Re: Electronic entropy appears to be missing ( No.1 ) 
 Date: 2017/06/19 02:40
 Name: Kylin
 Dear Chris
I think there is no implementation for electronic entropy calculation in openmx. Scf.ElectronicTemperature in openmx could be regarded as some kinds of smearing function for gapless system (e.g. metal). Thus whether you choose FermiDirac function or Guassian function or MethfesselPaxton Hermite polynomial function, all the mentioned smearing function could be regarded as "a numerical trick" to stabilize the DFT calculation [JCP 145, 220901 (2016)].
Of course, we can choose the FD function with a physical meaning to calculate the electronic entropy terms. But I didn't think we need to to take it.
Cheers Kylin

Re: Electronic entropy appears to be missing ( No.2 ) 
 Date: 2017/06/19 04:35
 Name: Chris Latham
 Hello Kylin (et al.),
In fact, the electronic entropy term *should* be included, and this is the usual practice in other DFT packages.
It is quite simple to implement. In the article you cited [doi: 10.1063/1.4972007], equations 6 and 7 give the entropy at each kpoint, which needs to be multiplied by the appropriate weighting for the kpoint, summed over all the kpoints and eigenvalues, and add up the total energy with the TS term, as in equation 8, at the end of the SCF calculation. In other words, for a FermiDirac distribution, one needs something like,
S[i,j] = k*w[i]*(p[j]*log(p[j])+(1.0p[j])*log(1.0p[j]);
where S[i,j] is the contribution to the entropy at kpoint i, from each state, j, with occupancy p[j] calculated from the FDfunction for the eigenvalue of j, and w[i] is the weighting of the kpoint i. Obviously, one would actually code this as a double loop over i and j including spins, and multiply by k afterwards, to get a total entropy, S. Also, one can use the fact that p[j]=1.0 for more than a few kT below the electron chemical potential, and p[j]=0.0 for more than a few kT above it, to speed things up.
So, yes, a smearing function is indeed a wellknown old trick to stabilize SCF calculations, but the entropy term then does need to be included in the total energy.
Thank you,
Christopher.

