The orbital magnetic moment at each atomic site is calculated as default in the non-collinear DFT. Since the orbital magnetic moment appears as a manifestation of spin-orbit coupling (SOC), the calculated values become finite when the SOC is included [63,64]. As an example, a non-collinear LDA+U (U=5eV) calculation of iron monoxide bulk is illustrated using an input file FeO_NC.dat in the directory 'work'. As for the LDA+U calculation, see the Section 'LDA+U'. The calculated orbital and spin magnetic moments at the Fe site are listed in Table 4. Also, you can find the orientation of the (decomposed) orbital moment in *.out, where * means 'System.Name' as follows:
***********************************************************
***********************************************************
Orbital moments
***********************************************************
***********************************************************
Total Orbital Moment (muB) 0.000000070 Angles (Deg) 113.644105951 -65.722115195
Orbital moment (muB) theta (Deg) phi (Deg)
1 Fe 1.01127 128.64444 50.80973
2 Fe 1.01127 51.35556 230.80973
3 O 0.00000 122.13287 8.40916
4 O 0.00000 58.29296 151.31925
Decomposed Orbital Moments
1 Fe Orbital Moment(muB) Angles (Deg)
multiple
s 0 0.000000000 90.0000 0.0000
sum over m 0.000000000 90.0000 0.0000
s 1 0.000000000 90.0000 0.0000
sum over m 0.000000000 90.0000 0.0000
px 0 0.000032282 44.0757 90.0000
py 0 0.000027194 31.5419 -0.0000
pz 0 0.000026842 90.0000 57.4970
sum over m 0.000070741 49.0444 57.5709
px 1 0.004596036 10.8026 -90.0000
py 1 0.004533432 5.2237 180.0000
pz 1 0.000955444 90.0000 244.3929
sum over m 0.009229130 11.9479 244.3959
d3z^2-r^2 0 0.045401124 90.0000 224.3492
dx^2-y^2 0 0.075657665 24.3023 228.5632
dxy 0 0.453606172 81.2632 50.2745
dxz 0 0.495766350 143.9475 -10.8730
dyz 0 0.531382963 138.9632 98.7434
sum over m 0.997255210 131.7287 51.1391
d3z^2-r^2 1 0.001075694 90.0000 254.7742
dx^2-y^2 1 0.012694575 26.6388 225.7504
dxy 1 0.036086417 71.5849 49.3240
dxz 1 0.031150186 132.6513 -13.0079
dyz 1 0.033740724 128.7200 99.3874
sum over m 0.058459849 109.4476 49.1020
f5z^2-3r^2 0 0.007365273 90.0000 39.4321
f5xz^2-xr^2 0 0.005659459 26.2551 124.3549
f5yz^2-yr^2 0 0.006152658 34.4173 -38.4581
fzx^2-zy^2 0 0.015290504 34.2465 224.2021
fxyz 0 0.012904266 11.6263 244.9193
fx^3-3*xy^2 0 0.004957037 43.3387 -84.7645
f3yx^2-y^3 0 0.004826463 41.6700 183.4396
sum over m 0.043385660 10.6323 246.7139
.....
...
As shown in Table 4, OpenMX gives a good agreement for both the
spin and orbital magnetic moments of a series of
-transition
metal oxides with other calculation results.
However, it is noted that the absolute value of orbital magnetic moment
seems to be significantly influenced by calculation conditions
such as basis functions and on-site 'U' in the LDA+U method,
while the spin magnetic moment is relatively insensitive to
the calculation conditions, and that a rather rich basis set including
polarization functions will be needed for convergent calculations of
the orbital magnetic moment.
| Compound | OpenMX | Other calc. | OpenMX | Other calc. | Expt. in total |
| MnO | 4.560 | 4.49 | 0.001 | 0.00 | 4.79,4.58 |
| FeO | 3.582 | 3.54 | 1.010 | 1.01 | 3.32 |
| CoO | 2.684 | 2.53 | 1.088 | 1.19 | 3.35,3.8 |
| NiO | 1.594 | 1.53 | 0.173 | 0.27 | 1.77,1.64,1.90 |