time

14: kinetic energy of nuclear motion, Ukc (Hartree)

15: DFT total energy, Utot (Hartree)

16: Utot + Ukc (Hartree)

17: Fermi energy (Hartree)

18: Given temperature for nuclear motion (K)

19: Calculated temperature for nuclear motion (K)

22: Nose-Hoover Hamiltonian (Hartree)

n which means that the first and second columns correspond to MD step and MD time, and so on. As
an example, we show a result for the velocity scaling MD of a glycine molecule in Fig. 10 (a). We see
that the temperature in a molecule oscillates around the given temperature. Also for visualization of
molecular dynamics an output file ’*.md’ can be easily animated using free software xmakemol [69].

15.3 NVT molecular dynamics by the Nose-Hoover method

Nose-Hoover molecular dynamics [18] is supported to perform NVT ensemble molecular dynamics by
the following keyword:

MD.Type NVT_NH # NOMD|Opt|NVE|NVT_VS|NVT_NH

Then, in this NVT molecular dynamics the temperature for nuclear motion can be controlled by

<MD.TempControl

4

1 1000.0

100 1000.0

400 700.0

700 600.0

MD.TempControl>

60

200 400 600
0

500

1000

1500

2000

2500

200 400 600
0

500

1000

1500

2000

2500

MD steps MD steps

T
em

pe
ra

tu
re

 (
K

)

Given Temperature
Calculated Temperature
Given Temp.
Calculated Temp

Given Temperature
Calculated Temperature
Given Temp.
Calculated Temp

Figure 10: (a) Given and calculated temperatures of a glycine molecule as a function of MD steps in a
velocity scaling NVT molecular dynamics. (b) Given and calculated temperatures a glycine molecule
as a function of MD steps in the Nose-Hoover NVT molecular dynamics. The input files are Gly VS.dat
and Gly NH.dat in the directory ’work’, respectively.

The beginning of the description must be <MD.TempControl, and the last of the description must
be MD.TempControl>. The first number ’4’ gives the number of the following lines to control the
temperature. In this case you can see that there are four lines. Following the number ’4’, in the
consecutive lines the first and second columns give the number of MD steps and a given temperature
for nuclear motion. The temperature between the interval is given by a linear interpolation. Although
the same keyword ’MD.TempControl’ as used in the velocity scaling MD is utilized in this specifi-
cation, it is noted that the format is different from each other. In addition to the specification of
’MD.TempControl’, you must specify a mass of heat bath by the following keyword:

NH.Mass.HeatBath 30.0 # default = 20.0

In this specification, we use a unit that the weight of a proton is 1.0. Calculated quantities at every
MD step are stored in an output file ’*.ene’ as explained in ’NVT molecular dynamics by a velocity
scaling’. As an example, we show a result for Nose-Hoover MD of a glycine molecule in Fig. 10
(b). We see that the temperature in a molecule oscillates around the given temperature. Also for
visualization of molecular dynamics an output file ’*.md’ can be easily animated using free software
xmakemol [69] as well as NVT VS.

15.4 Constraint molecular dynamics

A constraint scheme is available in the molecular dynamics simulations in which atoms can be fixed
in the initial position. The specification is same as in the subsection ’Constrained relaxation’. See the
subsection for the specification.

61

15.5 Initial velocity

For molecular dynamics simulations, it is possible to provide the initial velocity of each atom by the
following keyword:

<MD.Init.Velocity

1 3000.000 0.0 0.0

2 -3000.000 0.0 0.0

MD.Init.Velocity>

The example is for a system consisting of two atoms. If you have N atoms, then you have to provide
N-th rows in this specification. The 1st column is the same sequential number to specify atom as in
the specification of the keyword ’Atoms.SpeciesAndCoordinates’. The 2nd, 3rd, and 4th columns are
x-, y-, and z-components of the velocity of each atom. The unit of the velocity is m/s. The keyword
’MD.Init.Velocity’ is compatible with the keyword ’MD.Fixed.XYZ’.

62

16 Visualization

The electron densities, molecular orbitals, and potentials are output to files in a Gaussian cube format.
Figure 11 shows examples of isosurface maps visualized by using gOpenMol [48]. These data are
output in a form of the Gaussian cube. So, many softwares, such as gOpenMol [48], Molekel [49],
and XCrysDen [50], can be used for the visualization. You can find the details of files output in
the cube format in the Section ’Output files’. It should be noted that current gOpenMol does not
support a cube file of orthorhombic cell, while XCrysDen supports any cube file of both orthogonal
and orthorhombic cells.

(a) (b)

(c)

Figure 11: (a) Isosurface map of the total electron density of a C60 molecule where 0.13 was used
as an isovalue of total electron density. (b) Isosurface map of the highest occupied molecular orbital
(HOMO) of a L-leucine molecule where |0.05| was used as an isovalue of the molecular orbital. (b)
Isosurface map of the spin electron density of a molecular magnet (Mn12O12(CH3COO)16(H2O)4 [51])
where |0.02| was used as an isovalue of the spin electron density.

63

17 Band dispersion

The band dispersion is calculated by the following two steps:

(1) SCF calculation

Let us illustrate the calculation of band dispersion using the carbon diamond. In a file Cdia.dat
in the directory ’work’, the atomic coordinates, cell vectors, and scf.Kgrid are given by

Atoms.Number 2

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU

<Atoms.SpeciesAndCoordinates

1 C 0.000 0.000 0.000 2.0 2.0

2 C 0.890 0.890 0.890 2.0 2.0

Atoms.SpeciesAndCoordinates>

Atoms.UnitVectors.Unit Ang # Ang|AU

<Atoms.UnitVectors

1.7800 1.7800 0.0000

1.7800 0.0000 1.7800

0.0000 1.7800 1.7800

Atoms.UnitVectors>

scf.Kgrid 7 7 7 # means n1 x n2 x n3

The unit cell for the band dispersion and k-paths are given by

Band.dispersion on # on|off, default=off

<Band.KPath.UnitCell

3.56 0.00 0.00

0.00 3.56 0.00

0.00 0.00 3.56

Band.KPath.UnitCell>

Band.Nkpath 5

<Band.kpath

15 0.0 0.0 0.0 1.0 0.0 0.0 g X

15 1.0 0.0 0.0 1.0 0.5 0.0 X W

15 1.0 0.5 0.0 0.5 0.5 0.5 W L

15 0.5 0.5 0.5 0.0 0.0 0.0 L g

15 0.0 0.0 0.0 1.0 1.0 0.0 g X

Band.kpath>

Then, we execute OpenMX by:

% ./openmx Cdia.dat

64

-25

-20

-15

-10

-5

0

5

10

15

g X W L g X

eV

Figure 12: Band dispersion of carbon diamond. The input file is Cdia.dat in the directory ’work’.

When the execution is completed normally, then you can find a file ’cdia.Band’ in the directory ’work’.
When ’Band.KPath.UnitCell’ does not exist, the unit cell specified by the ’Atoms.UnitVectors’ will
be used. Then, it is noted that ’0.5 0.0 0.0’ corresponds to the ’X’-point

(2) Converting of the data to a gnuplot form

There is a file ’bandgnu13.c’ in the directory ’source’. Compile the file as follows:

% gcc bandgnu13.c -lm -o bandgnu13

When the compile is completed normally, then you can find an executable file, bandgnu13, in the
directory ’source’. Please copy the executable file to the directory ’work’. Using the executable file
’bandgnu13’ a file ’cdia.Band’ is converted in a gnuplot format as

% ./bandgnu13 cdia.Band

Then, three or two files ’cdia.GNUBAND’ and ’cdia.BANDDAT1’ (’cdia.BANDDAT2’) are gener-
ated. The file ’cdia.GNUBAND’ is a script for gnuplot, and read data files ’cdia.BANDDAT1’ and
’cdia.BANDDAT2’ for up- and down-spin, respectively. If spin-polarized calculations using ’LSDA-
CA’ or ’LSDA-PW’ is employed in the SCF calculation, ’*.BANDDAT2’ for down-spin is generated
in addition to ’*.BANDDAT1’. The file ’cdia.GNUBAND’ is plotted using gnuplot as follows:

65

% gnuplot cdia.GNUBAND

Figure 12 shows the band dispersion of carbon diamond, generated by the above procedure, while the
range of y-axis was changed in the file cdia.GNUBAND. It is also noted that the chemical potential
is automatically shifted to the origin of energy.

A problem in drawing of the band dispersion is how to choose a unit cell used in calculating
of the band dispersion. Often, the unit cell used in calculating of the band dispersion is differ-
ent from that used in the definition of the periodic system. In such a case you need to define the
unit cell used in calculating of the band dispersion by the keyword ’Band.KPath.UnitCell’. If you
define ’Band.KPath.UnitCell’, the reciprocal lattice vectors for the calculation of the band disper-
sion are calculated by the unit vectors specified in ’Band.KPath.UnitCell’. If you do not define
’Band.KPath.UnitCell’, the reciprocal lattice vectors, which are calculated by the unit vectors speci-
fied in ’Atoms.UnitVectors’ is employed for the calculation of the band dispersion. In case of fcc, bcc,
base centered cubic, and trigonal cells, the reciprocal lattice vectors for the calculation of the band
dispersion should be specified using the keyword ’Band.KPath.UnitCell’ based on the consuetude in
the band calculations.

66

18 Density of states

18.1 Conventional scheme

The density of states (DOS) is calculated by the following two steps:

(1) SCF calculation

Let us illustrate the calculation of the DOS using the carbon diamond. In a file ’Cdia.dat’ in the
directory ’work’, the keywords for the DOS are set to

Dos.fileout on

Dos.Erange -20.0 20.0

Dos.Kgrid 12 12 12

In the specification of the keyword ’Dos.Erange’, the first and second values are the lower and upper
bounds of the energy range (eV) for the DOS calculation, respectively, where the origin (0.0) of energy
corresponds to the chemical potential. Also, in the specification of the keyword ’Dos.Kgrid’, a set of
numbers (n1,n2,n3) is the number of grids to discretize the first Brillouin zone in the k-space, which
is used in the DOS calculation. Then, we execute OpenMX by:

% ./openmx Cdia.dat

When the execution is completed normally, then you can find files, ’cdia.Dos.val’ and ’cdia.Dos.vec’
in the directory ’work’. The eigenvalues and eigenvectors are stored in the files ’cdia.Dos.val’ and
’cdia.Dos.vec’ in a text and binary forms, respectively. The DOS calculation is supported even for the
O(N) calculation, while Gaussian broadening methods is employed in this case.

(2) Calculation of the DOS

Let us compile a program package for calculating the DOS. Move the directory, ’source’, and then
compile as follows:

% make DosMain

When the compile is completed normally, then you can find an executable file ’DosMain’ in the
directory ’source’. Please copy the file ’DosMain’ to the directory ’work’, and then move the directory
’work’. You can calculate the DOS and projected DOS (PDOS) using the program, DosMain, from
two files ’cdia.Dos.val’ and ’cdia.Dos.vec’ as:

% ./DosMain cdia.Dos.val cdia.Dos.vec

Then, you are interactively asked from the program as follow:

% ./DosMain cdia.Dos.val cdia.Dos.vec

Max of Spe_Total_CNO = 8

67

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

1.2

Eigenenergy (eV)

D
O

S
 a

nd
 L

D
O

S
 (

eV
−

1)

DOS
LDOS of s−orbital in atom 1
LDOS of px in atom 1

Figure 13: DOS and LDOS of the carbon diamond.

1 1 101 102 103 101 102 103

<cdia.Dos.val>

<cdia>

Which method do you use?, Tetrahedron(1), Gaussian Broadeninig(2)

1

Do you want Dos(1) or PDos(2)?

2

Number of atoms=2

Which atoms for PDOS : (1,...,2), ex 1 2

1

pdos_n=1

1

<Spectra_Tetrahedron> start

Spe_Num_Relation 0 0 1

Spe_Num_Relation 0 1 1

Spe_Num_Relation 0 2 101

Spe_Num_Relation 0 3 102

Spe_Num_Relation 0 4 103

Spe_Num_Relation 0 5 101

Spe_Num_Relation 0 6 102

Spe_Num_Relation 0 7 103

68

make cdia.PDOS.Tetrahedron.atom1.s1

make cdia.PDOS.Tetrahedron.atom1.p1

make cdia.PDOS.Tetrahedron.atom1.p2

make cdia.PDOS.Tetrahedron.atom1.p3

make cdia.PDOS.Tetrahedron.atom1

The tetrahedron [39] and Gaussian broadening methods for evaluating DOS are available. Also, you
can select DOS or PDOS. When you select the calculation of PDOS, then please select atoms for
evaluating PDOS. In this case, each DOS projected orbitals (s, px (p1), py (p2), pz (p3),..) in selected
atoms are output in each files. In these files, the first and second columns are energy in eV and DOS
(eV−1) or PDOS (eV−1). If spin-polarized calculations using ’LSDA-CA’, ’LSDA-PW’, or ’GGA-PBE’
is employed in the SCF calculation, the second and third columns in these files correspond to DOS
or PDOS for up and down spins. If you select the Gaussian broadening method, you are requested
to set a parameter, value of Gaussian, a (eV), which determines the width of Gaussian defined by
exp(−(E/a)2). Figure 13 shows the DOS and LDOS of carbon diamond.

18.2 For calculations with lots of k-points

Since the calculation of density of states (DOS) of a large-scale system with lots of k-points requires
a considerable memory size, the post-processing code ’DosMain’ for generating the partial and total
DOS tends to suffer from a segmentation fault. For such a case, a Gaussian DOS scheme is available
in which the partial DOS is calculated by the Gaussian broadening method in the OpenMX on-the
fly calculation and the information of wave functions is not stored in the file ’*.Dos.vec’. Since this
scheme does not require a large size of memory, it can be used to calculate DOS of large-scale systems.
Then, you can specify the following keywords in your input file.

DosGauss.fileout on # default=off, on|off

DosGauss.Num.Mesh 200 # default=200

DosGauss.Width 0.2 # default=0.2 (eV)

When you use the scheme, specify ’on’ for the keyword ’DosGauss.fileout’. And the keyword ’Dos-
Gauss.Num.Mesh’ gives the number of partitioning for the energy range specified by the keyword
’Dos.Erange’. The keyword ’DosGauss.Width’ gives the width, a, of the Gaussian exp(−(E/a)2). The
keyword ’DosGauss.fileout’ and the keyword ’Dos.fileout’ are mutually exclusive. Therefore, when you
use the scheme the keyword, ’Dos.fileout’ must be ’off’ as follows:

Dos.fileout off # on|off, default=off

Also, the following two keywords are valid for both the keywords ’Dos.fileout’ and ’DosGauss.file’.

Dos.Erange -20.0 20.0 # default=-20 20

Dos.Kgrid 5 5 5 # default=Kgrid1 Kgrid2 Kgrid3

69

It should be noted that the keyword ’DosGauss.fileout’ generates only the Gaussian broadening DOS,
which means that the DOS by the tetrahedron method cannot be calculated by the keyword ’Dos-
Gauss.fileout’. After the OpenMX calculations with these keywords, the procedure for DosMain is
same as in the conventional scheme.

70

19 Orbital optimization

The basis orbitals can be variationally optimized using the orbital optimization method [23]. As an
illustration of the orbital optimization, let us explain using a methane molecule of which input file is
Methane OO.dat. The following keywords in this file are set as follows:

<Definition.of.Atomic.Species

H H4.0-s41p41 H_TM

C C4.5-s41p41 C_TM_PCC

Definition.of.Atomic.Species>

orbitalOpt.Method species # Off|Unrestricted|Restricted

orbitalOpt.InitCoes Symmetrical # Symmetrical|Free

orbitalOpt.initPrefactor 0.1 # default=0.1

orbitalOpt.scf.maxIter 25 # default=12

orbitalOpt.MD.maxIter 10 # default=5

orbitalOpt.per.MDIter 20 # default=1000000

orbitalOpt.criterion 1.0e-6 # default=1.0e-4 (Hartree/borh)^2

Num.CntOrb.Atoms 2 # default=1

<Atoms.Cont.Orbitals

1

2

Atoms.Cont.Orbitals>

Then, we execute OpenMX as:

% ./openmx Methane.dat

When the execution is completed normally, you can find the history of orbital optimization in the file
’met oo.out’ as:

History of orbital optimization MD= 1

********* Gradient Norm ((Hartree/borh)^2) ********

Required criterion= 0.000001000000

iter= 1 Gradient Norm= 0.081251614657 Uele= -2.750500719281

iter= 2 Gradient Norm= 0.018543400953 Uele= -2.933260690003

iter= 3 Gradient Norm= 0.005918002913 Uele= -2.966113950591

iter= 4 Gradient Norm= 0.001553729359 Uele= -3.010077558163

iter= 5 Gradient Norm= 0.000356946294 Uele= -3.012729963043

iter= 6 Gradient Norm= 0.000119196944 Uele= -3.024577717351

iter= 7 Gradient Norm= 0.000042934968 Uele= -3.024772396249

71

0 10 20 30 40 50

−5.49

−5.48

−5.46

−5.45

0 10 20 30 40 50

−8.00

−7.96

−7.92

−7.88

0 5 10 15 20
−5.70

−5.68

−5.66

−5.64

0 10 20 30 40
−7.95

−7.90

−7.85

−7.80

−7.75

40 80 120 160 200 240 280 320

−154.7

−154.6

−154.5

−154.4

−154.3

0 5 10 15 20

−7.72

−7.70

−7.68

Primitive

Optimized

T
ot

al
 E

ne
rg

y
(H

ar
tr

ee
)

C2

CH4

Number of Bases

C (diamond)

C2H6

C2F6

Number of Bases

Si (diamond)

Primitive

Optimized

Primitive

Optimized

Primitive

Optimized

Primitive

Optimized

Primitive

Optimized

Figure 14: The total energy for a carbon dimer C2, a methane molecule CH4, carbon and silicon in
the diamond structure, a ethane molecule C2H6, and a hexafluoro ethane molecule C2F6 as a function
of the number of primitive and optimized orbitals. The total energy and the number of orbitals are
defined as those per atom for C2, carbon and silicon in the diamond, and as those per molecule for
CH4, C2H6, and C2F6.

iter= 8 Gradient Norm= 0.000031243105 Uele= -3.026624698820

iter= 9 Gradient Norm= 0.000020515771 Uele= -3.026569330230

iter= 10 Gradient Norm= 0.000015126154 Uele= -3.026833093004

In most cases, ten iterative steps are enough to achieve a sufficient convergence. The comparison
between the primitive basis orbitals and the optimized orbitals in the total energy is given by

Primitive basis orbitals

Utot = -8.032594073571 (Hartree)

Optimized orbitals by the orbital optimization

Utot = -8.150139929748 (Hartree)

We see that the small but accurate basis set orbitals can be generated by the orbital optimization.
In Fig. 14 we show the convergence properties of total energies for a carbon dimer C2, a methane

72

molecule CH4, and the diamond as a function of the number of unoptimized and optimized orbitals.
We see that a remarkable convergent results are obtained using the optimized orbitals for all systems.
In this illustration of a methane molecule, the optimized radial orbitals are output to files, C 1.pao and
H 2.pao. These output files, C 1.pao and H 2.pao, could be an input data for pseudo-atomic orbitals
as it is. This means that it is possible to perform a pre-optimization of basis orbitals for systems you
are interested in. The pre-optimization could be performed for smaller but chemically similar systems.

The following three options are available for the keyword ’orbitalOpt.Method’, the unrestricted op-
timization ’Unrestricted’, the restricted optimization ’Restricted’, and Orbital optimization restricted
to species ’Species’.

• Unrestricted

The radial functions of basis orbitals are optimized without any constraint. Thus, all the radial
functions could differ from each other, which could depend on the following indices, atomic
number, angular moment quantum number, magnetic quantum number, and orbital multiplicity.

• Restricted

The radial functions of basis orbitals are optimized with a constraint that the radial wave function
R is independent on the magnetic quantum number. We prefer ’Restricted’ to ’Unrestricted’,
since the restricted optimization guarantees the rotational invariance of the total energy.

• Species

Basis orbitals in atoms with the same species name, that you define in ’Definition.of.Atomic.Species’,
are optimized as the same orbitals. If you want to assign the same orbitals to atoms with al-
most the same chemical environment, and optimize these orbitals, this scheme could be quite
convenient.

73

20 Order(N) method

The computational effort of the conventional diagonalization scheme scales as the third power of the
number of basis orbitals, which means that the part could be a bottleneck when large-scale systems
are calculated. On the other hand, the O(N) methods can solve the eigenvalue problem in O(N)
operation in exchange for accuracy. Thus, O(N) methods could be efficient for large-scale systems,
while a careful consideration is always required for the accuracy. In OpenMX Ver. 3.5, three O(N)
methods are available: a divide-conquer (DC) method [28], a generalized divide-conquer (DC) method
[28], and a Krylov subspace method [25]. In the following subsections each O(N) method is illustrated
by examples.

20.1 Divide-conquer method

The DC method is a robust scheme and can be applicable to a wide variety of materials with a
reasonable degree of accuracy and efficiency, while this scheme is suitable especially for covalent
systems. In this subsection, the O(N) calculation using the DC method is illustrated. In an input
file ’DIA64 DC.dat’ which can be found in the directory ’work’, please specify DC for the keyword
’scf.EigenvalueSolver’.

scf.EigenvalueSolver DC

0 100 200 300 400 500 600
0

20

40

60

0

1000

2000

3000

4000

E
la

ps
ed

 ti
m

e
(s

)
M

em
ory size (M

B
yte)

Number of atoms in the super cell

Elapsed TIme
Memory size

Figure 15: Elapsed time of the diagonalization part per SCF step and computational memory size as a
function of carbon atoms in the diamond supercell. C4.0-s1p1 was used as basis orbitals. For the DC
method, orderN.HoppingRanges=6.0 (Å) and orderN.NumHoppings=1 are used. An Opteron machine
(2.4 GHz) was used to measure the elapsed time. The input files are DIA8 DC.dat, DIA64 DC.dat,
DIA216 DC.dat, and DIA512 DC.dat in the directory ’work’.

74

Table 2: Total energy and computational time per MD step of a C60 molecule and small peptide
molecules (valorphin [52]) and DNA consisting of cytosines and guanines calculated by the conventional
diagonalization and the O(N) DC method, where a minimal basis set was used. In this Table, numbers
in the parenthesis after DC means orderN.HoppingRanges and orderN.NumHoppings used in the DC
calculation. The computational times were measured using an Opteron PC cluster (16 cpus × 2.4
GHz). The input files are C60 DC.dat, Valorphin DC.dat, CG15c DC.dat in the directory ’work’.

Total energy (Hartree) Computational time (s)
C60

(60 atoms, 240 orbitals)
Conventional -332.25510 21
DC (7.0, 2) -332.26218 32
Valorphin

(125 atoms, 317 orbitals)
Conventional -559.20738 68
DC (6.5, 2) -559.20782 88

DNA

(650 atoms, 1980 orbitals)
Conventional -4130.93861 1265
DC (6.3, 2) -4130.93645 1213

Then, one can execute OpenMX by:

% ./openmx DIA64_DC.dat

This input file is for an O(N) calculation (1 MD step) of the diamond including 64 carbon atoms. The
computational time is 397 seconds using a Xeon machine (2.8 GHz). Figure 15 shows the computational
time and memory size to calculate a MD step of the carbon diamond as a function of number of atoms
in the supercell. In fact, we see that the computational time and memory size are almost proportional
to the number of atoms.

The accuracy and efficiency of the DC method are controlled by two simple parameters: ’or-
derN.HoppingRanges’ and ’orderN.NumHoppings’.

• orderN.HoppingRanges

The keyword ’orderN.HoppingRanges’ defines the radius of a sphere which is centered on each
atom. The logically truncated cluster for each atom is constructed for the atoms inside the
sphere.

• orderN.NumHoppings

The keyword ’orderN.NumHoppings’ gives the number, n, of hopping which is required to con-
struct the logically truncated cluster. The cluster of size, n, is defined by all neighbors that can
be reached by n hops, where the cutoff distance is given by the sum of the cutoff distances r1

and r2 of basis orbitals belonging to atoms 1 and 2.

75

If the number of atoms in the systems is N, N small eigenvalue problems for the N logically truncated
clusters are solved, and then the total density of states (DOS) is constructed as the sum of the projected
DOS of each logically truncated cluster. Although the appropriate values for ’orderN.HoppingRanges’
and ’orderN.NumHoppings’ depend on interested systems, for molecular systems the following values
are recommended as a trade-off between the computational accuracy and efficiency:

orderN.HoppingRanges 6.0 - 7.0

orderN.NumHoppings 2

0 100 200 300 400 500
10

-6

10
-5

10
-4

10
-3

10
-2

Carbon diamond

Silicon diamond
MnO bulk

Ih Ice

 E
 (

H
a
rt

re
e
/a

to
m

)

0 100 200 300 400 500 600
10

-4

10
-3

10
-2 bcc Fe

fcc Al
bcc Li

LiAl (B32)

 E
 (

H
a

rt
re

e
/a

to
m

)

0 5 0 100 150
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Number of Atoms in Each Cluster

E
 (

H
a

rt
re

e
/a

to
m

)

Small peptide (dynorphin A)

Finite (6,6) carbon nanotube

DNA (CG)

(a)

(b)

(c)

�¢
�¢

�¢

Figure 16: Error in the total energy of (a) bulks with a finite gap, (b) metals, and (c) molecular
systems calculated by the divide-conquer (DC) method as a function of the number of atoms in each
cluster. The dotted horizontal line indicates ’milli-Hartree’ accuracy.

76

Table 2 shows the comparison in the total energy between the exact diagonalization and the
DC method for a C60 molecule and small peptide molecules (valorphin [52]), and DNA consisting of
cytosines and guanines. We find that errors in the total energy calculated by the DC method are about
a few mHartree in this system size. Also, it can be estimated that the DC method is faster than the
conventional diagonalization when the number of atoms is larger than 500 atoms, while the crossing
point between the conventional diagonalization and the DC method with respect to computational
time depends on systems and the number of processors in parallel implementation.

To see an overall tendency in the convergence properties of total energy with respect to the size
of truncated cluster, the error in the total energy, compared to the exact diagonalization, is shown as
a function of the number of atoms in each cluster for (a) bulks with a finite gap, (b) metals, and (c)
molecular systems in Fig. 16. We see that the error decreases almost exponentially for the bulks with
a finite gap and molecular systems, while the convergence speed is slower for metals.

20.2 Generalized divide-conquer method

A generalized divide-conquer (GDC) method, in which a cluster is taken into account as the core
region instead of a single atom in the DC method, is available by the following option:

scf.EigenvalueSolver GDC

The core region is automatically determined so that the computational efficiency can be maximized
and this scheme can be more efficient than the conventional DC method for low dimensional systems,
while the details are not shown here. The total number of truncated clusters is reduced as a result
of the clustered core region which is is the reason for the efficiency. As well as the DC method,
the accuracy and efficiency are controlled by the following keywords: ’orderN.HoppingRanges’ and
’orderN.NumHoppings’.

20.3 Krylov subspace method

The DC and GDC methods are robust and accurate for a wide variety of systems. However, to obtain
an accurate result the size of truncated clusters tends to be large for metallic systems as shown in
Fig. 16. A way of reducing the computational efforts is to map the original vector space defined by
the truncated cluster into a Krylov subspace of which dimension is smaller than that of the original
space [25]. The Krylov subspace method is available by

scf.EigenvalueSolver Krylov

Basically, the accuracy and efficiency are controlled by the following three keywords:

orderN.HoppingRanges 6.0

orderN.NumHoppings 2

orderN.KrylovH.order 400

The keywords ’orderN.HoppingRanges’ and ’orderN.NumHoppings’ define the radius of a sphere cen-
tered on each atom and the number of hopping in the same sense as those in the DC and GDC
methods. The dimension of Krylov subspace of Hamiltonian in each truncated cluster is given by
the ’orderN.KrylovH.order’. Moreover, the Krylov subspace method can be precisely tuned by the
following keywords:

77

0

0.001

0.002

3500

2500

1500

500

(47,76)

(61,66)

(40,26)

fcc Al

B32LiAl

(55,194)

(124,135)

bcc Fe
(51,38)

bulk Si

Ih Ice

DNA

Krylov
DC

E
ro

rr
 (

H
a

rt
re

e
/a

to
m

)
E

la
p

s
e

d
 t

im
e

 (
s
/a

to
m

/M
D

)

x 10
3

x 10

(a)

(b)

(23,90)

(46,100)

(43,100)

(72,100)

(97,100)

(100,100)

Figure 17: (a) absolute error, with respect to the band calculations, in the total energy (Hartree/atom)
calculated by the proposed and DC methods for metals and finite gap systems, (b) computational time
(s/atom/MD). For a substantial comparison, the calculations were performed using a single Xeon
processor. The set of numbers in the parenthesis of (a) means the average number of atoms in the
core and buffer regions. The set of numbers in the parenthesis of (b) means the percentage of the
dimension of the subspaces relative to the total number of basis functions in the truncated cluster,
respectively.

• orderN.Exact.Inverse.S on| off, default=on

In case of ’orderN.Exact.Inverse.S=on’, the inverse of overlap matrix for each truncated cluster
is exactly evaluated. Otherwise, see the next keyword ’orderN.KrylovS.order’.

• orderN.KrylovS.order 1200, default=orderN.KrylovH.order×4

In case of ’orderN.Exact.Inverse.S=off’, the inverse is approximated by a Krylov subspace
method for the inverse, where the dimension of the Krylov subspace of overlap matrix in each
truncated cluster is given by the keyword ’orderN.KrylovS.order’.

• orderN.Recalc.Buffer on| off, default=off

In case of ’orderN.Recalc.Buffer=on’, the buffer matrix is recalculated at every SCF step. Oth-
erwise, the buffer matrix is calculated at the first SCF step, and fixed at subsequent SCF steps.

78

• orderN.Expand.Core on| off, default=on

In case of ’orderN.Expand.Core=on’, the core region is defined by atoms within a sphere with
radius of 1.2× rmin, where rmin is the distance between the central atom and the nearest atom.
In case of ’orderN.Expand.Core=off’, the central atom is considered as the core region.

It is better to switch on ’orderN.Exact.Inverse.S’ and ’orderN.Expand.Core’ as the covalency increases,
while the opposite could becomes better in simple metallic systems. In Fig. 17 the absolute error in the
total energy calculated by the Krylov and DC methods are shown for a wide variety of materials. It is
found that in comparison with the DC method, the Krylov subspace method is more efficient especially
for metallic systems, and that the efficiency become comparable as the covalency and ionicity in the
electronic structure increase.

79

21 MPI parallelization

For large scale calculations, parallel execution by MPI is supported for parallel machines with dis-
tributed memories.

21.1 O(N) calculation

When the O(N) method is employed, it is expected that one can obtain a good parallel efficiency
because of the algorithm. A typical MPI execution is as follows:

% mpirun -np 4 openmx DIA512.dat > dia512.std &

The input file DIA512 DC.dat found in the directory ’work’ is for the SCF calculation (1 MD) of the
diamond including 512 carbon atoms using the divide-conquer (DC) method. The speed-up ratio in
comparison of the elapsed time per MD step is shown in Fig. 18 (a) as a function of the number of
processors on a Cray XT3 (2.4 GHz/Optetron processor). We see that the parallel efficiency decreases
as the number of processors increase, and the speed-up ratio at 128 CPUs is about 50. The decreasing
efficiency is due to the decrease of the number of atoms allocated to one processor. So, the weight of
other unparallelized parts such as disk I/O becomes significant. Moreover, it should be noted that the
efficiency is significantly reduced in non-uniform systems in terms of atomic species and geometrical
structure due to disruption of the road balance, while an algorithm is implemented to avoid the
disruption.

21.2 Cluster calculation

In the cluster calculation, a double parallelization is made for two loops: spin multiplicity and eigen-
states, where the spin multiplicity means one, two, and one for spin-unpolarized, spin-polarized, and
non-collinear calculations, respectively. The priority of parallelization is in order of spin multiplicity
and eigenstates. In the eigenvalue solver, the Householder transformation, which tridiagonalizes a
Hermitian matrix, the back transformation, and other matrix operations are parallelized. Only eigen-
values and eigenvectors of the tridiagonalized matrix are evaluated using lapack routines, which is a
minority part in the computational time of the diagonalization if only eigenvectors of occupied and
lower exited states are evaluated. To avoid the calculation of eigenstates in the high energy region, it
is highly recommended to use ’dstevx’ which is specified by the following keyword:

scf.lapack.dste dstevx # dstegr|dstedc|dstevx, default=dstevx

Since ’dstevx’ is default, if you like ’dstevx’, you do not need to specify the keyword. In case of
’dstevx’, the eigenstates to be calculated is automatically determined by the number of electrons. In
the other schemes ’dstegr’ and ’dstedc’, eigenstates in the higher energy region are also calculated.
Figure 18 (b) shows the speed-up ratio as a function of processors in the elapsed time for a spin-
polarized calculation of a single molecular magnet consisting of 148 atoms. The input file Mn12.dat
is found in the directory ’work’. It is found that the speed-up ratio is 19 and 27 using 32 and 64
processors, respectively.

80

0 20 40 60 80 100 120 140
0

20
40
60
80

100
120
140

0 20 40 60
0

20
40
60
80

100
120
140

0 20 40 60
0

20

40

60

Number of processors

S
pe

ed
 u

p
ra

tio
S

pe
ed

 u
p

ra
tio

S
pe

ed
 u

p
ra

tio

Elapsed
Ideal

Elapsed
Ideal

Elapsed
Ideal

O(N)

Band

Cluster

(a)

(b)

(c)

Figure 18: Speed-up ratio of the elapsed time per MD step in parallel calculations using MPI on a Cray
XT3 (2.4 GHz Opterons connected with 7.68GB/s networks) (a) for the carbon diamond including
512 atoms in the super cell by the DC method, (b) for a single molecular magnet consisting of 148
atoms by the cluster method, and (c) for the carbon diamond including 64 atoms in the super cell
by the band method with 3×3×3 k-points. For comparison, a line which corresponds to the ideal
speed-up ratio is also shown.

21.3 Band calculation

In the band calculation, a triple parallelization is made for three loops: spin multiplicity, k-points,
and eigenstates, where the spin multiplicity means one, two, and one for spin-unpolarized, spin-
polarized, and non-collinear calculations, respectively. The priority of parallelization is in order of
spin multiplicity, k-points, and eigenstates. In addition, when the number of processors used in
the parallelization exceeds (spin multiplicity)×(the number of k-points), OpenMX uses an efficient
way in which finding the Fermi level and calculating the density matrix are performed by just one
diagonalization at each k-point. For the other cases, twice diagonalizations are performed at each k-
point for saving the size of used memory in which the second diagonalization is performed to calculate
the density matrix after finding the Fermi level. In Fig. 18 (c) we see a good speed-up ratio as
a function of processors in the elapsed time for a spin-unpolarized calculation of carbon diamond
consisting of 64 carbon atoms with 3×3×3 k-points. The input file DIA64 Band.dat is found in the

81

directory ’work’. In this case the spin multiplicity is one, and the number of k-points used for the
actual calculation is (3*3*3-1)/2+1=14 since the k-points in the half Brillouin zone is taken into
account for the collinear calculation, and the Γ-point is included when all the numbers of k-points for
a-, b-, and c-axes are odd. So it is found that the speed-up ratio exceeds the ideal one in the range of
processors over 14, which means the algorithm in the parallelization is changed to the efficient scheme.
As well as the cluster calculation, to avoid the calculation of eigenstates in the higher energy region,
it is highly recommended to use ’dstevx’ which is specified by the following keyword ’scf.lapack.dste’:

scf.lapack.dste dstevx # dstegr|dstedc|dstevx, default=dstevx

Since ’dstevx’ is default, if you like ’dstevx’, you do not need to specify the keyword. In case of
’dstevx’, the eigenstates to be calculated is automatically evaluated by the number of electrons. In case
of ’dstevx’, the eigenstates to be calculated is automatically determined by the number of electrons.
In the other schemes ’dstegr’ and ’dstedc’, eigenstates in the higher energy region are also calculated.

21.4 a-axis should be the longest axis

Our parallel execution is made by a simple one-dimensional domain decomposition for a-axis of the
unit cell, while other parameters are also used for the parallelization in each subroutine case by case.
Therefore, it is better to choose the a-axis as the longest axis for a good road balancing, although, of
course, the parallel execution is made for any unit cell.

21.5 Maximum number of processors

In OpenMX Ver. 3.5, for all the calculations of O(N), cluster, and band calculations, the number of
processors that you can use for the parallel calculations is limited up to the number of atoms in your
system.

82

22 OpenMP/MPI hybrid parallelization

The OpenMP/MPI hybrid parallel execution can be performed by

% mpirun -np 32 openmx DIA512-1.dat -nt 4 > dia512-1.std &

where ’-nt’ means the number of threads in each process managed by MPI. If ’-nt’ is not specified,
then the number of threads is set 1, which corresponds to the pure MPI parallelization.

0 20 40 60
0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60
0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60
0

4000

8000

12000

16000

20000

24000

28000

0 20 40 60
0

1000

2000

3000

4000

0 20 40 60
0

4000

8000

0 20 40 60
0

400

800

1200

1600

2000

E
la

ps
ed

 ti
m

e
(s

ec
.)

R
eq

ui
re

d
m

em
or

y
(M

by
te

/n
od

e)

E
la

ps
ed

 ti
m

e
(s

ec
.)

R
eq

ui
re

d
m

em
or

y
(M

by
te

/n
od

e)

E
la

ps
ed

 ti
m

e
(s

ec
.)

R
eq

ui
re

d
m

em
or

y
(M

by
te

/n
od

e)

Number of cores

Number of cores

Number of cores

n processes x 1 thread
n processes x 2 threads
n processes x 4 threads

n processes x 1 thread
n processes x 2 threads
n processes x 4 threads

n processes x 1 thread
n processes x 2 threads
n processes x 4 threads

n processes x 1 thread
n processes x 2 threads
n processes x 4 threads

n processes x 1 thread
n processes x 2 threads
n processes x 4 threads

n processes x 1 thread
n processes x 2 threads
n processes x 4 threads

O(N) O(N)

Cluster Cluster

Band

time memory

time memory

time

Band
memory

(a)

(b)

(c)

(d)

(e)

(f)

Figure 19: The elapsed time (sec.) and the required memory size (Mbyte) per node in calculations
for (a) and (d) the O(N) Krylov subspace, (b) and (e) the cluster, and (c) and (f) the band methods,
respectively, where the number of cores is given by the number of processes by MPI times the number
of threads by OpenMP. The machine used is an Opteron cluster consisting of two dual core AMD
Opteron (tm) processors 2218, 2.6 GHz, with 8 Gbyte memory per node. Those nodes are connected
with Gbit ether network. The input files used for those calculations are DIA512-1.dat, Mn12.dat,
and DIA64 Band.dat for the O(N) Krylov subspace, the cluster, and the band methods, respectively.
They can be found in the directory ’work’.

83

Figure 19 shows the elapsed time (sec.) and the required memory size (Mbyte) per node in
calculations for the O(N) Krylov subspace, the cluster, and the band methods, respectively, where the
number of cores is given by the number of processes by MPI times the number of threads by OpenMP.
As you can see, the hybrid parallelization using 2 or 4 threads is not fast in the region using the
smaller number of processes. However, the hybrid parallelization gives us the shortest elapsed time
eventually as the number of processes increases. This behavior may be understood as follows: in the
region using the smaller number of processes the required memory size is large enough so that cash
miss easily happens. This may lead to considerable communication between processor and memory
via bus. So, in the region using the smaller number of processes, the bus becomes a bottle neck in
terms of elapsed time. On the other hand, in the region using the large number of processes, the
required memory size is small enough that most of data can be stored in the cashes. So, the efficiency
in OpenMP parallelization can be recovered. In this case, the hybrid parallelization can obtain both
the benefits of MPI and OpenMP. Thus, the hybrid parallelization should be eventually efficient as
the number of processes increases. In fact, our benchmark calculation may be the case. Also, it
should be emphasized that the required memory size per node can be largely reduced in the hybrid
parallelization in OpenMX as shown in the Fig. 19.

84

23 Large-scale calculation

A simple way of performing large-scale calculations is firstly to employ an O(N) method to obtain a
self-consistent charge density, and then is to just once diagonalize using the conventional diagonaliza-
tion method under the self-consistent charge density to obtain full wave functions. As an illustration of
this procedure, we show a large-scale calculation of a multiply connected carbon nanotube (MCCN)
consisting of 564 carbon atoms. First, the SCF calculation of a MCCN was performed using the
O(N) DC method and 32 processors of 2.4 GHz Opteron, where C4.5-s2p1 (basis function), 100 Ryd
(scf.energycutoff), 1.0e-7 (scf.criterion), 6.5 Å (orderN.HoppingRanges), 2 (orderN.NumHoppings) and
RMM-DIISK (mixing scheme) were used. The input file is MCCN.dat in the directory ’work’. Figure
20 shows the norm of residual charge density in Fourier space as a function of SCF steps. We see that
68 SCF steps is enough to obtain a convergent charge density for this system, where the computational
time was 24 minutes.

10 20 30 40 50 60 70
10−4

10−2

100

SCF steps

N
or

m
 o

f r
es

id
ua

l c
ha

rg
e

de
ns

ity
 in

 F
ou

rie
r−

sp
ac

e

Figure 20: Norm of residual charge density in Fourier space as a function of SCF steps for a multiply
connected carbon nanotube (MCCN) consisting of 564 carbon atoms. The input file is MCCN.dat in
the directory ’work’.

85

(a)

(b)

Figure 21: Isosurface map of (a) the highest occupied molecular orbital (HOMO) and (b) the lowest
unoccupied molecular orbital (LUMO) of a multiply connected carbon nanotube (MCCN) consisting
of 564 carbon atoms, where |0.005| was used as an isovalue of the molecular orbital.

Then, the following keywords were set in

scf.maxIter 1

scf.EigenvalueSolver Band

scf.Kgrid 1 1 1

scf.restart on

MO.fileout on

num.HOMOs 2

num.LUMOs 2

MO.Nkpoint 1

<MO.kpoint

0.0 0.0 0.0

MO.kpoint>

And we calculated the same system in order to obtain wave functions using 32 processors of 2.4 GHz
Opteron, where the computational time was 24 minutes. Figure 20 shows isosurface maps of the
HOMO and LUMO (Γ-point) of MCCN calculated by the above procedure. Although the difference
between the O(N) method and the conventional diagonalization scheme in the computational time is
not significant in this example, the procedure will be useful for larger system including more than a
thousand atoms.

86

24 Electric field

It is possible to apply a uniform external electric field given by a sawtooth waveform during the SCF
calculation and the geometry optimization. For example, an electric field of 1.0 GV/m (109 V/m) is
applied along the a-axis, in your input file specify the keyword ’scf.Electric.Field’ as follows:

scf.Electric.Field 1.0 0.0 0.0 # default=0.0 0.0 0.0 (GV/m)

The sign of electric field is taken as that applied to electrons. If the uniform external electric field
is applied to a periodic bulk system without vacuum region, discontinuities of the potential are in-
troduced, which could cause numerical instabilities. On the other hand, for molecular systems, the
discontinuities are located in the vacuum region, indicating that numerical instabilities may not be
induced.

As an illustration of the electric field, changes of total charge in a nitrobenzene molecule induced
by the electric field are shown in Fig. 22. We can see that a large charge transfer takes place among
oxygens in -NO2, para-carbon atom, and para-hydrogen atom. The input file is Nitro Benzene.dat
in the directory ’work’. See also Section ’Analysis of difference in two Gaussian cube files’ as for the
difference charge maps shown in Fig. 22.

+10 GV/m

(a)
-10 GV/m

(b)

a-axis

Figure 22: Difference in the total charge density of a nitrobenzene molecule between the zero-bias
voltage and (a) 10 GV/m, and (b) -10 GV/m of applied bias along the a-axis, where orange and blue
colors mean the increase and decrease of charge density. Tilted arrows depict the slope of applied
electric fields. The contour maps were drawn using a software, gOpenMol [48]. The input file is
Nitro Benzene.dat in the directory ’work’.

87

25 Charge doping

The following keyword is available for both the electron and hole dopings.

scf.system.charge 1.0 # default=0.0

The plus and minus signs correspond to hole and electron dopings, respectively. A partial charge
doping is also possible. The excess charge given by the keyword ’scf.system.charge’ is compensated
by a uniform background opposite charge, since FFT is used to solve Poisson’s equation in OpenMX.
Therefore, if you compare the total energy between different charged states, a careful treatment is
required, because additional electrostatic interactions induced by the background charge are included
in the total energy. As an example, we show spin densities of hole doped, neutral, and electron
doped (5,5) carbon nanotubes with a finite length of 14 Å in Fig. 23. The neutral and electron doped
nanotubes possess the total spin moment of 1.0 and 2.2, while the total spin moment almost disappears
in the hole doped nanotube. We can see that the spin polarization takes place at the edges of the
neutral and electron doped nanotubes due to dangling bonds of edge regions.

(a)

(b) (c)

Figure 23: Spin densities of (a) four hole doped, (b) neutral, and (c) four electron doped (5,5) carbon
nanotubes with a finite length of 14 Å. The input file is Doped NT.dat in the directory ’work’.

88

26 Virtual atom with fractional nuclear charge

It is possible to treat a virtual atom with fractional nuclear charge by using a pseudopotential with the
corresponding fractional nuclear charge. The pseudopotential for the virtual atom can be generated
by ADPACK. The relevant keywords in ADPACK are given by

AtomSpecies 6.2

total.electron 6.2

valence.electron 4.2

<ocupied.electrons

1 2.0

2 2.0 2.2

ocupied.electrons>

The above example is for a virtual atom on the way of carbon and nitrogen atoms. Also, it is noted
that basis functions for the pseudopotential of the virtual atom must be generated for the virtual
atom with the same fractional nuclear charge, since the atomic charge density stored in *.pao is used
to make the neutral atom potential.

As an illustration, the DOS of C7.8N0.2 calculated using the method is shown in Fig. 24. The input
file is DIA8-VA.dat which can be found in the directory, work. In the calculation, one of eight carbon
atoms in the unit cell was replaced by a virtual atom with an effective nuclear charge of 4.2, which
corresponds to a stoichiometric compound of C7.8N0.2.

-4

-3

-2

-1

0

1

2

3

4

-10 -8 -6 -4 -2 0 2 4 6 8 10

D
O

S
 (

1/
eV

/s
pi

n)

Energy (eV)

Spin up
Spin down

Figure 24: Density of states (DOS) of C7.8N0.2 calculated with a pseudopotential of the virtual atom.
The input file used for the calculation is DIA8-VA.dat which can be found in the directory, work.

89

27 LCAO coefficients

It is possible to analyze LCAO coefficients in both the cluster and band calculations. In the cluster
calculation, if a keyword, ’level.of.fileout’, is set in 2, the LCAO coefficients are added into a file,
*.out. As an example, LCAO coefficients of Methane.dat discussed in the Section ’Test calculation’
are shown below:

Eigenvalues (Hartree) and Eigenvectors for SCF KS-eq.

Chemical Potential (Hartree) = 0.00000000000000

HOMO = 4

LCAO coefficients for up (U) and down (D) spins

1 (U) 2 (U) 3 (U) 4 (U) 5 (U) 6 (U)

-0.64276 -0.36132 -0.36128 -0.36128 0.26426 0.26446

1 C 0 s -0.61131 0.00000 0.00000 0.00000 0.00000 -0.00000

0 px -0.00000 -0.00013 0.00405 0.62805 -0.00006 -0.00327

0 py 0.00000 0.62823 -0.00026 0.00013 1.17816 0.00012

0 pz 0.00000 -0.00026 -0.62805 0.00405 -0.00012 1.17824

2 H 0 s -0.17052 -0.25665 -0.00223 -0.36325 0.68908 -0.00263

3 H 0 s -0.17052 0.25688 0.36309 -0.00229 -0.68923 0.97445

4 H 0 s -0.17052 0.25658 -0.36331 0.00239 -0.68903 -0.97459

5 H 0 s -0.17052 -0.25680 0.00245 0.36315 0.68918 0.00278

7 (U) 8 (U)

0.26446 0.31939

1 C 0 s 0.00000 1.93736

0 px -1.17824 0.00000

0 py -0.00006 0.00000

0 pz -0.00327 0.00000

2 H 0 s -0.97456 -0.80393

......

....

In bulk calculations, if a keyword ’MO.fileout’ is set in ON, LCAO coefficients at k-points which
are specified by the keyword ’MO.kpoint’ are output into a file *.out. For cluster calculations,
’level.of.fileout’ should be 2 to output LCAO coefficients. But, for band calculations, the relevant
keyword is ’MO.fileout’ rather than ’level.of.fileout’.

90

28 Charge analysis

Although it is a somewhat ambiguous issue to assign effective charge to each atom, OpenMX provides
three schemes, Mulliken charge analysis, Voronoi charge analysis, and electro static potential (ESP)
fitting method, to analyze the charge state of each atom.

28.1 Mulliken charge

The Mulliken charges are output in *.out by default as shown in Section ’Test calculation’. In addition
to the Mulliken charge projected to each atom, you can also find a decomposed Mulliken charge to
each orbital in *.out. The output result stored in *.out for a methane molecule is as follows:

Decomposed Mulliken populations

1 C Up spin Down spin Sum Diff

multiple

s 0 0.598003833 0.598003833 1.196007667 0.000000000

sum over m 0.598003833 0.598003833 1.196007667 0.000000000

sum over m+mul 0.598003833 0.598003833 1.196007667 0.000000000

px 0 0.588514081 0.588514081 1.177028163 0.000000000

py 0 0.588703212 0.588703212 1.177406424 0.000000000

pz 0 0.588514081 0.588514081 1.177028162 0.000000000

sum over m 1.765731375 1.765731375 3.531462749 0.000000000

sum over m+mul 1.765731375 1.765731375 3.531462749 0.000000000

2 H Up spin Down spin Sum Diff

multiple

s 0 0.409066346 0.409066346 0.818132693 0.000000000

sum over m 0.409066346 0.409066346 0.818132693 0.000000000

sum over m+mul 0.409066346 0.409066346 0.818132693 0.000000000

3 H Up spin Down spin Sum Diff

multiple

s 0 0.409065912 0.409065912 0.818131824 0.000000000

sum over m 0.409065912 0.409065912 0.818131824 0.000000000

sum over m+mul 0.409065912 0.409065912 0.818131824 0.000000000

.......

....

As you can see, the Mulliken charges are decomposed for all orbitals. There are two kind of summations
in this decomposition. One of summations is ’sum over m’ which means a summation over magnetic
quantum number for each multiple orbital. The second summation is ’sum over m+mul’ which means
a summation over both magnetic quantum number and orbital multiplicity, where ”multiple” means a
number to specify a radial wave function. Therefore, Mulliken charges are decomposed to contributions
of all orbitals.

91

28.2 Voronoi charge

Voronoi charge of each atom is calculated by integrating electron and spin densities in a Voronoi
polyhedron. The Voronoi polyhedron is constructed from smeared surfaces which are defined by
a Fuzzy cell partitioning method [40]. It should be noted that this Voronoi analysis gives often
overestimated or underestimated charge, since Voronoi polyhedron is determined by only the structure
without taking account of atomic radius. If you want to calculate Voronoi charge, specify the following
keyword ’Voronoi.charge’ in your input file:

Voronoi.charge on # on|off, default = off

In case of a methane molecule, the following Voronoi charges are output to *.out.

Voronoi charges

Sum of Voronoi charges for up = 3.999999031463

Sum of Voronoi charges for down = 3.999999031463

Sum of Voronoi charges for total = 7.999998062926

Total spin S by Voronoi charges = 0.000000000000

Up spin Down spin Sum Diff

Atom= 1 1.137912511 1.137912511 2.275825021 0.000000000

Atom= 2 0.715521700 0.715521700 1.431043399 0.000000000

Atom= 3 0.715521486 0.715521486 1.431042973 0.000000000

Atom= 4 0.715521776 0.715521776 1.431043552 0.000000000

Atom= 5 0.715521559 0.715521559 1.431043118 0.000000000

Clearly, we see that carbon atom (Atom=1) and hydrogen atoms (Atom=2-5) tend to possess less
charge and much charge, respectively, from a chemical sense. However, the Voronoi analysis could be
a useful and complementary information for a bulk system with a closed pack structure.

28.3 Electro-static potential fitting

For small molecular systems, the electro-static potential (ESP) fitting method [54, 55, 56] is useful to
determine an effective charge of each atom, while the ESP fitting method can not be applied for large
molecules and bulk systems, since there are not enough sampling points for atoms far from surface
areas in the ESP fitting method. In the ESP fitting method an effective point net charge on each atom
is determined by a least square method with constraints so that the sum of the electro-static potential
by effective point charges reproduce electro-static potential calculated by the DFT calculation as much
as possible. The ESP fitting charge is calculated by the following two steps:

92

(1) SCF calculation

After finishing a usual SCF calculation, you have two output files:

*.out

*.vhart.cube

There is no additional keyword to generate the two files which are default output files by the SCF
calculation, while the keyword ’level.of.stdout’ should be 1 or 2.

(2) ESP fitting charge

Let us compile a program code for calculating the ESP fitting charge. Move the directory ’source’ and
then compile as follows:

% make esp

When the compile is completed normally, then you can find an executable file ’eps’ in the directory
’work’. The ESP fitting charge can be calculated from two files *.out and *.vhart.cube using the
program ’esp’. For example, you can calculate them for a methane molecule shown in the Section
’Input file’ as follows:

% ./esp met -c 0 -s 1.4 2.0

Then, it is enough to specify the file name without the file extension, however, two files ’met.out’ and
’met.vhart.cube’ must exist in the directory ’work’. The options ’-c’ and ’-s’ are key parameters to
specify a constraint and scale factors. You can find the following statement in the header part of a
source code ’eps.c’:

-c constraint parameter

’-c 0’ means charge conservation

’-c 1’ means charge and dipole moment conservation

-s scale factors for vdw radius

’-s 1.4 2.0’ means that 1.4 and 2.0 are 1st and 2nd scale factors

In this ESP fitting method, we support two constraints, charge conservation and, charge and dipole
moment conservation. Although the later can reproduce charge and dipole moment calculated by
the DFT calculation, it seems that the introduction of the dipole moment conservation gives often
physically unacceptable point charges especially for a relatively large molecule. Thus, we would like
to recommend the former constraint. The sampling points are given by the grids in the real space
between two shells of the first and second scale factors times van der Waals radii [57]. In the above
example, 1.4 and 2.0 correspond to the first and second scale factors. The calculated result appears
in the standard output (your display) as follows:

93

% ./eps met -c 0 -s 1.4 2.0

**

**

esp: effective charges by a ESP fitting method

Copyright (C), 2004, Taisuke Ozaki

This is free software, and you are welcome to

redistribute it under the constitution of the GNU-GPL.

**

**

Constraint: charge

Scale factors for vdw radius 1.40000 2.00000

Number of grids in a van der Waals shell = 28464

Volume per grid = 0.0235870615 (Bohr^3)

Success

Atom= 1 Fitting Effective Charge= -0.93558216739

Atom= 2 Fitting Effective Charge= 0.23389552572

Atom= 3 Fitting Effective Charge= 0.23389569182

Atom= 4 Fitting Effective Charge= 0.23389535126

Atom= 5 Fitting Effective Charge= 0.23389559858

Magnitude of dipole moment 0.0000015089 (Debye)

Component x y z 0.0000003114 -0.0000002455 -0.0000014558

RMS between the given ESP and fitting charges (Hartree/Bohr^3)= 0.096515449505

94

29 Non-collinear DFT

A fully unconstrained non-collinear density functional theory (DFT) is supported including the spin-
orbit coupling (SOC) [6, 7, 8, 9, 13]. When the non-collinear DFT is performed, the following option
for the keyword ’scf.SpinPolarization’ is available.

scf.SpinPolarization NC # On|Off|NC

If the option ’NC’ is specified, wave functions are expressed by a two components spinor. An initial
spin orientation of each site is given by

<Atoms.SpeciesAndCoordinates # Unit=Ang

1 Mn 0.00000 0.00000 0.00000 8.0 5.0 45.0 0.0 45.0 0.0 1 on

2 O 1.70000 0.00000 0.00000 3.0 3.0 45.0 0.0 45.0 0.0 1 on

Atoms.SpeciesAndCoordinates>

1: sequential serial number

2: species name

3: x-coordinate

4: y-coordinate

5: z-coordinate

6: initial occupation for up spin

7: initial occupation for down spin

8: Euler angle, theta, of the magnetic field for spin magnetic moment

9: Euler angle, phi, of the magnetic field for spin magnetic moment

Also, the 8th and 9th are used to generate the initial non-collinear

spin charge distribution

10: the Euler angle, theta, of the magnetic field for orbital magnetic moment

11: the Euler angle, phi, of the magnetic field for orbital magnetic moment

12: switch for the constraint schemes specified by the keywords

’scf.Constraint.NC.Spin’, ’scf.NC.Zeeman.Orbital’ and ’scf.NC.Zeeman.Orbital’.

’1’ means that the constraint is applied, and ’0’ no constraint.

13: switch for enhancement of orbital polarization in the LDA+U method,

’on’ means that the enhancement is made, ’off’ no enhancement.

The initial Euler angles, θ and φ, for orientation of the spin and orbital magnetic moment are given by
the 8th and 9th columns, and 10th and 11th columns, respectively. The 12th column is a switch for a
constraint scheme that a constraint (penalty or Zeeman) functional to the spin and orbital orientation
is added on each site, where ’1’ means that the constraint functional is added, and ’0’ means no
constraint. For the details of the constraint DFT for the spin orientation, see the Section ’Constraint
DFT for non-collinear spin orientation’. The final 13th column is a switch for enhancement of orbital
polarization in the LDA+U method, ’on’ means that the enhancement is made, ’off’ no enhancement.
Figure 25 shows the spin orientation in a MnO molecule calculated by the non-collinear DFT. You
can follow the calculation using an input file Mol MnO NC.dat in the directory ’work’. To visualize
the spin orientation in the real space, two files are generated:

95

*.nc.txt

*.ncsden.txt

where * means ’System.Name’ you specified. Two files ’*.nc.txt’ and ’*.ncsden.txt’ store a projected
spin orientation to each atom by Mulliken analysis and the spin orientation on real space grids in a
vector file format supplied by gOpenMol. Both the files can be visualized using ’Plot Vector File’ in
gOpenMol as shown in Fig. 25.

The spin moment and Euler angles of each atom, which are calculated by Mulliken analysis, are
found in the *.out file as follows:

Mulliken populations

Total spin moment (muB) 4.997792547 Angles (Deg) 45.001196562 0.000000622

Up Down Sum Diff theta phi

1 Mn 8.63989 3.91894 12.55883 4.72096 44.99801 0.00000

2 O 3.35900 3.08217 6.44117 0.27684 45.05555 0.00000

Also it should be noted that it is difficult to achieve a self consistent field in the non-collinear DFT
more than the collinear DFT calculation, since there are many minima, having almost comparable
energy, in the spin orientation space, while the constraint DFT is useful for such a case.

In the non-collinear DFT, the inclusion of spin-orbit coupling is supported, while it is not supported
for the collinear DFT. See also the Section ’Relativistic effects’ for the issue.

(a) (b)

Figure 25: Spin orientation in (a) a projected form on each atom and (b) a real space representation
of a MnO molecule calculated by the non-collinear DFT. The figures were visualized by a command
’Plot Vector File’ in gOpenMol [48]. The input file is Mol MnO NC.dat in the directory ’work’.

96

30 Relativistic effects

Relativistic effects can be incorporated by a fully relativistic and a scalar relativistic pseudopotentials.
In the fully relativistic treatment, the spin-orbit coupling is included in addition to kinematic relativis-
tic effects (Darwin and mass velocity terms). On the other hand, the spin-orbit coupling is averaged
in the scalar relativistic treatment. Although the scalar relativistic treatment can be incorporated in
both the collinear and non-collinear DFT calculations, the fully relativistic treatment is supported for
only the non-collinear DFT in the current version of OpenMX.

30.1 Fully relativistic

The fully relativistic effects including the spin-orbit coupling within the pseudopotential scheme can
be included in the non-collinear DFT calculations [10, 19, 13], while the inclusion of the spin-orbit
coupling is not supported in the collinear DFT calculation. The inclusion of fully relativistic effects is
made by the following two steps:

(1) Making of j-dependent pseudopotentials

First, you are requested to generate j-dependent pseudopotentials using ADPACK. For your conve-
nience, the j-dependent pseudopotentials are available for several elements in the database [65]. The
details how to make the j-dependent pseudopotential are found in the manual of ADPACK.

(2) SCF calculation

If you specify j-dependent pseudopotentials in the specification of ’<Definition.of.Atomic.Species’, it
is possible to include spin-orbit coupling by the following keyword ’scf.SpinOrbit.Coupling’:

scf.SpinOrbit.Coupling on # On|Off, default=off

(a) (b)

Γ

-15

-10

-5

0

5

10

g X W L g X

e
V

-15

-10

-5

0

5

10

g X W L g X

e
V

Figure 26: Band structures of a bulk GaAs calculated by the non-collinear DFT (a) without and (b)
with the spin-orbit coupling. In these calculations, Ga6.5-s2p2d1 and As6.5-s2p2d1 were used as a
basis set, and Ga LDA.vps and As LDA.vps were used for pseudopotentials, which are stored in the
database. For the exchange-correlation terms, LDA was used. We used 12× 12× 12 and 140 (Ryd)
for scf.Kgrid and scf.energycutoff, respectively. Also the experimental value (5.65Å) was used for the
lattice constant. The input file is GaAs.dat in the directory ’work’.

97

Table 3: Calculated spin-orbit splittings (eV) at the Γ15v and the L3v of a buld GaAs. The
other theoretical values (LMTO: Ref.[58], PP: Ref.[59]) and experimental value (Ref.[60]) are
also shown for comparison. The calculation conditions are given in the caption of Fig. 26 and
the input file is GaAs.dat in the directory ’work’.

Level OpenMX LMTO PP Expt.
Γ15v 0.348 0.351 0.35 0.34
L3v 0.218 0.213 0.22

Then, the spin-orbit coupling can be self-consistently incorporated within the pseudopotential scheme
rather than a perturbation scheme. Due to the spin-orbit coupling, α and β spin components in the
two components spinor can directly interact. In order to determine the absolute spin orientation in
the non-collinear DFT calculations, you have to include the spin-orbit coupling, otherwise the spin
orientation is not uniquely determined in the real space. As an illustration of spin-orbit splitting, we
show band structures of a bulk GaAs calculated by the non-collinear DFT without and with spin-orbit
coupling in Fig. 26, where the input file is GaAs.dat in the directory ’work’. In Fig. 26(b) we can see
that there are spin-orbit splittings in the band dispersion, while no spin-orbit splitting is not observed
in Fig. 26(a). The spin-orbit splittings at two k-points, Γ and L, are listed together with the other
calculations and experimental values in Table 3. We see a good agreement in this table.

30.2 Scalar relativistic treatment

A simple way to incorporate a scalar relativistic treatment is to use scalar relativistic pseudopoten-
tials which can be generated by ADPACK. The another way is to use fully relativistic j-dependent
pseudopotentials and to switch off the keyword ’scf.SpinOrbit.Coupling’ as follows:

scf.SpinOrbit.Coupling off # On|Off, default=off

Then, the j-dependent pseudopotentials are automatically averaged with a weight of j-degeneracy
when they are read by OpenMX, which corresponds to scalar relativistic pseudopotentials. So, once
j-dependent pseudopotentials are generated, you can utilize the pseudopotentials for both the fully
and scalar relativistic treatment. Thus, we recommend that you make a fully relativistic j-dependent
pseudopotential rather than a scalar relativistic pseudopotential, when relativistic effects are taken
into account. In fact, the calculation in Fig. 26(a) was performed with ’scf.SpinOrbit.Coupling=off’
and the same pseudopotential as in Fig. 26(b).

98

31 Orbital magnetic moment

The orbital magnetic moment at each atomic site is calculated as default in the non-collinear DFT.
Since the orbital magnetic moment appears as a manifestation of spin-orbit coupling (SOC), the
calculated values become finite when the SOC is included [63, 64]. As an example, a non-collinear
LDA+U (U=5eV) calculation of iron monoxide bulk is illustrated using an input file FeO NC.dat in
the directory ’work’. As for the LDA+U calculation, see the Section ’LDA+U’. The calculated orbital
and spin magnetic moments at the Fe site are listed in Table 4. Also, you can find the orientation of
the (decomposed) orbital moment in *.out, where * means ’System.Name’ as follows:

Orbital moments

Total Orbital Moment (muB) 0.000000070 Angles (Deg) 113.644105951 -65.722115195

Orbital moment (muB) theta (Deg) phi (Deg)

1 Fe 1.01127 128.64444 50.80973

2 Fe 1.01127 51.35556 230.80973

3 O 0.00000 122.13287 8.40916

4 O 0.00000 58.29296 151.31925

Decomposed Orbital Moments

1 Fe Orbital Moment(muB) Angles (Deg)

multiple

s 0 0.000000000 90.0000 0.0000

sum over m 0.000000000 90.0000 0.0000

s 1 0.000000000 90.0000 0.0000

sum over m 0.000000000 90.0000 0.0000

px 0 0.000032282 44.0757 90.0000

py 0 0.000027194 31.5419 -0.0000

pz 0 0.000026842 90.0000 57.4970

sum over m 0.000070741 49.0444 57.5709

px 1 0.004596036 10.8026 -90.0000

py 1 0.004533432 5.2237 180.0000

pz 1 0.000955444 90.0000 244.3929

sum over m 0.009229130 11.9479 244.3959

d3z^2-r^2 0 0.045401124 90.0000 224.3492

dx^2-y^2 0 0.075657665 24.3023 228.5632

dxy 0 0.453606172 81.2632 50.2745

dxz 0 0.495766350 143.9475 -10.8730

99

dyz 0 0.531382963 138.9632 98.7434

sum over m 0.997255210 131.7287 51.1391

d3z^2-r^2 1 0.001075694 90.0000 254.7742

dx^2-y^2 1 0.012694575 26.6388 225.7504

dxy 1 0.036086417 71.5849 49.3240

dxz 1 0.031150186 132.6513 -13.0079

dyz 1 0.033740724 128.7200 99.3874

sum over m 0.058459849 109.4476 49.1020

f5z^2-3r^2 0 0.007365273 90.0000 39.4321

f5xz^2-xr^2 0 0.005659459 26.2551 124.3549

f5yz^2-yr^2 0 0.006152658 34.4173 -38.4581

fzx^2-zy^2 0 0.015290504 34.2465 224.2021

fxyz 0 0.012904266 11.6263 244.9193

fx^3-3*xy^2 0 0.004957037 43.3387 -84.7645

f3yx^2-y^3 0 0.004826463 41.6700 183.4396

sum over m 0.043385660 10.6323 246.7139

.....

...

As shown in Table 4, OpenMX gives a good agreement for both the spin and orbital magnetic
moments of a series of 3d-transition metal oxides with other calculation results. However, it is noted
that the absolute value of orbital magnetic moment seems to be significantly influenced by calculation
conditions such as basis functions and on-site ’U’ in the LDA+U method, while the spin magnetic
moment is relatively insensitive to the calculation conditions, and that a rather rich basis set including
polarization functions will be needed for convergent calculations of the orbital magnetic moment.

Table 4: Spin magnetic moment Ms(µB) and orbital magnetic moment Mo(µB) of transition metal
oxides, MO (M=Mn,Fe,Co,Ni). In the LDA+U scheme [16], for the first d-orbital of M, the effective U
of 4.0 (eV) for Mn, 5.0 (eV) for Fe, Co for 7.0 (eV), and Ni for 7.0 (eV) were used. For the others zero.
The local spin moment was calculated by the Voronoi decomposition discussed in the Section ’Voronoi
charge’ rather than Mulliken charge, since the Mulliken analysis tends to give a larger spin moment in
the use of multiple basis functions. The input files are MnO NC.dat, FeO NC.dat, CoO NC.dat, and
NiO NC.dat in the directory ’work’. The other theoretical value [41] and experimental value [41] are
also shown for comparison.

Ms Mo

Compound OpenMX Other calc. OpenMX Other calc. Expt. in total
MnO 4.560 4.49 0.001 0.00 4.79,4.58
FeO 3.582 3.54 1.010 1.01 3.32
CoO 2.684 2.53 1.088 1.19 3.35,3.8
NiO 1.594 1.53 0.173 0.27 1.77,1.64,1.90

100

32 LDA+U

LDA+U methods with different definitions of the occupation number operator [16] are available for
both the collinear and non-collinear calculations by the following keyword ’scf.Hubbard.U’:

scf.Hubbard.U on # On|Off, default=off

The occupation number operator is specified by the following keyword ’scf.Hubbard.Occupation’:

scf.Hubbard.Occupation dual # onsite|full|dual, default=dual

Among three occupation number operators, only the ’dual’ operator satisfies a sum rule that the trace
of occupation number matrix gives the total number of electrons which is the most primitive conserved
quantity in a Hubbard model. For the details of the operator ’onsite’, ’full’, and ’dual’, see Ref. [16].
The effective U-value in eV on each orbital of species defined by

<Definition.of.Atomic.Species

Ni Ni5.5-s2p2d2 Ni_LDA

O O4.5-s2p2d1 O_LDA

Definition.of.Atomic.Species>

is specified by

<Hubbard.U.values # eV

Ni 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 4.0 2d 0.0

O 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 0.0

Hubbard.U.values>

The beginning of the description must be <Hubbard.U.values, and the last of the description must be
Hubbard.U.values>. For all the basis orbitals, you have to give an effective U-value in eV in above
format. The ’1s’ and ’2s’ mean the first and second s-orbital, and the number behind ’1s’ is the
effective U-value for the first s-orbital. The same rule is applied to p- and d-orbitals. As an example
of the LDA+U calculation, the density of states for a nickel monoxide bulk is shown for cases with an
effective U-value of 0 and 4 (eV) for d-orbitals of Ni in Fig. 27, where the input file is Crys-NiO.dat
in the directory ’work’. We see that the gap increases due to the introduction of a Hubbard term on
the d-orbitals. The occupation number for each orbital is output to *.out file in the same form as that
of decomposed Mulliken populations which starts from the title ’Occupation Number in LDA+U’ as
follows:

Occupation Number in LDA+U and Constraint DFT

Eigenvalues and eigenvectors for a matrix consisting

of occupation numbers on each site

101

1 Ni

spin= 0

Sum = 8.674098295491

1 2 3 4 5 6 7 8

Individual -0.0016 0.1334 0.1334 0.1349 0.2903 0.9948 0.9948 0.9953

s 0 -0.0111 0.0000 -0.0004 -0.0004 0.9999 0.0000 -0.0059 -0.0045

s 1 0.9999 0.0000 0.0003 0.0077 0.0111 -0.0000 0.0023 0.0016

px 0 0.0019 0.0383 0.0201 -0.0324 -0.0042 -0.6993 -0.7016 -0.0055

py 0 0.0020 0.0000 -0.0448 -0.0278 -0.0043 -0.0000 0.0059 -0.9850

pz 0 0.0019 -0.0383 0.0201 -0.0324 -0.0042 0.6995 -0.7014 -0.0055

px 1 -0.0044 -0.7060 -0.3724 0.5996 -0.0002 -0.0374 -0.0396 -0.0029

py 1 -0.0042 -0.0002 0.8486 0.5259 0.0003 -0.0000 -0.0019 -0.0539

pz 1 -0.0044 0.7062 -0.3720 0.5996 -0.0002 0.0374 -0.0395 -0.0029

d3z^2-r^2 0 0.0000 0.0028 -0.0016 0.0001 0.0003 0.1080 -0.0367 0.0589

dx^2-y^2 0 0.0000 -0.0016 -0.0028 0.0001 0.0004 -0.0623 -0.0636 0.1021

dxy 0 -0.0000 -0.0034 0.0036 0.0229 0.0006 -0.0414 0.0590 0.0406

dxz 0 0.0002 0.0000 -0.0024 0.0232 0.0006 -0.0000 0.0168 0.0976

dyz 0 -0.0000 0.0034 0.0036 0.0229 0.0006 0.0414 0.0590 0.0406

9 10 11 12 13

Individual 0.9989 0.9989 0.9995 1.0006 1.0007

s 0 -0.0000 0.0000 -0.0000 -0.0000 0.0004

.....

...

The eigenvalues of the occupation number matrix of each atomic site correspond to the occupation
number to each local state given by the eigenvector.

The LDA+U functional possesses multiple minima in the degree of freedom of the orbital occu-
pation, leading to that the SCF calculation tends to be trapped to some local minimum. To find
the ground state with an orbital polarization, a way of enhancing explicitly the orbital polarization is
available by the following switch :

For collinear cases

<Atoms.SpeciesAndCoordinates # Unit=AU

1 Ni 0.0 0.0 0.0 10.0 6.0 on

2 Ni 3.94955 3.94955 0.0 6.0 10.0 on

3 O 3.94955 0.0 0.0 3.0 3.0 on

4 O 3.94955 3.94955 3.94955 3.0 3.0 on

102

−6 −4 −2 0 2 4 6
0

2

4

6

8

−6 −4 −2 0 2 4 6
0

2

4

6

8

Energy (eV)

T
ot

al
 D

en
si

ty
 o

f S
ta

te
s

(1
/e

v/
sp

in
)

(a)

(b)

Figure 27: The total density of states for up-spin in NiO bulk calculated with (a) U=0 (eV) and (b)
U=4 (eV) in the LDA+U method. The input file is Crys-NiO.dat in the directory ’work’.

Atoms.SpeciesAndCoordinates>

For non-collinear cases

<Atoms.SpeciesAndCoordinates # Unit=AU

1 Ni 0.0 0.0 0.0 10.0 6.0 40.0 10.0 0 0 on

2 Ni 3.94955 3.94955 0.0 6.0 10.0 40.0 10.0 0 0 on

3 O 3.94955 0.0 0.0 3.0 3.0 10.0 40.0 0 0 on

4 O 3.94955 3.94955 3.94955 3.0 3.0 10.0 40.0 0 0 on

Atoms.SpeciesAndCoordinates>

The specification of each column can be found in the section ’Non-collinear DFT’. Since the enhance-
ment treatment for the orbital polarization is performed on each atom, you have to set the switch
for all the atoms in the specification of atomic coordinates as given above. The enhancement for the
atoms switched on is applied during the first few self-consistent (SC) steps, then no more enhancement
are required during the subsequent SC steps. It is also emphasized that the enhancement does not
always give the ground state, and that it can work badly in some case. See Ref. [16] for the details.

103

33 Constraint DFT for non-collinear spin orientation

To calculate an electronic structure with an arbitrary spin orientation in the non-collinear DFT,
OpenMX Ver. 3.5 provides a constraint functional which gives a penalty unless the difference between
the calculated spin orientation and the initial one is zero [11]. The constraint DFT for the non-collinear
spin orientation is available by the following keywords:

scf.Constraint.NC.Spin on # on|off, default=off

scf.Constraint.NC.Spin.v 0.2 # default=0.0(eV)

You can switch on the keyword ’scf.Constraint.NC.Spin’ and give a magnitude by ’scf.Constraint.NC.Spin.v’
which determines the strength of constraint, when the constraint for the spin orientation is introduced.
The constraint is applied on each atom by specifying a switch as follows:

<Atoms.SpeciesAndCoordinates

1 Cr 0.00000 0.00000 0.00000 7.0 5.0 -20.0 0.0 1 off

2 Cr 0.00000 2.00000 0.00000 7.0 5.0 20.0 0.0 1 off

Atoms.SpeciesAndCoordinates>

The ’1’ in the 12th column means that the constraint is applied, and ’0’ no constraint. The method
constrains only the spin orientation. Therefore, the magnitude of spin can vary. Also the constraint
scheme is compatible with the LDA+U calculation explained in the Section ’LDA+U’. As an illustra-
tion of this method, the dependence of the total energy and magnetic moment in a chromium dimer
on the relative angle between two local spins is shown in Fig. 28. You can trace the calculation using
an input file Cr2 CNC.dat in the directory ’work’.

0 30 60 90 120 150 180
-121.78

-121.76

-121.74

-121.72

2

3

4

Relative Angle θ()

T
o

ta
l
E

n
e

rg
y
 (

H
a

rt
re

e
) S

p
in

 M
o

m
e

n
t o

f C
r

µ
B

(
)

Figure 28: The total energy and magnetic moment of Cr atom for a chromium dimer of which bond
length is 2.0 Å. The input file is Cr2 CNC.dat in the directory ’work’.

104

34 Zeeman terms

It is possible to apply Zeeman terms to spin and orbital magnetic moments.

34.1 Zeeman term for spin magnetic moment

The Zeeman term for spin magnetic moment is available as an interaction with a uniform magnetic
field by the following keywords:

scf.NC.Zeeman.Spin on # on|off, default=off

scf.NC.Mag.Field.Spin 100.0 # default=0.0(Tesla)

When you include the Zeeman term for spin magnetic moment, switch on the keyword ’scf.NC.Zeeman.Spin’.
The magnitude of the uniform magnetic field can be specified by the keyword ’scf.NC.Mag.Field.Spin’
in units of Tesla. Moreover, we extend the scheme as a constraint scheme in which the direc-
tion of the magnetic field can be different from each atomic site atom by atom. Then, the direc-
tion of magnetic field for spin magnetic moment can be controlled, for example, by the keyword
’Atoms.SpeciesAndCoordinates’:

<Atoms.SpeciesAndCoordinates

1 Sc 0.000 0.000 0.000 6.6 4.4 10.0 50.0 160.0 20.0 1 on

2 Sc 2.000 0.000 0.000 6.6 4.4 80.0 50.0 160.0 20.0 1 on

Atoms.SpeciesAndCoordinates>

The 8th and 9th columns give the Euler angles, theta and phi, in order to specify the magnetic field for
spin magnetic moment. The 12th column is a switch to the constraint. ’1’ means that the constraint is
applied, and ’0’ no constraint. Since for each atomic site a different direction of the magnetic field can
be applied, this scheme provides a way of studying non-collinear spin configuration. It is noted that
the keyword ’scf.NC.Zeeman.Spin’ and the keyword ’scf.Constraint.NC.Spin’ are mutually exclusive.
Therefore, when ’scf.NC.Zeeman.Spin’ is ’on’, the keyword ’scf.Constraint.NC.Spin’ must be switched
off as follows:

scf.Constraint.NC.Spin off # on|off, default=off

Although the Zeeman term and the constraint scheme for spin orientation can be regarded as ways
for controlling the spin orientation, it is noted that the magnitude of spin magnetic moment by the
Zeeman term tends to be enhanced unlike the constraint scheme.

34.2 Zeeman term for orbital magnetic moment

The Zeeman term for orbital magnetic moment is available as an interaction with a uniform magnetic
field by the following keywords:

scf.NC.Zeeman.Orbital on # on|off, default=off

scf.NC.Mag.Field.Orbital 100.0 # default=0.0(Tesla)

105

When you include the Zeeman term for orbital magnetic moment, switch on the keyword ’scf.NC.Zeeman.Orbital’.
The magnitude of the uniform magnetic field can be specified by the keyword ’scf.NC.Mag.Field.Orbital’
in units of Tesla. Moreover, we extend the scheme as a constraint scheme in which the direc-
tion of the magnetic field can be different from each atomic site atom by atom. Then, the direc-
tion of magnetic field for orbital magnetic moment can be controlled, for example, by the keyword
’Atoms.SpeciesAndCoordinates’:

<Atoms.SpeciesAndCoordinates

1 Sc 0.000 0.000 0.000 6.6 4.4 10.0 50.0 160.0 20.0 1 on

2 Sc 2.000 0.000 0.000 6.6 4.4 80.0 50.0 160.0 20.0 1 on

Atoms.SpeciesAndCoordinates>

The 10th and 11th columns give the Euler angles, theta and phi, in order to specify the magnetic field
for orbital magnetic moment. The 12th column is a switch to the constraint. ’1’ means that the con-
straint is applied, and ’0’ no constraint. Since for each atomic site a different direction of the magnetic
field can be applied, this scheme provides a way of studying non-collinear orbital configuration. Also,
it is noted that the direction of magnetic field for orbital magnetic moment can be different from that
for spin moment.

106

35 Macroscopic polarization by Berry’s phase

The macroscopic electric polarization of a bulk system can be calculated based on a Berry’s phase
formalism [12]. As an example, let us illustrate a calculation of a Born effective charge of Na in a
NaCl bulk via the macroscopic polarization.

(1) SCF calculation

First, perform a conventional SCF calculation using an input file NaCl.dat in the directory ’work’.
Then, the following keyword ’HS.fileout’ should be switched on

HS.fileout on # on|off, default=off

When the calculation is completed normally, then you can find an output file ’nacl.scfout’ in the
directory ’work’.

(2) Calculation of macroscopic polarization

The macroscopic polarization is calculated by a post-processing code ’polB’ of which input data is
’nacl.scfout’. In the directory ’source’, compile as follows:

% make polB

When the compile is completed normally, then you can find an executable file ’polB’ in the directory
’work’. Then, move to the directory ’work’, and perform as follows:

% polB nacl.scfout

or

% polB nacl.scfout < in > out

In the later case, the file ’in’ contains the following ingredients:

9 9 9

1 1 1

In the former case, you will be interactively asked from the program as follows:

**

**

polB:

code for calculating the electric polarization of bulk systems

Copyright (C), 2006-2007, Fumiyuki Ishii and Taisuke Ozaki

This is free software, and you are welcome to

redistribute it under the constitution of the GNU-GPL.

**

**

Read the scfout file (nacl.scfout)

Previous eigenvalue solver = Band

107

atomnum = 2

ChemP = -0.234375000000 (Hartree)

E_Temp = 300.000000000000 (K)

Total_SpinS = 0.000000000000 (K)

Spin treatment = collinear spin-polarized

r-space primitive vector (Bohr)

tv1= 0.000000 5.319579 5.319579

tv2= 5.319579 0.000000 5.319579

tv3= 5.319579 5.319579 0.000000

k-space primitive vector (Bohr^-1)

rtv1= -0.590572 0.590572 0.590572

rtv2= 0.590572 -0.590572 0.590572

rtv3= 0.590572 0.590572 -0.590572

Cell_Volume=301.065992 (Bohr^3)

Specify the number of grids to discretize reciprocal a-, b-, and c-vectors

(e.g 2 4 3) 9 9 9

k1 0.00000 0.11111 0.22222 0.33333 0.44444 0.55556

k2 0.00000 0.11111 0.22222 0.33333 0.44444 0.55556

k3 0.00000 0.11111 0.22222 0.33333 0.44444 0.55556

Specify the direction of polarization as reciprocal a-, b-, and c-vectors

(e.g 0 0 1) 1 1 1

Then, the calculation will start like this:

calculating the polarization along the a-axis

The number of strings for Berry phase : AB mesh=81

calculating the polarization along the a-axis 1/ 82

calculating the polarization along the a-axis 2/ 82

.....

...

Electric dipole (Debye) : Berry phase

Absolute dipole moment 163.93374185

Background Core Electron Total

Dx -0.00000000 94.64718996 0.00000013 94.64719009

108

Dy -0.00000000 94.64718996 0.00000013 94.64719009

Dz -0.00000000 94.64718996 -0.00000018 94.64718978

Electric polarization (muC/cm^2) : Berry phase

Background Core Electron Total

Px -0.00000000 707.66166752 0.00000095 707.66166847

Py -0.00000000 707.66166752 0.00000095 707.66166847

Pz -0.00000000 707.66166752 -0.00000138 707.66166614

Elapsed time = 15.445211 (s) for myid= 0

Since the Born effective charge Z∗αβ is defined by a tensor:

Z∗αβ =
Vc

|e|
∆Pα

∆uβ

where Vc is the volume of the unit cell, e the elementary charge, ∆uβ displacement along β-coordinate,
∆Pα the change of macroscopic polarization along α-coordinate, therefore we will perform above
procedures (1) and (2) at least two or three times by varying the x, y, or z-coordinate of Na atom.
Then, for example x-coordinates, we have

Px = 94.39158732 (Debye/unit cell) at x= -0.05 (Ang)

Px = 94.64719009 (Debye/unit cell) at x= 0.0 (Ang)

Px = 94.90279293 (Debye/unit cell) at x= 0.05 (Ang)

Thus,

Z∗xx =
(94.90279293− 94.39158732)/(2.54174776)

0.1/0.529177
= 1.064

Table 5: Calculated Born effective charge of Na in a NaCl bulk The input file is NaCl.dat in the
directory ’work’. The other theoretical value (FD: Ref. [61]) and experimental value (Ref. [62]) are
also shown for comparison.

OpenMX FD Expt.
Z∗ 1.06 1.09 1.12

109

In the NaCl bulk the off-diagonal terms in the tensor of Born charge are zero, and Z∗xx = Z∗yy = Z∗zz.
In Table 5 we see that the calculated value is in good agreement with the other calculation [61]
and an experimental result [62]. The calculation of macroscopic polarization is supported for both
the collinear and non-collinear DFT. It is also noted that the code ’polB’ has been parallelized for
large-scale systems where the number of processors can exceed the number of atoms in the system.

110

36 Exchange coupling parameter

To analyze an effective interaction between spins located on two atomic sites, an exchange coupling
parameter between two localized spins can be evaluated based on Green’s function method [14, 15].
In OpenMX Ver. 3.5 the evaluation is supported for only the collinear calculations of cluster and
bulk systems. If you want to calculate the exchange coupling parameter between two spins which are
localized to different atomic sites, you can calculate it by the following two steps:

(1) SCF calculation

First, you would perform a collinear DFT calculation using an input file Fe2.dat in the directory ’work’
as an example. Then, you have to set the following keyword ’HS.fileout’ as follows:

HS.fileout on # on|off, default=off

When the execution is completed normally, then you can find a file ’fe2.scfout’ in the directory ’work’.

(2) Calculation of exchange coupling parameter

Let us make a program code for calculating the exchange coupling parameter. Move the directory
’source’ and then compile as follows:

% make jx

When the compile is completed normally, then you can find an executable file ’jx’ in the directory
’work’. The exchange coupling parameter can be calculated from the file ’*.scfout’ using the program
’jx’ as follows:

% ./jx fe2.scfout

where an iron dimer is considered as an example. Then, you are interactively asked from the program
as follow:

**

**

jx: code for calculating an effective exchange coupling constant J

Copyright (C), 2003, Myung Joon Han, Jaejun Yu, and Taisuke Ozaki

This is free software, and you are welcome to

redistribute it under the constitution of the GNU-GPL.

**

**

Read the scfout file (fe2.scfout)

Previous eigenvalue solver = Cluster

atomnum = 2

ChemP = 0.001924071047 (Hartree)

E_Temp = 600.000000000000 (K)

111

Evaluation of J based on cluster calculation

Diagonalize the overlap matrix

Diagonalize the Hamiltonian for spin= 0

Diagonalize the Hamiltonian for spin= 1

Specify two atoms (e.g 1 2, quit: 0 0) 1 2

J_ij between 1th atom and 2th atom is 949.978344353523 cm^{-1}

Specify two atoms (e.g 1 2, quit: 0 0) 2 1

J_ij between 2th atom and 1th atom is 949.978344353523 cm^{-1}

Specify two atoms (e.g 1 2, quit: 0 0) 0 0

Please specify two atoms you want to calculate the exchange coupling parameter until typing ’0 0’.

112

37 Optical conductivity

The functionality suffers from some program bugs. The revised code will be released in
future.

The optical conductivity can be evaluated within linear response theory [42]. OpenMX Ver. 3.5
supports the calculation for only the collinear cluster calculation. If you want to calculate the optical
conductivity of molecular systems, you can calculate it by the following two steps:

(1) SCF calculation

First, you would perform a collinear cluster calculation using an input file Methane OC.dat in the
directory ’work’ as an example. Then, you have to set the following two keywords ’Dos.fileout’ and
’OpticalConductivity.fileout’ as follows:

Dos.fileout on # on|off, default=off

OpticalConductivity.fileout on # on|off, default=off

When the execution is completed normally, then you can find files, *.optical and *.Dos.val, in the
directory ’work’.

(2) Calculation of optical conductivity

Let us make a program code for calculating the optical conductivity. Move the directory ’source’ and
then compile as follows:

% make OpticalConductivityMain

When the compile is completed normally, then you can find a executable file ’OpticalConductivityMain’
in the directory ’work’. The optical conductivity can be calculated from the files ’*.optical’ and
’*.Dos.val’ using the program ’OpticalConductivityMain’ as follows:

% ./OpticalConductivityMain met.optical met.Dos.val met.optout

where a methane molecule is considered as an example. Then, you are interactively asked from the
program as follow:

freqmax=100.000000

gaussian=0.036749

freqmax (Hartree)=? 3

freq mech=? 1000

In the output file ’met.optout’ the second, third, and fourth columns correspond to the frequency
(Hartree) and optical conductivity (arbitrary unit) for up- and down-spins, respectively.

113

38 Electric transport calculations

38.1 General

Electronic transport properties of molecules, nano-wires, and bulks such as superlattice structures can
be calculated based on a non-equilibrium Green function (NEGF) method within the collinear DFT.
The features and capabilities are listed below:

• SCF calculation of system with two leads under zero and a finite bias voltages

• SCF calculation under gate bias voltage

• Compatible with the LDA+U method

• Spin-dependent transmission and current

• k-resolved transmission and current along perpendicular to the current axis

• Calculation of current-voltage curve

• Accurate and efficient contour integration scheme

• Interpolation of the effect by the bias voltage

• Quick calculation for periodic systems under zero bias

The details of the implementation can be found in Ref. [43]. The usage of the functionalities is
explained in the following subsections.

System we consider

In the current implementation of OpenMX, a system shown in Fig. 29(a) is treated by the NEGF
method. The system consists of a central region connected with infinite left and right leads, and the
two dimensional periodicity spreads over the bc-plane. Considering the two dimensional periodicity,
the system can be cast into a one-dimensional problem depending on the Bloch wave vector k shown
in Fig. 29(b). Also, the Green function of the region C(≡ L0|C0|R0) is self-consistently determined
in order to take account of relaxation of electronic structure around the interface between the central
region C0 and the region L0(R0). It should be noted that the electronic transport is assumed to be
along the a-axis in the current implementation. Thus, users have to keep in mind the specification
when the geometrical structure is constructed. See also the subsection ’Step 1: The calculations for
leads’.

Computational flow

The NEGF calculation is performed by the following three steps:

Step 1 → Step 2 → Step 3

Each step consists of

114

C0 R0L0 R1L1

a-axis

b-axis
c-axis

CL1 R1 R2L2

(a) (b)

Figure 29: (a) Configuration of the system, treated by the NEGF method, with infinite left and right
leads along the a-axis under a two dimensional periodic boundary condition on the bc-plane. (b)
One dimensional system compacted from the configuration of (a) by considering the periodicity on
the bc-plane, where the region C is an extended central region consisting of C0, L0, and R0.

• Step 1

The band structure calculations are performed for the left and right leads using a program code
’openmx’. The calculated results will be used to represent the Hamiltonian of the leads in the
NEGF calculation of the step 2.

• Step 2

The NEGF calculation is performed for the structure shown in Fig. 29 under zero or a finite
voltage using a program code ’openmx’, where the result in the step 1 is used for the construction
of the leads.

• Step 3

By making use of the result of the step 2, the transmission and current are calculated by a
program code ’TranMain’.

An example: carbon chain
As a first trial, let us illustrate the three steps by employing a carbon chain. Before going to the

illustration, a code ’TranMain’ used in the step 3 has to be compiled in the source directory as follows:

% make TranMain

If the compilation is successful, you will find the executable file ’TranMain’, and may copy it your
work directory, possibly ’work’. Then, you can proceed the following three calculations:

Step 1

%./openmx Lead-Chain.dat | tee lead-chain.std

A file ’negf-chain.hks’ is generated by the step 1.

Step 2

115

−10 −5 0 5 10
0

1

2

3

Energy (eV)

T
ra

ns
m

is
si

on
 (

1/
sp

in
)

Figure 30: Transmission of a carbon chain as a function of energy. The origin of energy is set to the
chemical potential of the left lead.

%./openmx NEGF-Chain.dat | tee negf-chain.std

A file ’negf-chain.tranb’ is generated by the step 2.

Step 3

%./TranMain NEGF-Chain.dat

’negf-chain.tran0 0’, ’negf-chain.current’, and ’negf-chain.conductance’ are generated by the step 3.

The calculations can be traced by using the input files stored in a directory of ’work/negf example’.
By plotting the sixth column in ’negf-chain.tran0 0’ as a function of the fourth column, you can see a
transmission curve as shown Fig. 30.

38.2 Step 1: The calculations for leads

The calculation of the step 1 is the conventional band structure calculation to construct information of
the lead except for adding the following two keywords ’NEGF.output hks’ and ’NEGF.filename.hks’:

NEGF.output_hks on

NEGF.filename.hks lead-chain.hks

The calculated results such as Hamiltonian matrix elements, charge distribution, and difference Hartree
potential are stored in a file specified by the keyword ’NEGF.filename.hks’. In this case, a file ’lead-
chain.hks’ is generated. The ’*.hks’ file is used in the calculation of the step 2. Since the electronic
transport is assumed to be along the a-axis in the current implementation, you have to set the a-axis
for the direction of electronic transport in the band structure calculation. However, you do not need
rotate your structure. All you have to do is to change the specification of the lattice vectors. For
example, if you want to specify a vector (0.0, 0.0, 10.0) as the a-axis in the following lattice vectors:

116

<Atoms.UnitVectors

3.0 0.0 0.0

0.0 3.0 0.0

0.0 0.0 10.0

Atoms.UnitVectors>

you only have to specify as follows:

<Atoms.UnitVectors

0.0 0.0 10.0

3.0 0.0 0.0

0.0 3.0 0.0

Atoms.UnitVectors>

Then, the direction of (0.0, 0.0, 10.0) becomes the direction of electronic transport. As shown above
the example, when you change the order of the lattice vectors, please make sure that the keyword
’scf.Kgrid’ has to be changed as well.

In the calculation of the step 2, the semi-infiniteness of the leads is taken into account by using
the surface Green function which allows us to treat the semi-infiniteness without introducing any
discretization. Thus, it would be better to use a large number of k-points along the a-axis to keep the
consistency between the steps 1 and 2 with respect to treatment of the semi-infiniteness of the a-axis.
Also it is noted that the number of k-points for the bc-plane should be consistent in the steps 1 and
2.

38.3 Step 2: The NEGF calculation

A. Setting up Lead|Device|Lead

You can set up the regions L0, C0, and R0 in the structural configuration shown in Fig. 29 in the
following way:

The geometrical structure of the central region C0 is specified by the following keywords ’Atoms.Number’
and ’Atoms.SpeciesAndCoordinates’:

Atoms.Number 18

<Atoms.SpeciesAndCoordinates

1 C 3.000 0.000 0.000 2.0 2.0

.....

18 C 28.500 0.000 0.000 2.0 2.0

Atoms.SpeciesAndCoordinates>

The geometrical structure of the left lead region L0 is specified by the following keywords ’Left-
LeadAtoms.Number’ and ’LeftLeadAtoms.SpeciesAndCoordinates’:

LeftLeadAtoms.Number 2

<LeftLeadAtoms.SpeciesAndCoordinates

1 C 0.000 0.000 0.000 2.0 2.0

2 C 1.500 0.000 0.000 2.0 2.0

LeftLeadAtoms.SpeciesAndCoordinates>

117

The geometrical structure of the right lead region R0 is specified by the following keywords
’RightLeadAtoms.Number’ and ’RightLeadAtoms.SpeciesAndCoordinates’

RightLeadAtoms.Number 2

<RightLeadAtoms.SpeciesAndCoordinates

1 C 30.000 0.000 0.000 2.0 2.0

2 C 31.500 0.000 0.000 2.0 2.0

RightLeadAtoms.SpeciesAndCoordinates>

This is the case of carbon chain which is demonstrated in the previous subsection. The central region
C0 is formed by 18 carbon atoms, and the left and right regions L0 and R0 contains two carbon atoms,
respectively, where every bond length is 1.5 Å. Following the geometrical specification of device and
leads, OpenMX will construct an extended central region C(≡ L0|C0|R0) as shown in Fig. 29. The
Green function for the extended central region C is self-consistently determined in order to take
account of relaxation of electronic structure around the interface between the central region C0 and
the region L0(R0). In addition, we impose two conditions so that the central Green function can be
calculated in the NEGF method [43]:

1. The localized basis orbitals φ in the region C0 overlap with those in the regions L0 and R0, but
do not overlap with those in the regions L1 and R1.

2. The localized basis orbitals φ in the Li (Ri) region has no overlap with basis orbitals in the cells
beyond the nearest neighboring cells Li−1 (Ri−1) and Li+1 (Ri+1).

In our implementation the basis functions are strictly localized in real space because of the generation
of basis orbitals by a confinement scheme [23, 24]. Therefore, once the localized basis orbitals with
specific cutoff radii are chosen for each region, the two conditions can be always satisfied by just
adjusting the size of the unit cells for Li and Ri.

Although the specification of unit cells for the regions L0, C0, and R0 is not required, it should
be noted that some periodicity is implicitly assumed. The construction of infinite leads is made by
employing the unit cells used in the band structure calculations by the step 1, and the informations
are stored in a file ’*.hks’. Also, due to the structural configuration shown in Fig. 29, the unit vectors
on the bc-plane for the left and right leads should be consistent. Thus, the unit vector on the bc-plane
for the extended central region C is implicitly assumed to be same as that of the leads. Within the
structural limitation, you can set up the structural configuration.

The unit in the specification of the geometrical structure can be given by

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU

In the NEGF calculation, either ’Ang’ or ’AU’ for ’Atoms.SpeciesAndCoordinates.Unit’ is supported,
but ’FRAC’ is not.

How OpenMX analyzes the geometrical structure can be confirmed by the standard output as
shown below:

<TRAN_Calc_GridBound>

118

The extended cell consists of Left0-Center-Right0.

The cells of left and right reads are connected as.

...|Left2|Left1|Left0-Center-Right0|Right1|Right2...

Each atom in the extended cell is assigned as follows:

where ’12’ and ’2’ mean that they are in ’Left0’, and

’12’ has overlap with atoms in the Left1,

and ’13’ and ’3’ mean that they are in ’Right0’, and

’13’ has overlap with atoms in the ’Right1’, and also

’1’ means atom in the ’Center’.

**

Atom1 = 12 Atom2 = 2 Atom3 = 1 Atom4 = 1 Atom5 = 1 Atom6 = 1 Atom7 = 1

Atom8 = 1 Atom9 = 1 Atom10 = 1 Atom11 = 1 Atom12 = 1 Atom13 = 1 Atom14 = 1

Atom15 = 1 Atom16 = 1 Atom17 = 1 Atom18 = 1 Atom19 = 1 Atom20 = 1 Atom21 = 3

Atom22 = 13

The atoms in the extended cell consisting of L0|C0|R0 are assigned by the numbers, where ’12’ and
’2’ mean that they are in L0, and ’12’ has overlap with atoms in L1, and ’13’ and ’3’ mean that they
are in R0, and ’13’ has overlap with atoms in R1, and also ’1’ means atom in C0. By checking the
analysis you may confirm whether the structure is properly constructed or not.

B. Keywords

The NEGF calculation of the step 2 is performed by the keyword ’scf.EigenvalueSolver’

scf.EigenvalueSolver NEGF

For the NEGF calculation the following keywords are newly added.

NEGF.filename.hks.l lead-chain.hks

NEGF.filename.hks.r lead-chain.hks

NEGF.Num.Poles 100 # defalut=150

NEGF.scf.Kgrid 1 1 # defalut=1 1

NEGF.bias.voltage 0.0 # default=0.0 (eV)

NEGF.bias.neq.im.energy 0.01 # default=0.01 (eV)

NEGF.bias.neq.energy.step 0.02 # default=0.02 (eV)

An explanation for each keyword is given below.

NEGF.filename.hks.l lead-chain.hks

NEGF.filename.hks.r lead-chain.hks

The files containing information of leads are specified by the above two keywords, where ’NEGF.filename.hks.l’
and ’NEGF.filename.hks.r’ are for the left and right leads, respectively.

119

NEGF.Num.Poles 100 # defalut=150

The equilibrium density matrix is evaluated by a contour integration method [43, 44]. The number of
poles used in the method is specified by the keyword ’NEGF.Num.Poles’.

NEGF.scf.Kgrid 1 1 # defalut=1 1

The numbers of k-points to discretize the reciprocal vectors b̃ and c̃ are specified by the keyword
’NEGF.scf.Kgrid’. Since no periodicity is assumed along a-axis, you do not need to specify that for
the a-axis.

NEGF.bias.voltage 0.0 # default=0.0 (eV)

The source-drain bias voltage applied to the left and right leads is specified by the keyword ’NEGF.bias.voltage’
in units of eV, corresponding to Volt. Noting that only the difference between applied bias voltages
has meaning, you only have to give a single value as the source-drain bias voltage.

NEGF.bias.neq.im.energy 0.01 # default=0.01 (eV)

NEGF.bias.neq.energy.step 0.02 # default=0.02 (eV)

When a finite source-drain bias voltage is applied, a part of the density matrix is contributed by the
non-equilibrium Green function. Since the non-equilibrium Green function is not analytic in general
in the complex plane, the contour integration method used for the equilibrium Green function cannot
be applied. Thus, in the current implementation the non-equilibrium Green function is evaluated on
the real axis with a small imaginary part using a simple rectangular quadrature scheme. Then, the
imaginary part is given by the keyword ’NEGF.bias.neq.im.energy’ and the step width is given by the
keyword ’NEGF.bias.neq.energy.step’ in units of eV. In most cases, the default values are sufficient,
while the detailed analysis of the convergence property can be found in Ref. [43]. How many energy
points on the real axis are used for the evaluation of the non-equilibrium Green function can be
confirmed in the standard output and the file ’*.out’. In case of ’NEGF-Chain.dat’, if the bias voltage
of 0.5 V is applied, you will see in the standard output that the energy points of 120 are allocated for
the calculation as follows:

Intrinsic chemical potential (eV) of the leads

Left lead: -3.940690039841

Right lead: -3.940690039841

add voltage = 0.0000 (eV) to the left lead: new ChemP (eV): -3.9407

add voltage = 0.5000 (eV) to the right lead: new ChemP (eV): -3.4407

Parameters for the integration of the non-equilibrium part

lower bound: -4.894690039841 (eV)

upper bound: -2.486690039841 (eV)

energy step: 0.020000000000 (eV)

number of steps: 120

120

The total number of energy points where the Green function is evaluated is given by the sum of the
number of poles and the number of energy points on the real axis determined by the two keywords
’NEGF.bias.neq.im.energy’ and ’NEGF.bias.neq.energy.step’, and you should notice that the compu-
tational time is proportional to the total number of energy points.

C. SCF criterion

In the NEGF method, the SCF criterion given by the keyword ’scf.criterion’ is applied to the
residual norm between the input and output charge densities ’NormRD’, while in the other cases
’dUele’ is monitored.

D. Gate bias voltage

In our implementation, the gate voltage Vg(x) is treated by adding an electric potential defined by

Vg(x) = V (0)
g exp

[
−

(
x− xc

d

)8
]

,

where V
(0)
g is a constant value corresponding to the gate voltage, and is specified by the keyword

’NEGF.gate.voltage’ as follows:

NEGF.gate.voltage 1.0 # default=0.0 (in eV)

xc the center of the region C0, and d the length of the unit vector along a-axis for the region C0. Due
to the form of the equation, the applied gate voltage affects mainly the region C0 in the central region
C. The electric potential may resemble the potential produced by the image charges [45].

E. Density of States (DOS)

In the NEGF calculation, the density of states can be calculated by setting the following keywords:

Dos.fileout on # on|off, default=off

NEGF.Dos.energyrange -15.0 25.0 5.0e-3 #default=-10.0 10.0 5.0e-3 (eV)

NEGF.Dos.energy.div 200 # default=200

NEGF.Dos.Kgrid 1 1 # default=1 1

When you want to calculate DOS, the keyword ’Dos.fileout’ should be set ’on’ as usual. Also, the
energy range where DOS is calculated is given by the keyword ’NEGF.Dos.energyrange’, where the
first and second numbers correspond to the lower and upper bounds, and the third number is an
imaginary number used for smearing out DOS. The energy range specified by ’NEGF.Dos.energyrange’
is divided by the number specified by the keyword ’NEGF.Dos.energy.div’. The numbers of k-points
to discretize the reciprocal vectors b̃ and c̃ are specified by the keyword ’NEGF.Dos.Kgrid’. The set
of numbers given by ’NEGF.Dos.Kgrid’ tends to be larger than that by ’NEGF.scf.Kgrid’ because of
computational efficiency. After the NEGF calculation with these parameters, you will find two files
’*.Dos.val’ and ’*.Dos.vec’, and can analyze those by the same procedure as usual. Also, it should be
noted that the origin of energy is set to the chemical potential of the left lead.

121

38.4 Step 3: The transmission and current

After the calculations of the steps 2 and 3, you can proceed calculations of transmission and current
by adding the following keywords to the input file used in the calculation of the step 2:

NEGF.tran.energyrange -10 10 1.0e-3 # default=-10.0 10.0 1.0e-3 (eV)

NEGF.tran.energydiv 200 # default=200

NEGF.tran.Kgrid 1 1 # default= 1 1

The energy range where the transmission is calculated is given by the keyword ’NEGF.tran.energyrange’,
where the first and second numbers correspond to the lower and upper bounds, and the third num-
ber is an imaginary number used for smearing out the transmission. The energy range specified by
’NEGF.tran.energyrange’ is divided by the number specified by the keyword ’NEGF.tran.energydiv’.
The numbers of k-points to discretize the reciprocal vectors b̃ and c̃ are specified by the keyword
’NEGF.tran.Kgrid’. The set of numbers given by ’NEGF.tran.Kgrid’ can be different and tends to be
larger than that by ’NEGF.scf.Kgrid’ because of computational efficiency.

The calculations of the transmission and current are performed by a program code ’TranMain’,
which can be compiled in the source directory as follows:

% make TranMain

If the compilation is successful, you will find the executable file ’TranMain’, and may copy it your
work directory, possibly ’work’. Using the code ’TranMain’ you can perform the calculation of the
step 3, for example, as follows:

%./TranMain NEGF-Chain.dat

Welcome to TranMain

This is a post-processing code of OpenMX to calculate

electronic transmission and current.

Copyright (C), 2002-2008, H.Kino and T.Ozaki

TranMain comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to

redistribute it under the constitution of the GNU-GPL.

Chemical potentials used in the SCF calculation

Left lead: -3.940690039841 (eV)

Right lead: -3.940690039841 (eV)

NEGF.current.energy.step 1.0000e-02 seems to be large for the calculation of current in the bias voltage 0.0000e+00

The recommended Tran.current.energy.step is 0.0000e+00 (eV).

Parameters for the calculation of the current

122

lower bound: -3.940690039841 (eV)

upper bound: -3.940690039841 (eV)

energy step: 0.010000000000 (eV)

imginary energy 0.001000000000 (eV)

number of steps: 0

calculating...

myid0= 0 i2= 0 i3= 0 k2= 0.0000 k3= -0.0000

Transmission: files

./negf-chain.tran0_0

Current: file

./negf-chain.current

Conductance: file

./negf-chain.conductance

After the calculation, in this case you will obtain three files ’negf-chain.tran0 0’, ’negf-chain.current’,
and ’negf-chain.conductance’:

• *.tran# %

The file stores transmissions for up- and down-spin states. The fourth column is the energy rela-
tive to the chemical potential of the left lead, and the sixth and eighth columns are transmission
for up- and down-spin states, respectively. When you employ a lot of k-points which is given by
’NEGF.tran.Kgrid’, a file with a different set of ’#’ and ’%’ in the file extension is generated for
each k-point. The correspondence between the numbers and the k-points can be found in the
file.

• *.current

The file stores k-resolved currents and its average for up- and down-spin states in units of ampere.

• *.conductance

The file stores k-resolved conductance at 0K and its average for up- and down-spin states in
units of quantum conductance (G0 ≡ e2

h). Thus, the conductance G is proportional to the
transmission T at the chemical potential of the left lead, µL, as follows:

G =
e2

h
T (µL)

As an example, the k-resolved transmission drawn by using the file ’*.conductance’ is shown in
Fig. 31.

123

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

kb

kc

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

kb

kc

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

kb

kc

T
ra

n
s
m

is
s
io

n
T
ra

n
s
m

is
s
io

n
T
ra

n
s
m

is
s
io

n

(a)

(b)

(c)

Figure 31: k-resolved Transmission at the chemical potential for (a) the majority spin state of the
parallel configuration, (b) the minority spin state of the parallel configuration, and (c) a spin state of
the antiparallel configuration of Fe|MgO|Fe, respectively. For the calculations k-points of 120 × 120
were used.

38.5 Periodic system under zero bias

When the transmission of a system with the periodicity along the a-axis as well as the periodicity
of the bc-plane is evaluated under zero bias voltage, it can be easily obtained by making use of the
Hamiltonian calculated by the conventional band structure calculation without employing the Green
function method. This scheme enables us to explore transport properties for a wide variety of possible
geometric and magnetic structures with a low computational cost, and thereby can be very useful for
many materials such as supperlattice structures. The calculation is performed by adding a keyword
’NEGF.Output.for.TranMain’:

NEGF.Output.for.TranMain on

in the band structure calculation of the step 1. Then, after the calculation of the step 1, you will
obtain a file ’*.tranb’ which can be used in the calculation of the step 3, which means that you can
skip the calculation of the step 2.

124

38.6 Interpolation of the effect by the bias voltage

Since for large-scale systems it is very time-consuming to perform the SCF calculation at each bias
voltage, an interpolation scheme is available to reduce the computational cost in the calculations
by the NEGF method. The interpolation scheme is performed in the following way: (i) the SCF
calculations are performed for a few bias voltages which are selected in the regime of the bias voltage
of interest. (ii) when the transmission and current are calculated, a linear interpolation is made for
the Hamiltonian block elements, H

(k)
σ,C and H

(k)
σ,R, of the central scattering region and the right lead,

and the chemical potential, µR, of the right lead by

H
(k)
σ,C = λH

(k,1)
σ,C + (1− λ)H(k,2)

σ,C ,

H
(k)
σ,R = λH

(k,1)
σ,R + (1− λ)H(k,2)

σ,R ,

µR = λµ
(1)
R + (1− λ)µ(2)

R ,

where the indices 1 and 2 in the superscript mean that the quantities are calculated or used at the
corresponding bias voltages where the SCF calculations are performed beforehand. In general, λ

should range from 0 to 1 for the moderate interpolation.
In the calculation of the step 3, the interpolation is made by adding the following keywords in the

input file:

NEGF.tran.interpolate on # default=off, on|off

NEGF.tran.interpolate.file1 c1-negf-0.5.tranb

NEGF.tran.interpolate.file2 c1-negf-1.0.tranb

NEGF.tran.interpolate.coes 0.7 0.3 # default=1.0 0.0

When you perform the interpolation, the keyword ’NEGF.tran.interpolate’ should be ’on’. In this case,
files ’c1-negf-0.5.tranb’ and ’c1-negf-1.0.tranb’ specified by the keywords ’NEGF.tran.interpolate.file1’
and ’NEGF.tran.interpolate.file2’ are the results under bias voltages of 0.5 and 1.0 V, respectively, and
the transmission and current at V = 0.7 ∗ 0.5 + 0.3 ∗ 1.0 = 0.65[V] are evaluated by the interpolation
scheme, where the weights of 0.7 and 0.3 are specified by the keyword ’NEGF.tran.interpolate.coes’.

A comparison between the fully self consistent and the interpolated results is shown with respect
to the current and transmission in the linear carbon chain in Figs. 32(a) and (b). In this case, the
SCF calculations at three bias voltages of 0, 0.5, and 1.0 V are performed, and the results at the other
bias voltages are obtained by the interpolation scheme. For comparison we also calculate the currents
via the SCF calculations at all the bias voltages. It is confirmed that the simple interpolation scheme
gives notably accurate results for both the calculations of the current and transmission. Although
the proper selection of bias voltages used for the SCF calculations may depend on systems, the result
suggests that the simple scheme is very useful to interpolate the effect of the bias voltage while keeping
the accuracy of the calculations.

38.7 Parallelization of NEGF

In the current implementation the NEGF calculation is parallelized by MPI. In addition to the MPI
parallelization, if you use ACML or MKL, the matrix multiplication and the inverse calculation of
matrix in the evaluation of the Green function are also parallelized by OpenMP. In this case, you can
perform a hybrid parallelization by OpenMP/MPI which may lead to shorter computational time.
The way for the parallelization is completely same as before.

125

0 0.2 0.4 0.6 0.8 1
0

40

80

120

160

Vb (V)

I
(

µ
A

)

SCF

Interpolation

(a)

-8 -6 -4 -2 0 2 4 6 8
0

1

2

3

4

Energy (eV)

SCF

Interpolation

(b)

T
ra

n
s
m

is
s
io

n
 p

e
r

s
p
in

Figure 32: (a) Currents of the linear carbon chain calculated by the SCF calculations (solid line)
and the interpolation scheme (dotted line). (b) Transmission of the linear carbon chain under a bias
voltage of 0.3 V, calculated by the SCF calculations (solid line) and the interpolation scheme (dotted
line). The imaginary part of 0.01 and the grid spacing of 0.01 eV are used for the integration of the
nonequilibrium term in the density matrix.

In Fig. 33 we show the speed-up ratio in the elapsed time for the evaluation of the density matrix of
8-zigzag graphene nanoribbon(ZGNR) under a finite bias voltage of 0.5 eV. The energy points of 197
(101 and 96 for the equilibrium and nonequilibrium terms, respectively) are used for the evaluation
of the density matrix. Only the Γ point is employed for the k-point sampling, and the spin polarized
calculation is performed. Thus, the combination of 394 for the three indices are parallelized by MPI. It
is found that the speed-up ratio of the flat MPI parallelization, corresponding to 1 thread, reasonably
scales up to 64 processes. Furthermore, it can be seen that the hybrid parallelization, corresponding
to 2 and 4 threads, largely improves the speed-up ratio. By fully using 64 quad core processors,
corresponding to 64 processes and 4 threads, the speed-up ratio is about 140, demonstrating the good
scalability of the NEGF method. For the details see also Ref.[43].

38.8 Examples

For user’s convenience, input files for four examples can be found in ’work/negf example’ as follows:

• Carbon chain under zero bias voltage

Step 1: Lead-Chain.dat
Step 2: NEGF-Chain.dat

• Graphene sheet under zero bias voltage

Step 1: Lead-Graphene.dat
Step 2: NEGF-Graphene.dat

• 8-zigzag graphene nanoribbon with an antiferromagnetic junction under a finite bias voltage of
0.3 V

Step 1: Lead-L-8ZGNR.dat, Lead-R-8ZGNR.dat
Step 2: NEGF-8ZGNR-0.3.dat

126

0 20 40 60
0

40

80

120

160

Number of Processes

S
p

e
e

d
 u

p
 r

a
ti
o

1 thread

2 threads

4 threads

Figure 33: Speed-up ratio in the parallel computation of the calculation of the density matrix for the
FM junction of 8-zigzag graphene nanoribbon (ZGNR) by a hybrid scheme using MPI and OpenMP.
The speed-up ratio is defined by T1/Tp, where T1 and Tp are the elapsed times by a single core and a
parallel calculations. The cores used in the MPI and OpenMP parallelizations are called process and
thread, respectively. The parallel calculations were performed on a Cray XT5 machine consisting of
AMD opteron quad core processors (2.3GHz). In the benchmark calculations, the number of processes
is taken to be equivalent to that of processors. Therefore, in the parallelization using 1 or 2 threads,
3 or 2 cores are idle in a quad core processor.

• Fe|MgO|Fe tunneling junction with an antiferromagnetic configuration between two iron leads
under zero bias voltage

Step 1: Lead-L-Fe.dat, Lead-R-Fe.dat
Step 2: NEGF-AP-Fe-MgO-Fe.dat

38.9 Automatic running test of NEGF

To check whether the NEGF calculation part is properly installed or not, an automatic running test
for the NEGF calculation can be performed by

For the serial running

% ./openmx -runtestNEGF

For the MPI parallel running

% mpirun -np 16 openmx -runtestNEGF

For the OpenMP/MPI parallel running

% mpirun -np 8 openmx -runtestNEGF -nt 2

127

Then, OpenMX will run with four test cases including calculations of the steps 1 and 2, and compare
calculated results with the reference results which are stored in ’work/negf example’. The comparison
(absolute difference in the total energy and force) is stored in a file ’runtestNEGF.result’ in the
directory ’work’. The reference results were calculated using 40 MPI processes of a 2.6GHz Opteron
cluster machine. If the difference is within last seven digits, we may consider that the installation is
successful.

128

39 Maximally Localized Wannier Function

39.1 General

The following are descriptions on how to use OpenMX to generate maximally localized Wannier
function (MLWF) [74, 75]. Keywords and settings for controlling the calculations are explained. The
style of key words are closely following those originally in OpenMX. Throughout the section, a couple
of results for silicon in the diamond structure will be shown for convenience. The calculation can
be traced by openmx code with an input file ’Si.dat’ in ’openmx*.*/work/wf example’. There is
no additional post processing code. After users may get the convergent result for the conventional
SCF process for the electronic structure calculation, the following procedure explained below will be
repeated by changing a couple of parameters with the restart file until desired MLWFs are obtained.

To acknowledge in any publications by using the functionality, the citation of the reference [46]
would be appreciated:

Switching on generating MLWFs

To switch on the calculation, keyword ’Wannier.Func.Calc’ should be explicitly set as ’on’. Its
default value is ’off’.

Wannier.Func.Calc on #default off

Setting the number of target MLWFs

The number of target MLWFs should be given explicitly by setting a keyword ’Wannier.Func.Num’
and no default value for it.

Wannier.Func.Num 4 #no default

Energy window for selecting Bloch states

The MLWFs will be generated from a set of Bloch states, which are selected by defining an
energy window covering the eigen energies of them. Following Ref. [75], two energy windows are
introduced. One is so-called outer window, defined by two keywords, ’Wannier.Outer.Window.Bottom’
and ’Wannier.Outer.Window.Top’, indicating the lower and upper boundaries, respectively. The other
one is inner window, which is specified by two similar key words, ’Wannier.Inner.Window.Bottom’ and
’Wannier.Inner.Window.Top’. All these four values are given in units eV relative to Fermi level. The
inner window should be fully inside of the outer window. If the two boundaries of inner window are
equal to each other, it means inner window is not defined and not used in calculation. There is no
default values for outer window, while 0.0 is the default value for two boundaries of inner window.
One example is as following:

129

Wannier.Outer.Window.Bottom -14.0 #lower boundary of outer window, no default value

Wannier.Outer.Window.Top 0.0 #upper boundary of outer window, no default value

Wannier.Inner.Window.Bottom 0.0 #lower boundary of inner window, default value 0.0

Wannier.Inner.Window.Top 0.0 #upper boundary of outer window, default value 0.0

To set these two windows covering interested bands, it is usually to plot band structure and/or
density of states before the calculation of MLWFs. If you want to restart the minimization of MLWFs
by reading the overlap matrix elements from files, the outer window should not be larger than that
used for calculating the stored overlap matrix. Either equal or smaller is allowed. The inner window
can be varied within the outer window as you like when the restart calculation is performed. This
would benefit the restarting calculation or checking the dependence of MLWFs on the size of both the
windows. For the restarting calculation, please see also the section (7) ’Restart optimization without
calculating overlap matrix’.

Initial guess of MLWFs

User can choose whether to use initial guess of target MLWFs or not by setting the keyword
’Wannier.Initial.Guess’ as ’on’ or ’off’. Default value is ’on’, which means we recommend user to use
an initial guess to improve the convergence or avoid local minima during the minimization of spread
function.

If the initial guess is required, a set of local functions with the same number of target MLWFs
should be defined. Bloch wave functions inside the outer window will be projected on to them.
Therefore, these local functions are also called as projectors. The following steps are required to
specify a projector.

A. Define local functions for projectors

Since the pseudo-atomic orbitals are used for projectors, the specification of them is the same as
for the basis functions. An example setting, for silicon in diamond structure, is as following:

Species.Number 2

<Definition.of.Atomic.Species

Si Si5.5-s2p2d1 Si_CA

proj1 Si5.5-s1p1d1f1 Si_CA

Definition.of.Atomic.Species>

In this example, since we employ PAOs from Si as projectors, an additional specie ’proj1’ is defined as
shown above. Inside the pair keywords ’<Definition.of.Atomic.Species’ and ’Definition.of.Atomic.Species>’,
in addition to the first line used for Si atoms, one species for the projectors is defined. Its name is
’proj1’ defined by ’Si5.5-s1p1d1f1’ and the pseudopotential ’Si CA’. In fact, the pseudopotential de-
fined in this line will not be used. It is given just for keeping the consistence of inputting data
structure. One can use any PAO as projector. Also the use of only a single basis set is allowed for
each l-component. We strongly recommend user to specify ’s1p1d1f1’ in all cases to avoid possible
error.

130

B. Specify the orbital, central position and orientation of a projector

Pair keywords ’<Wannier.Initial.Projectos’ and ’Wannier.Initial.Projectos>’ will be used to specify
the projector name, local orbital function, center of local orbital, and the local z-axis and x-axis for
orbital orientation.

An example setting is shown here:

<Wannier.Initial.Projectors

proj1-sp3 0.250 0.250 0.250 -1.0 0.0 0.0 0.0 0.0 -1.0

proj1-sp3 0.000 0.000 0.000 0.0 0.0 1.0 1.0 0.0 0.0

Wannier.Initial.Projectors>

Each line contains the following items. For example, in the first line, the species name, ’proj1’, is
defined in pairing keywords ’Definition.of.Atomic.Species’. ’-’ is used to connect the projector name
and the selected orbitals. ’sp3’ means the sp3 hybridized orbitals of this species is used as the initial
guess of four target Wannier functions (see also Table 6 for all the possible orbitals and their hybrids).
The projectors consisting of hybridized orbitals are centered at the position given by the following 3
numbers, ’0.25 0.25 0.25’, which are given in unit defined by keyword ’Wannier.Initial.Projectors.Unit’
(to be explained below). The next two sets of three numbers define the z-axis and x-axis of the local
coordinate system, respectively, where each axis is specified by the vector defined by three components
in xyz-coordinate. In this example, in the first line the local z-axis defined by ’-1.0 0.0 0.0’ points
to the opposite direction to the original x-axis, while the local x-axis defined by ’0.0 0.0 -1.0’ points
to the opposite direction to the original z-axis. In the second line the local axes are the same as the
original coordinate system.

The orbital used as projector can be the original PAOs or any hybrid of them. One must be aware
that the total number of projectors defined by ’sp3’ is 4. Similarly, ’sp’ and ’sp2’ contain 2 and 3
projectors, respectively. A list of supported PAOs and hybridizations among them can be found in
Table 6. Any name other than those listed is not allowed.

The projector can be centered anywhere inside the unit cell. To specify its location, we can use
the fractional (FRAC) coordinates relative to the unit cell vectors or Cartesian coordinates in atomic
unit (AU) or in angstrom (ANG). The corresponding keyword is ’Wannier.Initial.Projectors.Unit’.

Wannier.Initial.Projectors.Unit FRAC #AU, ANG or FRAC

K grid mesh and b vectors connecting neighboring k-points

The Monkhorst-Pack k grid mesh is defined by keyword ’Wannier.Kgrid’. There is no default
setting for it. To use finite difference approach for calculating k-space differentials, b vectors connecting
neighboring k points are searched shell by shell according to the distance from a central k point. The
maximum number of searched shells is defined by keyword ’Wannier.MaxShells’. Default value is 12
and it should be increased if failure in finding a set of proper b vectors. The problem may happen in
case of a system having a large aspect ratio among unit vectors, and in this case you will see an error
message, while the value 12 works well in most cases. A proper setting of ’Wannier.Kgrid’ will also
help to find b vectors, where the grid spacing by the discretization for each reciprocal lattice vector
should be nearly equivalent to each other.

131

Table 6: Orbitals and hybrids used as projector. The hybridization is done within the new coordinate
system defined by z-axis and x-axis.
Orbital name Number of included

projector
Description

s 1 s orbital from PAOs
p 3 px, py, pz from PAOs
px 1 px from PAOs
py 1 py from PAOs
pz 1 pz from PAOs
d 5 dz2 , dx2−y2 , dxy, dxz, dyz from PAOs
dz2 1 dz2 from PAOs
dx2-y2 1 dx2−y2 from PAOs
dxy 1 dxy from PAOs
dxz 1 dxy from PAOs
dyz 1 dxy from PAOs
f 7 fz3 , fxz2 , fyz2 , fzx2 , fxyz, fx3−3xy2 , f3yx2−y3 from

PAOs
fz3 1 fz3 from PAOs
fxz2 1 fxz2 from PAOs
fyz2 1 fyz2 from PAOs
fzx2 1 fzx2 from PAOs
fxyz 1 fxyz from PAOs
fx3-3xy2 1 fx3−3xy2 from PAOs
f3yx2-y3 1 f3yx2−y3 from PAOs
sp 2 Hybridization between s and px orbitals, including

1√
2
(s + px) and 1√

2
(s− px)

sp2 3 Hybridization among s, px, and py orbitals, including
1√
3
s− 1√

6
px+ 1√

2
py, 1√

3
s− 1√

6
px− 1√

2
py and 1√

3
s+ 2√

6
px

sp3 4 Hybridization among s, px, py and pz orbitals:
1√
2
(s + px + py + pz), 1√

2
(s + px − py − pz)

1√
2
(s− px + py − pz), 1√

2
(s− px − py + pz)

sp3dz2 5 Hybridization among s, px, py, pz and dz2 orbitals:
1√
3
s− 1√

6
px + 1√

2
py,

1√
3
s− 1√

6
px + 1√

2
py,

1√
3
s− 2√

6
px

1√
2
pz + 1√

2
dz2 ,− 1√

2
pz + 1√

2
dz2

sp3deg 6 Hybridization among s, px, py, pz and dz2 , dx2−y2 or-
bitals: 1√

6
s− 1√

2
px − 1√

12
dz2 + 1

2dx2−y2 ,
1√
6
s + 1√

2
px − 1√

12
dz2 + 1

2dx2−y2 ,
1√
6
s− 1√

2
py − 1√

12
dz2 − 1

2dx2−y2 ,
1√
6
s + 1√

2
py − 1√

12
dz2 − 1

2dx2−y2 ,

1√
6
s− 1√

2
pz + 1√

3
dz2 , 1√

6
s + 1√

2
pz + 1√

3
dz2

132

Wannier.MaxShells 12 # default value is 12.

Wannier.Kgrid 8 8 8 # no default value

Minimizing spread of WF

For entangled band case [75], two steps are needed to find the MLWFs. The first step is to minimize
the gauge invariant part of spread function by disentangling the non-isolated bands. The second step is
the same as isolated band case [74]. The gauge dependent part is optimized by unitary transformation
of the selected Bloch wave functions according to the gradient of spread function. For the first step,
three parameters are used to control the self-consistence loop. They are ’Wannier.Dis.SCF.Max.Steps’,
’Wannier.Dis.Conv.Criterion’, and ’Wannier.Dis.Mixing.Para’. They are the maximum number of SCF
loops, the convergence criterion, and the parameter to control the mixing of input and output subspace
projectors, respectively.

Wannier.Dis.SCF.Max.Steps 2000 # default 200

Wannier.Dis.Conv.Criterion 1e-12 # default 1e-8

Wannier.Dis.Mixing.Para 0.5 # default value is 0.5

For the second step, three minimization methods are available. One is a steepest decent (SD)
method, and the second one is a conjugate gradient (CG) method. The third one is a hybrid
method which uses the SD method firstly and then switches to the CG method. The keyword ’Wan-
nier.Minimizing.Scheme’ indicates which method to be used. ’0’, ’1’, and ’2’ mean the simple SD
method, the CG method, and hybrid method, respectively. The step length for the SD method
is set by the keyword ’Wannier.Minimizing.StepLength’. In the CG method, a secant method is
used to determine the optimized step length. The maximum secant steps and initial step length
is specified by ’Wannier.Minimizing.Secant.Steps’ and ’Wannier.Minimizing.Secant.StepLength’, re-
spectively. The maximum number of minimization step and convergence criterion are controlled by
’Wannier.Minimizing.Max.Steps’ and ’Wannier.Minimizing.Conv.Criterion’, respectively.

Wannier.Minimizing.Scheme 2 # default 0, 0=SD 1=CG 2=hybrid

Wannier.Minimizing.StepLength 2.0 # default 2.0

Wannier.Minimizing.Secant.Steps 5 # default 5

Wannier.Minimizing.Secant.StepLength 2.0 # default 2.0

Wannier.Minimizing.Conv.Criterion 1e-12 # default 1e-8

Wannier.Minimizing.Max.Steps 200 # default 200

In the hybrid minimization scheme, SD and CG have the same number of maximum minimization
steps as specified by ’Wannier.Minimizing.Max.Steps’.

Restarting optimization without calculating overlap matrix

If the overlap matrix M
(k,b)
mn has been calculated and stored in a disk file, the keyword ’Wan-

nier.Readin.Overlap.Matrix’ can be set as ’on’ to restart generating MLWF without calculating M
(k,b)
mn

again.

Wannier.Readin.Overlap.Matrix off # default is on

133

This can save the computational time since the calculation of overlap matrix is time consuming.
The code will read the overlap matrix as well as the eigenenergies and states from the disk file.
One should keep in mind that the outer window and k grid should be the same as those used for
calculating the stored overlap matrix and eigenvalues. Consistence will be checked in the code. The
inner window, initial guess of MLWF as well as the convergence criteria can be adjusted for restarting
optimization. If ’Wannier.Readin.Overlap.Matrix’ is set as ’off’, the overlap matrix will be calculated
and automatically stored into a disk file. The file name is defined by ’System.Name’ with extension
’.mmn’. The eigenenergies and states are also stored in the disk file with extension ’.eigen’.

39.2 Analysis

Plotting interpolated band structure

To plot the interpolated band structure, set ’Wannier.Interpolated.Bands’ to be ’on’.

Wannier.Interpolated.Bands on # on|off, default=off

Other necessary settings, like k-path and sampling density along each path, are borrowed from those
for plotting band dispersion in OpenMX. Therefore, the keyword ’Band.dispersion’ should be set as
’on’ in order to draw interpolated band structure. After convergence, interpolated band dispersion
data will be found in a file with the extension name ’.Wannier Band’, which has the same format
as ’.Band’ file. As an example, the interpolated band structure of Si in diamond structure is shown
together with its original band structure in Fig. 34(a).

Plotting MLWF

To plot the converged MLWFs, change the keyword ’Wannier.Function.Plot’ to be ’on’. The default
value of it is ’off’.

Wannier.Function.Plot on # default off

Wannier.Function.Plot.SuperCells 1 1 1 # default=0 0 0

If it is turned on, all the MLWFs will be plotted. They are written in Gaussian Cube file format
with the extension file name like ’.mlwf1 4 r.cube’. The file is named in the same style as HOMO
or LUMO molecular orbitals files. The first number after ’.mlwf’ indicates the spin index and the
following one are index of MLWFs and the last letter ’r’ or ’i’ means the real or imaginary part
of the MLWF. Users can set the supercell size for plotting MLWF. It is defined by the keyword
’Wannier.Function.Plot.SuperCells’. ’1 1 1’ in the above example means that the unit cell is extended
by one in both the plus and minus directions along the a-, b-, and c-axes by putting the home
unit cell at the center, and therefore the MLWFs are plotted in an extended cell consisting of 27 (=
(1∗2+1)∗(1∗2+1)∗(1∗2+1)) cells in this case. Figure 34(b) shows one of the eight converged MLWFs
from four valence states and four conduction states near Fermi level of Si in diamond structure.

134

-10

-5

 0

 5

 10

GKXGL

e
V

(a) (b)

Figure 34: (a) The interpolated band structure (symbolic line) of Si in diamond structure is compared
with original band structure (solid line). (b) One of the eight converged MLWFs from four valence
states and four conduction states near Fermi level of Si in diamond structure. It is obtained with an
initial guess of sp3 hybrid.

39.3 Monitoring Optimization of Spread Function

The output during optimization steps is printed to standard output. To monitor the optimiza-
tion progress, the following method may be helpful. For convenient, we assume the standard out-
put is stored in a file ’stdout.std’. The following example is for Si.dat which can be found in
openmx*.*/work/wf example, and each user can trace the same calculation.

DISE

Monitor the self-consistent loops for disentangling progress (the first step of optimization):

% grep "DISE" stdout.std

| Iter | Omega_I (Angs^2) | Delta_I (Angs^2) | ---> DISE

| 1 | 15.729405734992| 15.729405734992| ---> DISE

| 2 | 15.472899644675| -0.256506090316| ---> DISE

| 3 | 15.298904204761| -0.173995439915| ---> DISE

| 4 | 15.184358975818| -0.114545228943| ---> DISE

| 5 | 15.109144558995| -0.075214416823| ---> DISE

| 6 | 15.059536215864| -0.049608343132| ---> DISE

| 7 | 15.026555029591| -0.032981186273| ---> DISE

| 8 | 15.004405549290| -0.022149480301| ---> DISE

| 9 | 14.989360674543| -0.015044874747| ---> DISE

135

| 10 | 14.979019019700| -0.010341654843| ---> DISE

........

.....

...

.

where ’Iter’, ’Omega I’, and ’Delta I’ mean the iteration number, the gauge invariant part of the
spread function, and its difference between two neighboring steps. The criterion given by the keyword
’Wannier.Dis.Conv.Criterion’ is applied to ’Delta I’.

CONV

Monitor the optimization of the gauge dependent part of the spread function (the second step of
optimization):

% grep "CONV" stdout.std

|Opt Step |Modu.of Gradient|d_Omega_in_steps| d_Omega | (in Angs^2) ---> CONV

| SD 1 | 1.01158918E+00 | 1.49290922E-03 |-1.49143228E-03| ---> CONV

| SD 2 | 1.00759578E+00 | 1.48701574E-03 |-1.48555300E-03| ---> CONV

.....

.....

| SD 200 | 5.84949196E-01 | 8.63271441E-04 |-8.62809578E-04| ---> CONV

|Opt Step |Mode of Gradient| d_Omega | (Angs^2) ---> CONV

| CG 1 | 3.60406914E-01 | -4.00536821E-01| ---> CONV

.....

.....

| CG 55 | 1.00046240E-12 | -4.85492314E-13| ---> CONV

| CG 56 | 3.40196568E-13 | -2.46725602E-13| ---> CONV

*** ---> CONV

CONVERGENCE ACHIEVED ! ---> CONV

*** ---> CONV

CONVERGENCE ACHIEVED ! ---> SPRD

where ’Opt Step’ and ’Modu.of Gradient’ are the optimization step in either ’SD’ or ’CG’ method
and the modulus of gradient of the spread function. The difference between two neighboring steps
in the gauge dependent spread functions is calculated in two different way in the SD method, giving
’d Omega in steps’ and ’d Omega’. ’d Omega in steps’ is given by

dΩ = ε
∑

k

||G(k)||2,

where ε is the step length, G(k) is the gradient of the spread function. The details of the equation can
be found in Ref. [74]. On the other hand, ’d Omega’ is given by

dΩ = Ω(n+1) − Ω(n),

136

where n is the iteration number. In the CG method, only ’d Omega’ is evaluated. The criterion given
by the keyword ’Wannier.Minimizing.Conv.Criterion’ is applied to ’Modu.of Gradient’.

SPRD

Monitor the variation of spread of the Wannier functions:

% grep "SPRD" stdout.std

|Opt Step | Omega_I | Omega_D | Omega_OD | Tot_Omega | (in Angs^2) ---> SPRD

| SD 1 | 14.95330056 | 0.13750102 | 6.49032814 | 21.58112972 | ---> SPRD

| SD 2 | 14.95330056 | 0.13744541 | 6.48889820 | 21.57964416 | ---> SPRD

| SD 3 | 14.95330056 | 0.13739052 | 6.48747336 | 21.57816443 | ---> SPRD

| SD 4 | 14.95330056 | 0.13733636 | 6.48605355 | 21.57669047 | ---> SPRD

.....

.....

| SD 199 | 14.95330056 | 0.13449510 | 6.27229121 | 21.36008687 | ---> SPRD

| SD 200 | 14.95330056 | 0.13450210 | 6.27142140 | 21.35922406 | ---> SPRD

|Opt Step | Omega_I | Omega_D | Omega_OD | Tot_Omega | (Angs^2) ---> SPRD

| CG 1 | 14.95330056 | 0.16848639 | 5.83690029 | 20.95868724 | ---> SPRD

| CG 2 | 14.95330056 | 0.16421934 | 5.78500985 | 20.90252974 | ---> SPRD

| CG 3 | 14.95330056 | 0.16106859 | 5.77547389 | 20.88984303 | ---> SPRD

.....

.....

| CG 55 | 14.95330056 | 0.15987820 | 5.77203385 | 20.88521260 | ---> SPRD

| CG 56 | 14.95330056 | 0.15987820 | 5.77203385 | 20.88521260 | ---> SPRD

*** ---> SPRD

CONVERGENCE ACHIEVED ! ---> SPRD

*** ---> SPRD

where ’Opt Step’ is the optimization step in either ’SD’ or ’CG’ method. ’Omega I’ is the gauge
invariant part of spread function. ’Omega D’ and ’Omega OD’ are the gauge dependent diagonal and
off-diagonal contribution, respectively. ’Tot Omega’ is the sum up of all the above three components
of the spread function.

CENT

Monitor the variation of Wannier function center:

% grep "CENT" stdout.std

WF 1 (1.14465704, 1.14465689, 1.14465697) | 2.69781828 --->CENT

WF 2 (1.55414640, 1.55414634, 1.14465803) | 2.69783245 --->CENT

WF 3 (1.55414741, 1.14465636, 1.55414731) | 2.69783410 --->CENT

WF 4 (1.14465805, 1.55414638, 1.55414610) | 2.69781605 --->CENT

WF 5 (0.20474553, 0.20474549, 0.20474559) | 2.69782821 --->CENT

WF 6 (0.20474381,-0.20474431,-0.20474417) | 2.69782871 --->CENT

WF 7 (-0.20474538, 0.20474519,-0.20474564) | 2.69783184 --->CENT

WF 8 (-0.20474446,-0.20474477, 0.20474501) | 2.69783151 --->CENT

Total Center (5.39760841, 5.39760756, 5.39760921) sum_spread 21.58262115 --->CENT

SD 1 --> CENT

WF 1 (1.14466694, 1.14466679, 1.14466688) | 2.69763185 --->CENT

137

WF 2 (1.55413650, 1.55413644, 1.14466794) | 2.69764602 --->CENT

WF 3 (1.55413751, 1.14466626, 1.55413741) | 2.69764767 --->CENT

WF 4 (1.14466796, 1.55413647, 1.55413620) | 2.69762962 --->CENT

WF 5 (0.20473563, 0.20473559, 0.20473568) | 2.69764178 --->CENT

WF 6 (0.20473391,-0.20473440,-0.20473426) | 2.69764228 --->CENT

WF 7 (-0.20473548, 0.20473528,-0.20473574) | 2.69764541 --->CENT

WF 8 (-0.20473455,-0.20473487, 0.20473510) | 2.69764508 --->CENT

Total Center (5.39760841, 5.39760756, 5.39760921) sum_spread 21.58112972 --->CENT

SD 2 --> CENT

.....

.....

CG 56 --> CENT

WF 1 (1.14827796, 1.14827609, 1.14827941) | 2.61064261 --->CENT

WF 2 (1.55052871, 1.55052733, 1.14827518) | 2.61064883 --->CENT

WF 3 (1.55052569, 1.14827674, 1.55052521) | 2.61066105 --->CENT

WF 4 (1.14827660, 1.55052607, 1.55052876) | 2.61063511 --->CENT

WF 5 (0.20111752, 0.20112435, 0.20112008) | 2.61067382 --->CENT

WF 6 (0.20113239,-0.20112644,-0.20113155) | 2.61063347 --->CENT

WF 7 (-0.20112056, 0.20112674,-0.20111898) | 2.61067162 --->CENT

WF 8 (-0.20112985,-0.20112333, 0.20113122) | 2.61064610 --->CENT

Total Center (5.39760846, 5.39760756, 5.39760933) sum_spread 20.88521260 --->CENT

where the optimization method and step is indicated by starting with ’SD’ or ’CG’. Lines starting
with ’WF’ show the center of each Wannier function with (x, y, z) coordinates in Å unit. and its
spread in Å2. The sum up of all the Wannier functions center and spread are given in the the line
starting with ’Total Center’.

39.4 Examples for generating MLWFs

Examples for different materials are prepared in the installation directory: work/wf example.

• Benzene.dat

for generating six pz-orbital like Wannier functions from benzene’s six π molecular orbitals.

• GaAs.dat

for generating maximally localized Wannier functions from four valence bands of GaAs.

• Si.dat

for generating eight Wannier functions by including both valence and conduction bands of Si.
The initial guess is sp3 hybrids.

• symGra.dat

for generating the Wannier function for graphene sheet. The initial guess is sp2 hybrids and pz

orbitals on carbon atoms.

• pmSVO.dat

for generating t2g-like Wannier functions for cubic perovskite SrVO3 without spin polarization
calculation.

138

• NC SVO.dat

similar to the case of pmSVO.dat except for the inclusion of spin-orbit coupling.

• GaAs NC.dat

similar to the case of GaAs.dat but spin-orbit coupling is included.

• VBz.dat

for generating Wannier functions for Vanadium-Benzene infinite chain, which is studied in Ref.
[46].

39.5 Output files

Additional four files generated by the calculation are explained below. They have different extension
names. ’.mmn’ file is for storing the overlap matrix elements M

(k,b)
mn . ’.amn’ is for the initial guess

projection matrix element A
(k)
mn. ’.eigen’ is for the eigenenergies and eigenstates at each k point. The

’.HWR’ file is for the hopping integrals among MLWFs on a set of lattice vectors which lies in the
Wigner-Seitz supercells conjugated with the sampled k grids. For restarting optimization calculation,
’.mmn’ file will be read instead of written. More detailed information of the four files will be given
below.

A. File format of ’.mmn’ file

This file structure is closely following that in Wannier90 [76]. The first line of this file is the description
of the numbers in the second line. The numbers from left to right in the second line are the number
(Nwin) of included bands within the outer window, the number of k points, the number of b vectors,
the number of spin component, respectively. The next lines are data blocks of M

(k,b)
mn . The most outer

loop is for spin component. The next is the loop of k points and then b vectors. The most inner loops
are the band index n and m, respectively. In each block, the first line are 5 numbers. The first two
numbers are the index of present k point and the index of neighboring point k+b, respectively. The
next three numbers indicates in which unit cell k+b point lies. From the second line are the real and
imaginary part of each matrix element. In each block, there are Nwin ×Nwin complex numbers. An
example file, generated by the input file ’Si.dat’, is shown here:

Mmn_zero(k,b). band_num, kpt_num, bvector num, spinsize

11 216 8 1

1 216 -1 -1 -1

-0.823117171036 0.565190443061

0.002558098488 -0.001953947544

-0.004406884297 0.003453571792

0.009938520910 -0.007650660168

-0.000871168877 -0.043168845537

... ...

... ...

-0.000000007241 0.000000004251

0.773274428859 -0.320260848984

139

1 181 -1 0 0

-0.832487848180 -0.551294952424

-0.002473424886 -0.001467549142

........

.....

...

.

B. File format of ’.amn’ file

This file structure is closely following that in Wannier90 [76]. The first line of the file is the description
of the whole file. Obviously, the four numbers in the second line are the number (Nwin) of bands
within the outer window, the number of k points, the number of target MLWFs and the number of
spin component, respectively. Similarly, the data blocks are written in loops. The most outer loop
is spin component and then k points, target MLWFs and number of bands. As described in the first
line of this file. In each block, the first three integers are the band index, the index of MLWFs and
index of k points, respectively. The next are real and imaginary of that matrix element. An example
file, generated by the input file ’Si.dat’, is shown here:

Amn. Fist line BANDNUM, KPTNUM, WANNUM, spinsize. Next is m n k and elements.Spin is the most outer loop.

11 216 8 1

1 1 1 -0.073309492802 0.043149612274

2 1 1 -0.019286068732 0.012707420659

3 1 1 0.033269068148 -0.022518524313

... ...

... ...

10 1 1 -0.000000000626 -0.000000000724

11 1 1 -0.000495942376 0.000166021125

1 2 1 -0.073309471090 0.043149650676

2 2 1 0.067585375965 -0.044489471852

3 2 1 -0.049713011395 0.033692981021

........

.....

...

.

C. File format of ’.eigen’ file

This file contains the eigenenergies and eigenstates at each k point. The first line is the Fermi level of
system. The number of bands is indicated in the second line of the file. The next data are mainly in
two parts. The first part is the eigenenergies and the second one is the corresponding eigenstates. In
each part, the loop of spin component is the most outer one. The next loop is k points, followed by
band index. For eigenstates, there is one more inner loop for the basis set. An example file, generated
by the input file ’Si.dat’, is shown here:

Fermi level -0.130592

Number of bands 11

1 1 -0.584590174255 <-- 1st part: eigenenergies

2 1 -0.140040771077

3 1 -0.140040754871

4 1 -0.140040734084

140

5 1 -0.045528995979

... ...

... ...

WF kpt 1 (0.00000000,0.00000000,0.00000000) <-- 2nd part: eigenstate

1 1 -0.4302513644 -0.2532440791

1 2 -0.0031362502 -0.0018459522

1 3 -0.0000122578 -0.0000183141

........

.....

...

.

D. File format of ’.HWR’ file

This file contains the hopping integrals between the mth MLWF, |m,0〉, in the home unit cell and
the nth MLWF, |n,R〉, in the unit cell at R. The matrix element 〈m,0|Ĥ|n,R〉 is written in the
following way. In ’.HWR’ file, the first line is just a description. The number of MLWFs, number of
lattice vectors inside of Wigner-Seitz supercell are in the second and third line, respectively. The unit
cell vectors are given in the fifth, sixth and seventh lines. Spin polarization, whether it is a non-spin
polarized calculation or a spin polarized one with collinear or noncollinear magnetic configuration, is
given in the eighth line. The ninth line gives the Fermi level. From the tenth line, the block data
starts. The outer most loop is spin component. The next loop is for R and the last two are loops of
m and n, respectively. Each R is written at the first line of each block together with its degeneracy.
The index of m and n is printed and followed by the real and imaginary parts of hopping integrals in
each line. An example file, generated by the input file ’Si.dat’, is shown here:

Real-space Hamiltonian in Wannier Gauge on Wigner-Seitz supercell. <--L01

Number of Wannier Function 8 <--L02

Number of Wigner-Seitz supercell 279 <--L03

Lattice vector (in Bohr) <--L04

5.10000 0.00000 5.10000 <--L05

0.00000 5.10000 5.10000 <--L06

5.10000 5.10000 0.00000 <--L07

collinear calculation spinsize 1 <--L08

Fermi level -0.130592 <--L09

R (-4 0 2) 3 <--L10

1 1 -0.000127004469 -0.000000003113 <--L11

1 2 0.000027279116 -0.000000007315 <--L12

1 3 0.000027305237 -0.000000006012 <--L13

1 4 -0.000020534349 -0.000000004246 <--L14

...

...

8 7 0.000027246023 -0.000000017704

8 8 -0.000127075660 -0.000000007929

R (-4 1 1) 2

141

1 1 -0.000430127120 0.000000002912

1 2 0.000125799035 0.000000008133

1 3 0.000013650458 0.000000003690

1 4 0.000125829051 0.000000004688

........

.....

...

.

39.6 Automatic running test of MLWF

To check whether the MLWF calculation part is properly installed or not, an automatic running test
for the NEGF calculation can be performed by

For the serial running

% ./openmx -runtestWF

For the MPI parallel running

% mpirun -np 16 openmx -runtestWF

For the OpenMP/MPI parallel running

% mpirun -np 8 openmx -runtestWF -nt 2

Then, OpenMX will run with eight test cases, and compare calculated results with the reference
results which are stored in ’work/wf example’. The comparison (absolute difference in the spread and
Ω functions) is stored in a file ’runtestWF.result’ in the directory ’work’. The reference results were
calculated using a Xeon cluster machine. If the difference is within last seven digits, we may consider
that the installation is successful.

142

40 Analysis of difference in two Gaussian cube files

A utility tool is provided to generate a Gaussian cube file which stores the difference between two
Gaussian cube files for total charge density, spin density, and potentials. If you analyze the difference
between two states, this tool would be helpful.

(1) Compiling of diff gcube.c

There is a file ’diff gcube.c’ in the directory ’source’. Compile the file as follows:

% gcc diff_gcube.c -lm -o diff_gcube

When the compile is completed normally, then you can find an executable file, diff gcube, in the
directory ’source’. Please copy the executable file to the directory ’work’.

(2) Calculation of the difference

If you want to know the difference between two Gaussian cube files, input1.cube and input2.cube, and
output the result to a file, output.cube, then perform as follows:

% ./diff_gcube input1.cube input2.cube output.cube

The difference is output to ’output.cube’ in the Gaussian cube format. Thus, you can easily visualize
the difference using many softwares, such as gOpenMol [48], Molekel [49], and XCrysDen [50]. In fact,
Fig. 22 in the Section ’Electric field’ was made by this procedure.

143

41 Analysis of difference in two geometrical structures

A utility tool is provided to analyze the difference between two geometrical coordinates in two xyz files
which store Cartesian coordinates. The following three analyses are supported: a root mean square
of deviation (RMSD) between two Cartesian coordinates defined by

RMSD =

√∑Natom
i (Ri −R0

i)2

Natom

a mean deviation (MD) between two Cartesian coordinates defined by

MD =
∑Natom

i |Ri −R0
i |

Natom

and a mean deviation between bond lengths (MDBL) defined by

MDBL =
∑Nbond

i |BLi −BL0
i |

Nbond

where Natom and Nbond are the number of atoms and the number of bonds with bond length (BL)
within a cutoff radius. Also, the deviation vector between xyz coordinate of each atom is output to a
vector file ’dgeo vec.txt’ in a gOpenMol format. If you analyze the difference between two geometries,
this tool would be helpful.

(1) Compiling of diff gcube.c

There is a file ’diff gcube.c’ in the directory ’source’. Compile the file as follows:

% gcc diff_geo.c -lm -o diff_geo

When the compile is completed normally, then you can find an executable file ’diff geo’ in the directory
’source’. Please copy the executable file to the directory ’work’.

(2) Calculation of the difference

You can find the following usage in the header part of diff geo.c.

usage:

./diff_geo file1.xyz file2.xyz -d rmsd

option

-d rmsd a root mean square of deviation

-d md a mean deviation

-d mdbl 2.2 a mean deviation between bond lengths,

2.2 (Ang) means a cutoff bond length which

can be taken into account in the calculation

If you want to know RMSD between two Cartesian coordinates, run as follows:

% ./diff_geo file1.xyz file2.xyz -d rmsd

144

(a) (b)

Figure 35: (a) Vectors corresponding to the deviation of atomic coordinates in optimized structures
and (b) the difference of total charge density between a neutral and one electron doping glycine
molecules. These figures were visualized by gOpenMol [48]. In Fig. (b) blue and red colors indicate
the decrease and increase of total charge density, respectively.

The calculated result appears in the standard output (your display). Also, a vector file ’dgeo vec.txt’
is generated in a gOpenMol format, which stores the difference between Cartesian coordinates of each
atom in a vector form. This file can be visualized using ’Plot Vector File’ in gOpenMol. When MDBL
is calculated, please give a cutoff bond length (Å). Bond lengths below the cutoff bond length are taken
account of this RMSD calculation. Figure 35 shows vectors corresponding to the deviation of atomic
coordinates in optimized structures and the difference of total charge density between a neutral and
one electron doping glycine molecules. We see that the large structural change takes place together
with the large charge deviation. This example illustrates that the tool would be useful when we want
to know how the structure is changed by the charge doping, the electric field, and the basis set.

145

42 Analysis of difference charge density induced by the interaction

The redistribution of charge (spin) density induced by the interaction between two systems A and B
can be analyzed by the following procedure:

(i) calculate the composite system consisting of A and B

Then, you will have a cube file for charge (spin) density. Let it ’AB.cube’. Also, you will find
’Grid Origin’ in the standard output which gives x-, y-, and z-components of the origin of the regular
grid as:

Grid_Origin xxx yyy zzz

The values will be used in the following calculations (ii) and (iii).

(ii) calculate the system A

This calculation must be performed by the same calculation condition with the same unit cell as in
the composite system consisting of A and B. Also, the coordinates of the system A must be the same
as in the calculation (i). To use the same origin as in the calculation (i) rather than the use of an
automatically determined origin, you have to include the following keyword in your input file.

scf.fixed.grid xxx yyy zzz

where ’xxx yyy zzz’ is the coordinate of the origin you got in the calculation (i). Then, you will have
a cube file for charge (spin) density. Let it ’A.cube’.

(iii) calculate the system B

As well as the calculation (ii), this calculation must be performed by the same calculation condition
with the same unit cell as in the composite system consisting of A and B. Also, the coordinates of the
system B must be the same as in the calculation (i). To use the same origin as in the calculation (i)
rather than the use of an automatically determined origin, you have to include the following keyword
in your input file.

scf.fixed.grid xxx yyy zzz

where ’xxx yyy zzz’ is the coordinate of the origin you got in the calculation (i). Then, you will have
a cube file for charge (spin) density. Let it ’B.cube’.

(iv) compile two codes

compile two codes as follows:

% gcc diff_gcube.c -lm -o diff_gcube

% gcc add_gcube.c -lm -o add_gcube

(v) generate a cube file for difference charge (spin) density

146

First, generate a cube file for the superposition of two charge (spin) densities of the systems A and B
by

% ./add_gcube A.cube B.cube A_B.cube

The file ’A B.cube’ is the cube file for the superposition of charge (spin) density of two isolated systems.
Then, you can generate a cube file for the difference charge (spin) density induced by the interaction
as follows:

% ./diff_gcube AB.cube A_B.cube dAB.cube

The file ’dAB.cube’ is the cube file for the difference charge (spin) density induced by the interaction,
where the difference means (AB - A B).

147

43 Automatic determination of the cell size

When you calculate an isolated system, you are required to provide a super cell so that the isolated
system does not overlap with the image systems in the repeated cells. The larger cell size can cause a
numerical inefficiency, since a larger number of grids are used in the solution of the Poisson’s equation
in this case. Therefore, the use of the minimum cell size is desirable in terms of computational
efficiency. OpenMX supports the requirement. If you remove the specification for the cell size, that
is, from ’<Atoms.UnitVectors’ to ’Atoms.UnitVectors>’, then OpenMX automatically determines an
appropriate cell size which does not overlap the next cells and fulfills the required cutoff energy. The
determined cell vectors are displayed in the standard output like this:

<Set_Cluster_UnitCell> automatically determined UnitCell(Ang.)

<Set_Cluster_UnitCell> from atomic positions and Rc of PAOs (margin= 10.00%)

<Set_Cluster_UnitCell> 6.614718 0.000000 0.000000

<Set_Cluster_UnitCell> 0.000000 6.041246 0.000000

<Set_Cluster_UnitCell> 0.000000 0.000000 6.614718

widened unit cell to fit energy cutoff (Ang.)

A = 6.744142 0.000000 0.000000 (48)

B = 0.000000 6.322633 0.000000 (45)

C = 0.000000 0.000000 6.744142 (48)

148

44 Selection of lapack routine

In all the calculations: cluster, band, and O(N) calculations, a lapack routine is used to solve eigenval-
ues and eigenvectors of the tridiagonalized matrix. However, we see a platform dependency of lapack
routines to solve the tridiagonalized matrix with respect to computational robustness. So, three
different lapack routines are available in OpenMX Ver. 3.5 by the following keyword ’scf.lapack.dste’:

scf.lapack.dste dstevx # dstegr|dstedc|dstevx, default=dstevx

These lapack routines, dstegr, dstedc, and dstevx, are based on a multiple relatively robust represen-
tation (MR3) scheme [66], a divide and conquer (DC) algorithm [67], and QR and inverse iteration
algorithm, respectively. For further details, see the lapack website [68]. Our experiences suggest that
the computational speed is as follows:

dstevx < dstedc < dstegr

In contrast to the computational speed, the computational robustness seems to be opposite as follows:

dstegr < dstedc < dstevx

So, an appropriate one (robuster and faster) on your computational environment should be selected
by this keyword ’scf.lapack.dste’. The default is ’dstevx’.

In the cluster and band calculations, only eigenvectors of occupied and lower exited states are
evaluated for saving the computation time when ’dstevx’ is used. Thus, it is highly recommended to
use ’dstevx’ instead of ’dstedc’ and ’dstegr’ in the cases.

149

45 Interface for developers

An interface for developers is provided. If you want to use the Kohn-Sham Hamiltonian, the overlap,
and the density matrices, Then these data can be utilized by the following steps.

1. HS.fileout

Include the keyword, HS.fileout, in your input file as follows:

HS.fileout on # on|off, default=off

Then, these data are output to a file ’*.scfout’ where * means System.Name in your input file.

2. make analysis example

In the directory ’source’ compile by

% make analysis_example

Then, an executable file, analysis example, is generated in the directory, ’work’.

3. ./analysis example *.scfout

Move to the directory ’work’, and then perform the program as follows:

% ./analysis_example *.scfout

or

% ./analysis_example *.scfout > HS.out

You can find the elements of the Hamiltonian, the overlap, and the density matrices in a file
’HS.out’

4. explanation of analysis example

In a file ’analysis example.c’ you can find a detailed description for these data. A part of the
description is as follows:

**

You can utilize a filename.scfout which is generated by the SCF

calculation of OpenMX by the following procedure:

1. Define your main routine as follows:

int main(int argc, char *argv[])

2. Include a header file, "read_scfout.h", in your main routine

(if you want, also in other routines) as follows:

#include "read_scfout.h"

3. Call a function, read_scfout(), in the main routine as follows:

read_scfout(argv);

**

150

46 Automatic force tester

An effective way of assuring the reliability of implementation of many functionalities is to compare
analytic and numerical forces. If any program bug is introduced, they will not be consistent with each
other. To do this, one can run an automatic tester by

For serial running

% ./openmx -forcetest 0

For parallel running

% ./openmx -forcetest 0 "mpirun -np 4 openmx"

where ’0’ is a flag to specify energy terms to be included in the consistency check, and one can change
0 to 8. Each number corresponds to

flag 0 1 2 3 4 5 6 7 8

Kinetic 1 0 1 0 0 0 0 0 0

Non-local 1 0 0 1 0 0 0 0 0

Neutral atom 1 0 0 0 1 0 0 0 0

diff Hartree 1 0 0 0 0 1 0 0 0

Ex-Corr 1 0 0 0 0 0 1 0 0

E. Field 1 0 0 0 0 0 0 1 0

Hubbard U 1 0 0 0 0 0 0 0 1

where ’1’ means that it is included in the force consistency check. In a directory ’work/force example’,
there are 37 test inputs which are used for the force consistency check. After finishing the run, a file
’forcetest.result’ is generated in the directory ’work’. You will see results of the comparison as follows:

force_example/C2_GGA.dat

flag= 0

Numerical force= -(Utot(s+ds)-Utot(s-ds))/(2*ds)

ds= 0.0001000000

Forces (Hartree/Bohr) on atom 1

x y z

Analytic force -1.514128677000 -1.262159787942 -1.025428240858

Numerical force -1.514450620572 -1.262264605408 -1.025386683997

diff 0.000321943572 0.000104817467 -0.000041556861

force_example/C2_LDA.dat

flag= 0

Numerical force= -(Utot(s+ds)-Utot(s-ds))/(2*ds)

......

....

151

47 Automatic memory leak tester

In OpenMX, the memory used is dynamically allocated when it is required. However, the dynamic
memory allocation causes often a serious memory leak which wastes the memory used as the MD steps
increase. To check the memory leak, one can run OpenMX as follows:

For serial running

% ./openmx -mltest

For parallel running

% ./openmx -mltest "mpirun -np 4 openmx"

By monitoring VSZ and RSS actually used at the same monitoring point in the program code for 13
test inputs in a directory ’work/ml example’, one can find whether the memory leak takes place or
not. After finishing the run, a file ’mltest.result’ is generated in the directory ’work’. You will see the
monitored VSZ and RSS as a function of MD steps as follows:

1 ml_example/Co4.dat

CPU (%) VSZ (kbyte) RSS (kbyte)

MD_iter= 1 99.600 42692 18348

MD_iter= 2 99.600 176072 168496

MD_iter= 3 99.300 181624 174052

MD_iter= 4 99.100 176060 168488

MD_iter= 5 99.000 181624 174052

MD_iter= 6 98.800 176084 168512

MD_iter= 7 98.800 181624 174052

MD_iter= 8 99.900 176060 168488

MD_iter= 9 99.900 181624 174052

MD_iter= 10 99.600 176084 168512

MD_iter= 11 99.700 181624 174052

MD_iter= 12 99.600 176084 168512

MD_iter= 13 99.600 181624 174052

MD_iter= 14 99.500 181624 174052

MD_iter= 15 99.500 181628 174056

MD_iter= 16 99.400 181628 174056

MD_iter= 17 99.300 181624 174052

MD_iter= 18 99.200 181628 174056

MD_iter= 19 99.200 181620 174048

MD_iter= 20 99.100 181628 174056

MD_iter= 21 99.100 181620 174048

MD_iter= 22 99.200 181628 174056

MD_iter= 23 99.200 181620 174048

MD_iter= 24 98.800 181628 174056

152

MD_iter= 25 98.800 181620 174048

MD_iter= 26 98.800 181628 174056

MD_iter= 27 99.200 181624 174052

MD_iter= 28 99.200 181628 174056

MD_iter= 29 99.100 181624 174052

MD_iter= 30 99.100 181628 174056

2 ml_example/Co4+U.dat

CPU (%) VSZ (kbyte) RSS (kbyte)

MD_iter= 1 99.800 42800 18456

MD_iter= 2 99.700 176172 168664

......

....

153

48 Examples of the input files

For your convenience, the input files of examples shown in the manual are available in the directory
’work’ as listed below:

Molecules or clusters

C60.dat SCF calc. of a C60 molecule

C60_DC.dat DC calc. of a C60 molecule

CG15c_DC.dat DC calc. of DNA

Cr2_CNC.dat Constrained DFT calc. of a Cr2 dimer

Doped_NT.dat SCF calc. of doped carbon nanotube

Fe2.dat SCF calc. of a Fe2 dimer

Gly_NH.dat Nose-Hoover MD of a glycine molecule

Gly_VS.dat Velocity scaling MD of a glycine molecule

H2O.dat Geometry opt. of a water molecule

MCCN.dat DC calc. of a a multiply connected carbon nanotube

Methane2.dat Geometry opt. of a distorted methane molecule

Methane.dat SCF calc. of a methane molecule

Methane_OO.dat Orbital optimization of a methane molecule

Mn12.dat SCF calc. of a single molecular magnet, Mn12

Mol_MnO_NC.dat Non-collinear SCF calc. of a MnO molecule

Nitro_Benzene.dat SCF calc. of a nitro benzene molecule under E-field

Pt13.dat SCF calc. of a Pt13 cluster

Pt63.dat SCF calc. of a Pt63 cluster

SialicAcid.dat SCF calc. of a sialic acid molecule

Valorphin_DC.dat DC calc. of valorphin molecule

Bulk

Cdia.dat SCF calc. of bulk diamond

MnO_NC.dat Non-collinear SCF calc. of bulk MnO

FeO_NC.dat Non-collinear SCF calc. of bulk FeO

CoO_NC.dat Non-collinear SCF calc. of bulk CoO

NiO_NC.dat Non-collinear SCF calc. of bulk NiO

Crys-NiO.dat SCF calc. of bulk NiO

DIA64_Band.dat SCF calc. of bulk diamond including 64 atoms

DIA8_DC.dat DC calc. of bulk diamond including 8 atoms

DIA64_DC.dat DC calc. of bulk diamond including 64 atoms

DIA216_DC.dat DC calc. of bulk diamond including 216 atoms

DIA512_DC.dat DC calc. of bulk diamond including 512 atoms

DIA512-1.dat Krylov O(N) calc. of bulk diamond including 512 atoms

Febcc2.dat SCF calc. of bcc Fe

GaAs.dat Non-collinear calc. of bulk gallium arsenide

NaCl.dat SCF calc. of bulk NaCl

NaCl_FC.dat SCF calc. of bulk NaCl with a Cl-site vacancy

Si8.dat Geometry opt. of distorted Si bulk

154

49 Known problems

• Overcompleteness of basis functions

When a large number of basis functions is used for dense bulk systems with fcc, hcp, and bcc
like structures, the basis set tends to be overcomplete. In such a case, you may observe erratic
eigenvalues. To avoid the overcompleteness, a small number of optimized basis functions should
be used.

• Instability of lapack routines for high symmetry systems

For a system with a highly symmetric structure, the lapack diagonalization routines may fail
to find the correct eigenvectors. while this phenomenon strongly depends on the computational
environment. For such a case, try to find a nicely working routine by ’scf.lapack.dste’.

• Difficulty in getting the SCF convergence

For large-scale systems with a complex (non-collinear) magnetic structure, a metallic electric
structure, or the mixture, it is quite difficult to get the SCF convergence. In such a case, one
has to mix the charge density very slowly, indicating that the number of SCF steps to get the
convergence becomes large unfortunately.

• Difficulty in getting the optimized structure

For weak interacting systems such as molecular systems, it is not easy to obtain a completely
optimized structure, leading that the large number of iteration steps is required. Although the
default value of criterion for geometrical optimization is 10−4 Hartree/bohr for the largest force,
it would be a compromise to increase the criterion from 10−4 to 5× 10−4 in such a case.

155

50 OpenMX Forum

For discussion of technical issues on OpenMX and ADPACK, there is a forum (http://www.openmx-
square.org/forum/patio.cgi). It is expected that the forum is utilized for sharing tips in use of
OpenMX and for further code development. Points of concern for use of this forum can be found
in http://www.openmx-square.org/forum/note.html

156

51 Others

Program

The program package is written in the C language, including one makefile

makefile,

nine header files

f77func.h

Inputtools.h

lapack_prototypes.h

mimic_mpi.h

mimic_omp.h

openmx_common.h

read_scfout.h

tran_prototypes.h

tran_variables.h

and 248 routines

add_gcube.c Allocate_Arrays.c analysis_example.c AngularF.c

AtomicDenF.c AtomicPCCF.c Band_DFT_Col.c Band_DFT_Dosout.c

Band_DFT_kpath.c Band_DFT_MO.c Band_DFT_NonCol.c bandgnu13.c

BentNT.c BroadCast_ComplexMatrix.c BroadCast_ReMatrix.c

check_lead.c Cluster_DFT.c Cluster_DFT_Dosout.c Cont_Matrix0.c

Cont_Matrix1.c Cont_Matrix2.c Cont_Matrix3.c Contract_Hamiltonian.c

Contract_iHNL.c Cutoff.c dampingF.c deri_dampingF.c DFT.c

diff_gcube.c diff_geo.c DIIS_Mixing_DM.c DIIS_Mixing_Rhok.c

Divide_Conquer.c Divide_Conquer_Dosout.c DosMain.c

Dr_AtomicDenF.c Dr_AtomicPCCF.c Dr_RadialF.c Dr_VH_AtomF.c

Dr_VNAF.c dtime.c Eff_Hub_Pot.c EigenBand_lapack.c

Eigen_lapack.c Eigen_PHH.c Eigen_PReHH.c esp.c EulerAngle_Spin.c

File_CntCoes.c Find_ApproxFactN.c Find_CGrids.c find_Emin0.c

find_Emin2.c find_Emin.c find_Emin_withS.c Force.c

Force_test.c frac2xyz.c Free_Arrays.c FT_NLP.c FT_PAO.c

FT_ProductPAO.c FT_ProExpn_VNA.c FT_VNA.c Fuzzy_Weight.c

Gaunt.c Gauss_Legendre.c GDivide_Conquer.c GDivide_Conquer_Dosout.c

Generate_Wannier.c Generating_MP_Special_Kpt.c Get_Cnt_dOrbitals.c

Get_Cnt_Orbitals.c Get_dOrbitals.c Get_OneD_HS_Col.c Get_Orbitals.c

GR_Pulay_DM.c Hamiltonian_Band.c Hamiltonian_Band_NC.c

Hamiltonian_Cluster.c Hamiltonian_Cluster_NC.c Hamiltonian_Cluster_SO.c

init_alloc_first.c init.c Initial_CntCoes.c Init_List_YOUSO.c

Input_std.c Inputtools.c io_tester.c IS_Hotelling.c IS_Lanczos.c

IS_LU.c IS_Taylor.c iterout.c iterout_md.c jx.c

Kerker_Mixing_Rhok.c Krylov.c lapack_dstedc1.c lapack_dstedc2.c

157

lapack_dstegr1.c lapack_dstegr2.c lapack_dsteqr1.c

lapack_dstevx1.c lapack_dstevx2.c Lapack_LU_inverse.c

LU_inverse.c Make_Comm_Worlds.c Make_FracCoord.c

Make_InputFile_with_FinalCoord.c Maketest.c

malloc_multidimarray.c MD_pac.c Memory_Leak_test.c Merge_LogFile.c

mimic_mpi.c mimic_omp.c Mio_tester2.c Mio_tester.c

Mixing_DM.c mpi_multi_world2.c mpi_multi_world.c Mulliken_Charge.c

Nonlocal_Basis.c Nonlocal_RadialF.c Occupation_Number_LDA_U.c

openmx.c openmx_common.c Opt_Contraction.c OpticalConductivityMain.c

Orbital_Moment.c OutData.c Output_CompTime.c outputfile1.c

Overlap_Band.c Overlap_Cluster.c pdb2pao.c PhiF.c

Poisson.c Poisson_ESM.c polB.c Pot_NeutralAtom.c PrintMemory.c

PrintMemory_Fix.c QuickSort.c RadialF.c readfile.c

read_scfout.c RecursionS_B.c RecursionS_C.c RecursionS_D.c

RecursionS_E2.c RecursionS_E.c RecursionS_F.c

RecursionS_G.c RecursionS_H2.c RecursionS_H.c

RecursionS_I.c ReLU_inverse.c RestartFileDFT.c

RF_BesselF.c rmmpi.c rot.c Runtest.c SCF2File.c

Set_Aden_Grid.c Set_Allocate_Atom2CPU.c Set_Density_Grid.c

Set_Hamiltonian.c Set_Nonlocal.c Set_OLP_Kin.c Set_Orbitals_Grid.c

SetPara_DFT.c Set_ProExpn_VNA.c setup_CPU_group.c Set_Vpot.c

Set_XC_Grid.c Show_DFT_DATA.c Simple_Mixing_DM.c Smoothing_Func.c

Spherical_Bessel.c test0.c test2.c test3.c test.c test_mpi2.c

test_mpi3.c test_mpi4.c test_mpi.c test_openmp2.c

test_openmp3.c test_openmp.c Tetrahedron_Blochl.c

Timetool.c Total_Energy.c TRAN_Add_ADensity_Lead.c

TRAN_Add_Density_Lead.c TRAN_adjust_Ngrid.c TRAN_Allocate.c

TRAN_Apply_Bias2e.c TRAN_Calc_CentGreen.c TRAN_Calc_CentGreenLesser.c

TRAN_Calc_GridBound.c TRAN_Calc_Hopping_G.c TRAN_Calc_OneTransmission.c

TRAN_Calc_SelfEnergy.c TRAN_Calc_SurfGreen.c TRAN_Check_Input.c

TRAN_Check_Region.c TRAN_Check_Region_Lead.c TRAN_Credit.c

TRAN_Deallocate_Electrode_Grid.c TRAN_Deallocate_RestartFile.c

TRAN_DFT.c TRAN_DFT_Dosout.c TRAN_Distribute_Node.c

TRAN_Input_std_Atoms.c TRAN_Input_std.c TranMain.c

TRAN_Output_HKS.c TRAN_Output_HKS_Write_Grid.c TRAN_Output_Trans_HS.c

TRAN_Poisson.c TRAN_Print.c TRAN_Print_Grid.c TRAN_Read.c

TRAN_RestartFile.c TRAN_Set_CentOverlap.c TRAN_Set_Electrode_Grid.c

TRAN_Set_IntegPath.c TRAN_Set_MP.c TRAN_Set_SurfOverlap.c

TRAN_Set_Value.c Truncated_System.c truncation.c unit2xyz.c

VH_AtomF.c VNAF.c Voronoi_Charge.c Voronoi_Orbital_Moment.c

XC_CA_LSDA.c XC_Ceperly_Alder.c XC_EX.c XC_PBE.c XC_PW91C.c

xyz2spherical.c zero_cfrac.c zero_fermi.c

In addition, the following library packages are linked:

lapack,

158

blas,

fftw,

MPICH or LAM

omp

Copyright of the program package

The distribution of this program package follows the practice of the GNU General Public License [47].
Moreover, the author, Taisuke Ozaki, possesses the copyright of the original version of this program
package. We cannot offer any guarantees in your use of this program package. However, when you
report program bugs, we will cooperate and work well as much as possible together with you to remove
the problems.

Acknowledgment

One of us (T.O.) would like to thank many colleagues in JRCAT and RICS-AIST for helpful suggestions
and comments. One of us (T.O.) was partly supported by the following national projects: SYNAF-
NEDO [70], ACT-JST [71], NAREGI [72], and CREST-JST [73].

References

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev.
140, A1133 (1965).

[2] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 45, 566(1980); J. P. Perdew and A. Zunger,
Phys. Rev. B 23, 5048 (1981).

[3] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

[4] J. P. Perdew and Y. Wang, Phys.Rev.B 45, 13244 (1992).

[5] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[6] U. Von. Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972).

[7] J. Kübler, K-H. Höck, J. Sticht, and A. R. Williams, J. Phys. F: Met. Phys. 18, 469 (1988).

[8] J. Sticht, K-H. Höck, and J. Kübler, J. Phys.: Condens. Matter 1, 8155 (1989).

[9] T. Oda, A. Pasquarello, and R.Car, Phys. Rev. Lett. 80, 3622 (1998).

[10] A. H. MacDonald and S. H. Vosko, J. Phys. C: Solid State Phys. 12, 2977 (1979).

[11] Ph. Kurz, F. Forster, L. Nordstrom, G, Bihlmayer, and S. Blugel, Phys. Rev. B 69, 024415 (2004).

[12] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

[13] G. Theurich and N. A. Hill, Phys. Rev. B 64, 073106 (2001).

159

[14] A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, J. Mag. Mag. Mat.
67, 65 (1987).

[15] M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 70, 184421 (2004).

[16] M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 74, 045110 (2006).

[17] L. V. Woodcock, Chem. Phys. Lett. 10 ,257 (1971).

[18] S. Nose, J. Chem. Phys. 81, 511 (1984); S. Nose, Mol. Phys. 52, 255 (1984); G. H. Hoover, Phys.
Rev. A 31, 1695 (1985)).

[19] G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B 26, 4199 (1982).

[20] N. Troullier and J. L. Martine, Phys. Rev. B 43, 1993 (1991).

[21] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

[22] P. E. Blochl, Phys. Rev. B 41, 5414 (1990).

[23] T. Ozaki, Phys. Rev. B. 67, 155108, (2003); T. Ozaki and H. Kino, Phys. Rev. B 69, 195113
(2004).

[24] T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005).

[25] T. Ozaki, Phys. Rev. B 74, 245101 (2006).

[26] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. Joannopoulos, Rev. Mod. Phys. 64,
1045 (1992) and references therein.

[27] O. F. Sankey and D. J. Niklewski, Phys. Rev. B. 40, 3979 (1989)

[28] W. Yang, Phys.Rev.Lett. 66, 1438 (1991)

[29] P. Ordejon, E. Artacho, and J. M. Soler, Phys. Rev. B. 53, 10441 (1996)

[30] D. R. Bowler and M. J. Gillan, Chem. Phys. Lett. 325, 475 (2000).

[31] G. Kresse and J. Furthmeuller, Phys. Rev. B. 54, 11169 (1996)

[32] G. P. Kerker, Phys. Rev. B 23, 3082 (1981).

[33] T. A. Arias, M. C. Payne, and J. D. Joannopoulos, Phys. Rev. B 45, 1538 (1992).

[34] D. Alfe, Comp. Phys. Commun. 118, 32 (1999).

[35] P. Csaszar and P. Pulay, J. Mol. Struct. (Theochem) 114, 31 (1984).

[36] J. Baker, J. Comput. Chem. 7, 385 (1986)

[37] A. Banerjee, N. Adams, J. Simons, R. Shepard, J. Phys. Chem. 89, 52 (1985)

[38] C. G. Broyden, J. Inst. Math. Appl. 6, 76 (1970); R. Fletcher, Comput. J. 13, 317 (1970); D.
Goldrarb, Math. Comp. 24, 23 (1970); D. F. Shanno, Math. Comp. 24, 647 (1970).

[39] P. E. Blochl, O. Jepsen and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).

160

[40] A. D. Becke and R. M. Dickson, J. Chem. Phys. 89, 2993 (1988).

[41] A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990).

[42] Kino’s note.

[43] T. Ozaki, K. Nishio, and H. Kino, arXiv:0908.4142.

[44] T. Ozaki, Phys. Rev. B 75, 035123 (2007).

[45] G. C. Liang, A. W. Ghosh, M. Paulsson, and S. Datta, Phys. Rev. B. 69, 115302 (2004).

[46] H. Weng, T. Ozaki, and K. Terakura, Phys. Rev. B 79, 235118 (2009).

[47] http://www.gnu.org/

[48] http://www.csc.fi/gopenmol/

[49] http://www.cscs.ch/molekel/

[50] http://www.xcrysden.org/

[51] T. Lis, Acta Crystallogra. B 36, 2042 (1980).

[52] T. P. Davis T. J. Gillespie, F. Porreca, Peptides 10, 747 (1989).

[53] A. Goldstein, S. Tachibana, L. I. Lowney, M. Hunkapiller, and L. Hood, Proc. Natl. Acad. Sci.
U. S. A. 76, 6666 (1979).

[54] U. C. Singh and P. A. Kollman, J. Comp. Chem. 5, 129(1984).

[55] L. E. Chirlian and M. M. Francl, J. Com. Chem. 8, 894(1987).

[56] B. H. Besler, K. M. Merz Jr. and P. A. Kollman, J. Comp. Chem. 11, 431(1990).

[57] http://www.webelements.com/

[58] M. Cardona, N. E. Christensen, and G. Gasol, Phys. Rev. B 38, 1806 (1988).

[59] G. Theurich and N. A. Hill, Phys. Rev. B 64, 073106 (2001).

[60] Physics of Group IV Elements and III-V Compounds, edited by O.Madelung, M.Schulz, and H.
Weiss, Landolt-Büornstein, New Series, Group 3, Vol. 17, Pt.a (Springer, Berlin, 1982).

[61] T. Ono and K. Hirose, Phys. Rev. B 72, 085105 (2005).

[62] W. N. Mei, L. L. Boyer, M. J. Mehl, M. M. Ossowski, and H. T. Stokes, Phys. Rev. B 61, 11425
(2000).

[63] I. V. Solovyev. A. I. Liechtenstein, K. Terakura, Phys. Rev. Lett. 80, 5758.

[64] K. Knopfle, L. M. Sandratskii, and J. Kubler, J. Phys:Condens. Matter 9, 7095 (1997).

[65] http://www.openmx-square.org/

[66] I. S. Dhillon and B. N. Parlett, SIAM J. Matrix Anal. Appl. 25, 858 (2004).

161

[67] J. J. M. Cuppen, Numer. Math. 36, 177 (1981); M. Gu and S. C. Eisenstat, SIAM J. Mat. Anal.
Appl. 16, 172 (1995).

[68] http://www.netlib.org/lapack/

[69] http://www.nongnu.org/xmakemol/

[70] http://www.nanoworld.jp/synaf/

[71] http://act.jst.go.jp/

[72] http://ccinfo.ims.ac.jp/nanogrid/

[73] http://www.jst.go.jp/

[74] N. Mazari and D. Vanderbilt, Phys. Rev. B 56, 12 847 (1997).

[75] I. Souza, N. Marzari and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001).

[76] http://www.wannier.org/

162

Index

1DFFT.EnergyCutoff, 29, 47
1DFFT.NumGridK, 29
1DFFT.NumGridR, 29

Atoms.Cont.Orbitals, 30
Atoms.Number, 24, 117
Atoms.SpeciesAndCoordinates, 25, 45, 57, 62, 105,

106, 117
Atoms.SpeciesAndCoordinates.Unit, 24, 118
Atoms.UnitVectors, 25, 66, 147
Atoms.UnitVectors.Unit, 25

Band.dispersion, 34, 133
Band.kpath, 34
Band.KPath.UnitCell, 34, 65, 66
Band.Nkpath, 34, 39

CntOrb.fileout, 30

DATA.PATH, 23
Definition.of.Atomic.Species, 23, 42, 45, 73, 97,

129, 130
Dos.Erange, 36, 67, 69
Dos.fileout, 36, 39, 69, 113, 121
Dos.Kgrid, 36, 67
DosGauss.file, 69
DosGauss.fileout, 69, 70
DosGauss.Width, 69

HS.fileout, 36, 107, 111, 149
Hubbard.U.values, 26, 101

LeftLeadAtoms.Number, 117
LeftLeadAtoms.SpeciesAndCoordinates, 117
level.of.fileout, 23, 37–39, 90
level.of.stdout, 23, 93

MD.Fixed.XYZ, 32, 57, 62
MD.Init.Velocity, 33, 62
MD.Initial.MaxStep, 56
MD.maxIter, 32, 54
MD.Opt.criterion, 32
MD.Opt.DIIS.History, 32, 56
MD.Opt.StartDIIS, 33, 56
MD.TempControl, 33, 59–61

MD.TimeStep, 32
MD.Type, 32, 55, 59
MD.type, 54
MO.fileout, 35, 38, 90
MO.kpoint, 35, 90
MO.Nkpoint, 35

NEGF.bias.neq.energy.step, 120, 121
NEGF.bias.neq.im.energy, 120, 121
NEGF.bias.voltage, 120
NEGF.Dos.energy.div, 121
NEGF.Dos.energyrange, 121
NEGF.Dos.Kgrid, 121
NEGF.filename.hks, 116
NEGF.filename.hks.l, 119
NEGF.filename.hks.r, 119
NEGF.gate.voltage, 121
NEGF.Num.Poles, 120
NEGF.Output.for.TranMain, 124
NEGF.output hks, 116
NEGF.scf.Kgrid, 120–122
NEGF.tran.energydiv, 122
NEGF.tran.energyrange, 122
NEGF.tran.interpolate, 125
NEGF.tran.interpolate.coes, 125
NEGF.tran.interpolate.file1, 125
NEGF.tran.interpolate.file2, 125
NEGF.tran.Kgrid, 122, 123
NH.Mass.HeatBath, 33
Num.CntOrb.Atoms, 30
num.HOMOs, 35
num.LUMOs, 35

OpticalConductivity.fileout, 113
orbitalOpt.criterion, 30
orbitalOpt.InitCoes, 30
orbitalOpt.MD.maxIter, 30
orbitalOpt.Method, 30, 73
orbitalOpt.scf.maxIter, 30
orderN.Exact.Inverse.S, 31, 78, 79
orderN.Expand.Core, 31, 79
orderN.HoppingRanges, 31, 74–77, 85
orderN.KrylovH.order, 31, 77, 78

163

orderN.KrylovS.order, 31, 78
orderN.NumHoppings, 31, 74–77, 85
orderN.Recalc.Buffer, 31, 78

RightLeadAtoms.Number, 117
RightLeadAtoms.SpeciesAndCoordinates, 117

scf.Constraint.NC.Spin, 26, 104, 105
scf.Constraint.NC.Spin.v, 26, 104
scf.criterion, 29, 85, 121
scf.EigenvalueSolver, 27, 38, 39, 74, 119
scf.Electric.Field, 29, 87
scf.ElectronicTemperature, 27, 50
scf.energycutoff, 27, 48, 85, 97
scf.fixed.grid, 49
scf.Hubbard.Occupation, 26, 101
scf.Hubbard.U, 26, 101
scf.Init.Mixing.Weight, 28, 50
scf.Kerker.factor, 28, 50, 52
scf.Kgrid, 27, 64, 97, 117
scf.lapack.dste, 27, 82, 148
scf.Max.Mixing.Weight, 28, 50, 52
scf.maxIter, 27
scf.Min.Mixing.Weight, 28, 50
scf.Mixing.EveryPulay, 28, 50, 52
scf.Mixing.History, 28, 50, 52
scf.Mixing.StartPulay, 28, 50
scf.Mixing.Type, 27, 50
scf.NC.Mag.Field.Orbital, 106
scf.NC.Mag.Field.Spin, 105
scf.NC.Zeeman.Orbital, 106
scf.NC.Zeeman.Spin, 105
scf.Ngrid, 27, 48, 49
scf.partialCoreCorrection, 26
scf.restart, 35, 53
scf.SpinOrbit.Coupling, 29, 98
scf.SpinPolarization, 26, 39, 40, 95
scf.system.charge, 29, 43, 88
scf.XcType, 25, 40
System.CurrrentDir, 23
System.Name, 23, 53, 59, 60, 99, 133

Voronoi.charge, 36, 92

Wannier.Dis.Conv.Criterion, 132, 135
Wannier.Dis.Mixing.Para, 132

Wannier.Dis.SCF.Max.Steps, 132
Wannier.Func.Calc, 128
Wannier.Func.Num, 128
Wannier.Function.Plot, 134
Wannier.Function.Plot.SuperCells, 134
Wannier.Initial.Guess, 129
Wannier.Initial.Projectors.Unit, 130
Wannier.Initial.Projectos, 130
Wannier.Inner.Window.Bottom, 128
Wannier.Inner.Window.Top, 128
Wannier.Interpolated.Bands, 133
Wannier.Kgrid, 130
Wannier.MaxShells, 130
Wannier.Minimizing.Conv.Criterion, 132, 135
Wannier.Minimizing.Max.Steps, 132
Wannier.Minimizing.Scheme, 132
Wannier.Minimizing.Secant.StepLength, 132
Wannier.Minimizing.Secant.Steps, 132
Wannier.Minimizing.StepLength, 132
Wannier.Outer.Window.Bottom, 128
Wannier.Outer.Window.Top, 128
Wannier.Readin.Overlap.Matrix, 132, 133

164

