Build openmx-3.962 with AOCC compiler error |  
-  Date: 2025/04/14 04:46
-  Name: hlajungo
  <hlajungo@gmail.com>
  
  - I am trying to build openmx with amd tool chain (aocc compiler + aocl library), I want to ask is it supported?
  I build openmx succeccfully with following makefile setting ``` CC = mpicc -Dkcomp -O3 -march=znver2 -mtune=znver2 -mfma -mavx2 -fomit-frame-pointer -fopenmp -fPIC FC = mpif90 -Dkcomp -O3 -march=znver2 -mtune=znver2 -mfma -mavx2 -fomit-frame-pointer -fopenmp \ -fallow-argument-mismatch -fPIC
  LIB = -lscalapack -lflame -lblis-mt -lblis \ -lmpi_mpifh -lmpi_usempif08 -lmpi_usempi_ignore_tkr -lmpi \ -lfftw3_mpi -lfftw3_omp -lfftw3 \ -lgfortran -lamdlibm -fopenmp \ -Wl,--allow-multiple-definition -Wl,--allow-shlib-undefined ``` and these packages. ``` aocc/5.0.0 aocl/5.0 ucx/1.18.0 gcc/10.2.0 (provide gfortran) openmpi/4.1.6 ```
  But when I trying to run `mpirun -n 8 ./openmx Methane.dat`
 
  ``` ******************************************************* *******************************************************  Welcome to OpenMX  Ver. 3.9.23                            Copyright (C), 2002-2019, T. Ozaki                      OpenMX comes with ABSOLUTELY NO WARRANTY.              This is free software, and you are welcome to          redistribute it under the constitution of the GNU-GPL. ******************************************************* *******************************************************
 
 
  <Input_std>  Your input file was normally read. <Input_std>  The system includes 2 species and 5 atoms.
  *******************************************************                     PAO and VPS                       *******************************************************
  <SetPara_DFT>  PAOs of species H were normally found. <SetPara_DFT>  PAOs of species C were normally found. <SetPara_DFT>  VPSs of species H were normally found.               H_PBE19.vps is j-dependent.               In case of scf.SpinOrbit.Coupling=off,               j-dependent pseudo potentials are averaged by j-degeneracy,               which corresponds to a scalar relativistic treatment. <SetPara_DFT>  VPSs of species C were normally found.               C_PBE19.vps is j-dependent.               In case of scf.SpinOrbit.Coupling=off,               j-dependent pseudo potentials are averaged by j-degeneracy,               which corresponds to a scalar relativistic treatment.
  *******************************************************     Fourier transform of PAO and projectors of VNL     *******************************************************
  <FT_PAO>          Fourier transform of pseudo atomic orbitals <FT_NLP>          Fourier transform of non-local projectors <FT_ProExpn_VNA>  Fourier transform of VNA separable projectors <FT_VNA>          Fourier transform of VNA potentials <FT_ProductPAO>  Fourier transform of product of PAOs
  *******************************************************   Allocation of atoms to processors at MD_iter=    1     *******************************************************
   proc =  0  # of atoms=  1  estimated weight=        1.00000  proc =  1  # of atoms=  1  estimated weight=        1.00000  proc =  2  # of atoms=  1  estimated weight=        1.00000  proc =  3  # of atoms=  1  estimated weight=        1.00000  proc =  4  # of atoms=  1  estimated weight=        1.00000  proc =  5  # of atoms=  0  estimated weight=        0.00000  proc =  6  # of atoms=  0  estimated weight=        0.00000  proc =  7  # of atoms=  0  estimated weight=        0.00000
 
 
 
  *******************************************************         Analysis of neighbors and setting of grids         *******************************************************
  TFNAN=      20  Average FNAN=  4.00000 TSNAN=      0  Average SNAN=  0.00000 <truncation> CpyCell= 1 ct_AN=  1 FNAN SNAN  4  0 <truncation> CpyCell= 1 ct_AN=  2 FNAN SNAN  4  0 <truncation> CpyCell= 1 ct_AN=  3 FNAN SNAN  4  0 <truncation> CpyCell= 1 ct_AN=  4 FNAN SNAN  4  0 <truncation> CpyCell= 1 ct_AN=  5 FNAN SNAN  4  0 TFNAN=      20  Average FNAN=  4.00000 TSNAN=      0  Average SNAN=  0.00000 <truncation> CpyCell= 2 ct_AN=  1 FNAN SNAN  4  0 <truncation> CpyCell= 2 ct_AN=  2 FNAN SNAN  4  0 <truncation> CpyCell= 2 ct_AN=  3 FNAN SNAN  4  0 <truncation> CpyCell= 2 ct_AN=  4 FNAN SNAN  4  0 <truncation> CpyCell= 2 ct_AN=  5 FNAN SNAN  4  0 TFNAN=      20  Average FNAN=  4.00000 TSNAN=      0  Average SNAN=  0.00000 <truncation> CpyCell= 2 ct_AN=  1 FNAN SNAN  4  0 <truncation> CpyCell= 2 ct_AN=  2 FNAN SNAN  4  0 <truncation> CpyCell= 2 ct_AN=  3 FNAN SNAN  4  0 <truncation> CpyCell= 2 ct_AN=  4 FNAN SNAN  4  0 <truncation> CpyCell= 2 ct_AN=  5 FNAN SNAN  4  0 <Check_System> The system is molecule. lattice vectors (bohr) A  = 18.897259885789,  0.000000000000,  0.000000000000 B  =  0.000000000000, 18.897259885789,  0.000000000000 C  =  0.000000000000,  0.000000000000, 18.897259885789 reciprocal lattice vectors (bohr^-1) RA =  0.332491871581,  0.000000000000,  0.000000000000 RB =  0.000000000000,  0.332491871581,  0.000000000000 RC =  0.000000000000,  0.000000000000,  0.332491871581 Grid_Origin -9.300995100037 -9.300995100037 -9.300995100037 Cell_Volume =  6748.333037104149 (Bohr^3) GridVol    =      0.025742847584 (Bohr^3) Grid_Origin -9.300995100037 -9.300995100037 -9.300995100037 Cell_Volume =  6748.333037104149 (Bohr^3) GridVol    =      0.025742847584 (Bohr^3) <UCell_Box> Info. of cutoff energy and num. of grids lattice vectors (bohr) A  = 18.897259885789,  0.000000000000,  0.000000000000 B  =  0.000000000000, 18.897259885789,  0.000000000000 C  =  0.000000000000,  0.000000000000, 18.897259885789 reciprocal lattice vectors (bohr^-1) RA =  0.332491871581,  0.000000000000,  0.000000000000 RB =  0.000000000000,  0.332491871581,  0.000000000000 RC =  0.000000000000,  0.000000000000,  0.332491871581 Required cutoff energy (Ryd) for 3D-grids = 120.0000     Used cutoff energy (Ryd) for 3D-grids = 113.2041, 113.2041, 113.2041 Num. of grids of a-, b-, and c-axes = 64, 64, 64 Grid_Origin -9.300995100037 -9.300995100037 -9.300995100037 Cell_Volume =  6748.333037104149 (Bohr^3) GridVol    =      0.025742847584 (Bohr^3) Cell vectors (bohr) of the grid cell (gtv)   gtv_a =  0.295269685715,  0.000000000000,  0.000000000000   gtv_b =  0.000000000000,  0.295269685715,  0.000000000000   gtv_c =  0.000000000000,  0.000000000000,  0.295269685715   |gtv_a| =  0.295269685715   |gtv_b| =  0.295269685715   |gtv_c| =  0.295269685715 Num. of grids overlapping with atom    1 = 20336 Num. of grids overlapping with atom    2 = 20346 Num. of grids overlapping with atom    3 = 20346 Num. of grids overlapping with atom    4 = 20346 Num. of grids overlapping with atom    5 = 20346
  *******************************************************             SCF calculation at MD = 1                 *******************************************************
  <MD= 1>  Calculation of the overlap matrix <MD= 1>  Calculation of the nonlocal matrix <MD= 1>  Calculation of the VNA projector matrix
  ******************* MD= 1  SCF= 1 ******************* <Poisson>  Poisson's equation using FFT... <Cluster>  Solving the eigenvalue problem...     1    C  MulP    -nan    -nan sum    -nan     2    H  MulP    -nan    -nan sum    -nan     3    H  MulP    -nan    -nan sum    -nan     4    H  MulP    -nan    -nan sum    -nan     5    H  MulP    -nan    -nan sum    -nan  Sum of MulP: up  =        -nan down          =        -nan               total=        -nan ideal(neutral)=    8.00000 <DFT>  Total Spin Moment (muB) =            -nan <DFT>  Mixing_weight= 0.200000000000 <DFT>  Uele  =              -nan  dUele    =  1.000000000000 <DFT>  NormRD =    1.000000000000  Criterion =  0.000000000100
  ******************* MD= 1  SCF= 2 ******************* <Poisson>  Poisson's equation using FFT... <Set_Hamiltonian>  Hamiltonian matrix for VNA+dVH+Vxc... <Cluster>  Solving the eigenvalue problem...     1    C  MulP    -nan    -nan sum    -nan     2    H  MulP    -nan    -nan sum    -nan     3    H  MulP    -nan    -nan sum    -nan     4    H  MulP    -nan    -nan sum    -nan     5    H  MulP    -nan    -nan sum    -nan  Sum of MulP: up  =        -nan down          =        -nan               total=        -nan ideal(neutral)=    8.00000 <DFT>  Total Spin Moment (muB) =            -nan <DFT>  Mixing_weight= 0.200000000000 <DFT>  Uele  =              -nan  dUele    =              nan <DFT>  NormRD =              nan  Criterion =  0.000000000100
 
  *******************************************************           Computational times (s) at MD = 1             *******************************************************
    DFT in total      =    1.62580
    Set_OLP_Kin      =    0.03440   Set_Nonlocal      =    0.01761   Set_ProExpn_VNA  =    0.08201   Set_Hamiltonian  =    0.69188   Poisson          =    0.33737   diagonalization  =    0.09697   Mixing_DM        =    0.00953   Force            =    0.01528   Total_Energy      =    0.05745   Set_Aden_Grid    =    0.03306   Set_Orbitals_Grid =    0.00997   Set_Density_Grid  =    0.13632   RestartFileDFT    =    0.01717   Mulliken_Charge  =    0.00432   FFT(2D)_Density  =    0.00000 The calculation was terminated due to the illegal SCF calculation. ```
  There are full of `nan` and wrong output, and there are no information on internet I can found.  
  
 |    |