Theory of Rashba splitting in quantum-well states

Information Technology Center, The University of Tokyo Mitsuaki Kawamura

Collaborator Experiment : R. Noguchi, K. Kuroda, T. Kondo Theory : T. Ozaki

- R. Noguchi, K. Kuroda, M. Kawamura, K. Yaji, A. Harasawa, T. Iimori, S. Shin, F. Komori, T. Ozaki, T. Kondo, PRB <u>104</u>, L180409 (2021).
- M. Kawamura, T. Ozaki, In preparation.

OpenMX developer's meeting 2023/11/10

Outline

- Introduction
 - Rashba effect and its application
 - Large Rashba-parameter materials
- Quantum well state in Ag few MLs on Au(111)
 - Computational result
 - Discussion
- Theory of Rashba splitting
 - Spin-orbit interaction and intrinsic magnetic field
 - Tight-binding model and solution
- Application of model to QWS of Ag/Au(111)
- Summary

Application of Rashba effect

XOnly large Fermi surface is drawn Generate spin current Charge -> S k-space $k_v \wedge \wedge \delta k$ - *E*_x $k_{\rm x}$ δS_{v} Non-equilibrium spin accumulation Is Diffuse Real-space 1 18 2 1 substrate

4/23

Intro

Measurement of Spin current \rightarrow Charge current

No inverse spin Hall effect No spin current in Bi_2O_3

J. Sánchez, *et al*., Nat. Commun. <u>4</u>, 2944 (2013).

5/23 Origin of potential gradient Intro

M. Nagano, *et al.*, J. Phys.: Condens. Matter **21**, 064239 (2009).

Au(111), Ag(111), Sb(111) 23 layer slab

Intro

Material with Large Rashba Splitting

Au(111) surface state S. LaShell, *et al.*, PRL <u>77</u>, 3419 (1996). $\alpha_R = 0.33 \text{ eV} \cdot \text{\AA}$

Bi surface alloy $\sqrt{3} \times \sqrt{3}$ R30° Bi/Ag(111)

C. Ast, *et al.*, PRL <u>98</u>, 186807 (2007).

 $\alpha_R = 3.05 \text{ eV} \cdot \text{\AA}$

Table 1 j Selected materials and parameters characterizing spin band splitting: the momentum offset k_0 (Å¹), Rashba energy E_R (meV) and Rashba parameter α_R (eV Å).

Sample	k ₀	E _R	α _R	Reference
Surface state				
Au(111)	0.012	2.1	0.33	5
Bi(111)	0.05	14	0.55	16
1/3 ML Bi on Ag surface alloy	0.13	200	3.05	7
Interface				
InGaAs/InAIAs	0.028	<1	0.07	4
QW state				
Pb thin film (6-22 ML)	0.035	≲10	0.04	36
Bi thin film (7-40 BL)	-	-	-	18,37
1 ML Bi on Cu	N/A	N/A	2.5	20
Bulk				
BiTel	0.052	100	3.8	This work

For the Bi thin-film system in refs 18,37, the splitting was observed only for the surface states, not for the QW subband states. ML, monolayer.

K. Ishizaka, *et al*., Nature Materials **10**, 521 (2011).

Table 2

Rashba parameters in the Bi/M alloys: α_R is the Rashba coefficient, E_R the Rashba energy, k_R the Rashba momentum offset.

							_
М	Cu	Ag	Au	Ni	Со	Fe	-
Upper splitting							-
$k_{R}(\text{\AA}^{-1})$	0.036	0.075	0.046	0.067	0.077	0.082	
$E_{R}(eV)$	0.068	0.123	0.044	0.135	0.140	0.139	N Yamaguchi
α_R (eV·Å)	3.76	3.28	1.91	4.05	3.71	3.40	N. Fulluguoli,
							F. Ishii. J. Crvs.
Lower splitting							
$k_{R}(\text{\AA}^{-1})$	0.072	0.124	0.206	0.094	0.113	0.115	Growth 468 .
$E_{R}(eV)$	0.093	0.177	0.168	0.107	0.112	0.067	
α_R (eV·Å)	2.59	2.85	1.63	2.28	1.98	1.17	688 (2017)

PRB 104, L180409 (2021).

Example

QWS in Ag/Au(111)

• DFT code : OpenMX

- GGA-PBE functional
- ρ cutoff : 300 Ry
- Broadening : 5000 K (0.03 Ry)
- \mathbf{k} -grid : $14 \times 14 \times 1$
- Spin-orbit
- Au 60 ML
 - Basis
 - Au7.0-s4p3d2f1
 - Ag7.0-s2p2d2f1
 - With structure optimization

Result Rashba split vs ML

Reproduce experimental results

Next

Investigate ML and well state dependence of the splitting

$$\widehat{H} = -\frac{\nabla^2}{2} + V(r) + \frac{2}{c^2} (\nabla V(r) \times p) \cdot s$$

Rashba splitting from S
$$\Delta \varepsilon_{\rm R} \approx \int d^3 r \frac{2}{c^2} (\nabla V(r) \times p) \cdot s |\varphi(r)|^2$$

R. Noguchi, M. Kawamura, *et al.*, PRB <u>104</u>, L180409 (2021).

Decompose integration into contributions from each atom

 \times Decomposition method is not unique

Peak of $|\varphi(r)|^2 \rightarrow$ Node of decomposed splitting $\Delta \varepsilon_i$ Slope of $|\varphi(r)|^2 \rightarrow$ Peak of decomposed splitting $\Delta \varepsilon_i$ (Opposite sign)

Intro Further question and motivation

M. Nagano, *et al.*, J. Phys.: Condens. Matter <u>21</u>, 064239 (2009).

2D nearly free electronic state

$$\Delta \varepsilon_R = \langle \psi_{\mathbf{k}} | \hat{H}_{\text{SOC}} | \psi_{\mathbf{k}} \rangle = |\mathbf{k}| S_{xy} \int dz 2 \left\langle \frac{\partial V}{\partial z} \right\rangle_{xy} |u(z)|^2$$

 $\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u(z)$

- Since the wavefunction of a realistic system is not like the 2D free electronic state
- The applicability of the earlier study is unclear.
- We need to fill the gap between the atomic SOC and Rashba interaction term.
- precise theoretical model to capture the wide range of behavior of QWSs system will be derived.

Theory Spin-orbit coupling and symmetry-broken system

SOC part of Hamiltonian
$$\hat{H}_{\sigma\sigma'}^{SOC} = 2(\nabla V(\mathbf{r}) \times \mathbf{p}) \cdot \mathbf{s}_{\sigma\sigma'}$$

Uniform spin wavefunction $\begin{pmatrix} \psi_{\mathbf{k}\uparrow}(\mathbf{r}) \\ \psi_{\mathbf{k}\downarrow}(\mathbf{r}) \end{pmatrix} = e^{i\mathbf{k}\cdot\mathbf{r}} \begin{pmatrix} \chi_{\mathbf{k}\uparrow} \\ \chi_{\mathbf{k}\downarrow} \end{pmatrix} u_{\mathbf{k}}(\mathbf{r})$
 $\begin{pmatrix} -\frac{(\nabla + i\mathbf{k})^2}{2} + V(\mathbf{r}) \end{pmatrix} u_{\mathbf{k}}(\mathbf{r}) = \varepsilon_{\mathbf{k}}^0 u_{\mathbf{k}}(\mathbf{r})$
 $\varepsilon_{\mathbf{k}}^{SOC} = \mathbf{s}_{\mathbf{k}} \cdot \int d^3 r 2\nabla V(\mathbf{r}) \times \{\mathbf{k} | u_{\mathbf{k}}(\mathbf{r}) |^2 - iu_{\mathbf{k}}^*(\mathbf{r}) \nabla u_{\mathbf{k}}(\mathbf{r})\}$
 $= 2\mathbf{s}_{\mathbf{k}} \cdot \int d^3 r \{\nabla V(\mathbf{r}) \times \mathbf{k} | u_{\mathbf{k}}(\mathbf{r}) |^2 + iV(\mathbf{r}) \nabla u_{\mathbf{k}}^*(\mathbf{r}) \times \nabla u_{\mathbf{k}}(\mathbf{r})\}$
 $(\chi_{\mathbf{k}\uparrow}^*, \chi_{\mathbf{k}\downarrow}^*) \begin{pmatrix} \mathbf{s}_{\uparrow\uparrow} & \mathbf{s}_{\uparrow\downarrow} \\ \mathbf{s}_{\downarrow\uparrow} & \mathbf{s}_{\downarrow\downarrow} \end{pmatrix} \begin{pmatrix} \chi_{\mathbf{k}\uparrow} \\ \chi_{\mathbf{k}\downarrow} \end{pmatrix}$
Rec-Gauss theorem & anti sym. of \times

Expansion of $u_{\mathbf{k}}(\mathbf{r})$ for \mathbf{k}

$$u_{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{0}}(\mathbf{r}) + \sum_{i} k_{i} \partial_{k_{i}} u_{\mathbf{k}}(\mathbf{r}) \Big|_{\mathbf{k}=\mathbf{0}} + \sum_{ij} k_{i} k_{j} \partial_{k_{i}} \partial_{k_{j}} u_{\mathbf{k}}(\mathbf{r}) \Big|_{\mathbf{k}=\mathbf{0}} + O(k^{3})$$

Real
$$\partial_{k_{i}} u_{\mathbf{k}=\mathbf{0}}(\mathbf{r}) = i \left(-\frac{\nabla^{2}}{2} + V(\mathbf{r}) - \varepsilon_{\mathbf{k}=\mathbf{0}} \right)^{-1} \partial_{r_{i}} u_{\mathbf{0}}(\mathbf{r}) \quad \text{Imaginary}$$

$$\partial_{k_{i}}\partial_{k_{j}}u_{\mathbf{k}=\mathbf{0}}(\mathbf{r}) \quad \text{Real} \\ = i\left(-\frac{\nabla^{2}}{2} + V(\mathbf{r}) - \varepsilon_{\mathbf{k}=0}\right)^{-1} \left\{ \left(\partial_{k_{i}}\partial_{k_{j}}\varepsilon_{\mathbf{k}=0} - \delta_{ij}\right)u_{\mathbf{0}}(\mathbf{r}) + i\partial_{r_{j}}\partial_{k_{i}}u_{\mathbf{k}=\mathbf{0}}(\mathbf{r}) + i\partial_{r_{i}}\partial_{k_{j}}u_{\mathbf{k}=\mathbf{0}}(\mathbf{r}) \right\}$$

$$u_{\mathbf{k}}^{*}(\mathbf{r}) = u_{\mathbf{0}}(\mathbf{r}) - \sum_{i} \partial_{k_{i}} u_{\mathbf{k}}(\mathbf{r}) \Big|_{\mathbf{k}=\mathbf{0}} + \sum_{ij} \partial_{k_{i}} \partial_{k_{j}} u_{\mathbf{k}}(\mathbf{r}) \Big|_{\mathbf{k}=\mathbf{0}} + O(k^{3})$$

$$\varepsilon_{\mathbf{k}}^{\text{SOC}} = 2\mathbf{s}_{\mathbf{k}} \cdot \int d^3 r \left\{ \nabla V(\mathbf{r}) \times \mathbf{k} |u_{\mathbf{0}}(\mathbf{r})|^2 + 2iV(\mathbf{r}) \nabla u_{\mathbf{0}}(\mathbf{r}) \times \nabla \sum_{i} k_i \partial_{k_i} u_{\mathbf{k}=\mathbf{0}}(\mathbf{r}) \right\} + O(k^3)$$

Symmetry

(111) surface of fcc lattice

3-fold + 3 mirrors

4-fold + 4 mirrors

Symmetry op. $u_{0}(\hat{R}\mathbf{r}) = u_{0}(\mathbf{r})$ $\nabla_{\mathbf{r}}u_{0}(\mathbf{r}) \rightarrow \hat{R}^{-t}\nabla_{\mathbf{r}}u_{0}(\hat{R}\mathbf{r})$ $u_{0}(\hat{R}\mathbf{r}) = \hat{R}^{-t}\nabla_{\mathbf{r}}u_{0}(\hat{R}\mathbf{r})$

 $\nabla_{\mathbf{k}} u_{\mathbf{k}=\mathbf{0}} (\hat{R}\mathbf{r}) = \hat{R}^{-t} \nabla_{\mathbf{k}} u_{\mathbf{k}=\mathbf{0}}(\mathbf{r})$

$$\begin{split} & \varepsilon_{\mathbf{k}}^{\text{SOC}} \\ &= 2\mathbf{s}_{\mathbf{k}} \cdot (\mathbf{e}_{z} \times \mathbf{k}) \int d^{3}r \left\{ \frac{\partial V(\mathbf{r})}{\partial z} |u_{\mathbf{0}}(\mathbf{r})|^{2} + iV(\mathbf{r}) \left(\frac{\partial u_{\mathbf{0}}(\mathbf{r})}{\partial z} \nabla_{\mathbf{r}} \cdot \nabla_{\mathbf{k}} u_{\mathbf{k}=\mathbf{0}}(\mathbf{r}) - \nabla_{\mathbf{r}} u_{\mathbf{0}}(\mathbf{r}) \cdot \frac{\partial \nabla_{\mathbf{k}} u_{\mathbf{k}=\mathbf{0}}(\mathbf{r})}{\partial z} \right) \right\} \\ &+ O(k^{3}) \\ \end{split}$$
Intrinsic magnetic field in $x - y$ plane and parallel to $\mathbf{e}_{z} \times \mathbf{k}$

Assuming $\nabla_{\mathbf{k}} u_{\mathbf{k}=\mathbf{0}}(\mathbf{r}) = 0$, this becomes Nagano's formula

Validity and efficiency of analytical formula

Summary

- We computed Ag/Au(111) slab model (Au 60 ML + Ag 6~34 ML).
- We reproduced quantitatively the experimental Rashba splitting (the same ML number and well state dependence).

- We decomposed the splitting parameter $\alpha_{\rm R}$ into contributions from each atom.
- α_R can be estimated with $|\varphi(r)|^2$ at boundary-Au/Ag and $\langle \partial V / \partial z \rangle$ of each element. Therefore the Rashba effect mainly occurs at the boundary of this system.
- We constructed minimum tight-binding model which can explain the trend of α_R .

R. Noguchi, K. Kuroda, M. Kawamura, K. Yaji, A. Harasawa, T. Iimori, S. Shin, F. Komori, T. Ozaki, T. Kondo, PRB <u>104</u>, L180409 (2021).

- We construct the theory to obtain the k-linear Rashba splitting energy systematically from the SOC.
- Then, we derive a minimum model that captures the Rashba effect in QWS using a onedimensional tight-binding model and the Green's function method.
- Our theory qualitatively fits the first-principles result of a realistic Ag/Au(111) system using only two fitting parameters.