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How to analyze DFT results?
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⚫ The DFT-KS method is a versatile framework to calculate electronic 

structures of real materials.

⚫ However, it is always difficult to explain why one structure is more stable than the 

others. Other cases: effective charge, XPS binding energy, effective spin-spin 

interaction. 

⚫ We need to develop an analysis method to give a physically and chemically 

convincing interpretation.   

The right structure is 

energetically stable, being 

consistent with the experiment.
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Purpose of the study

⚫ Our goal in this study is to establish methods to analyze electronic 

structures in a physically and chemically convincing manner. 

⚫ To do that, I consider that it is important to develop an efficient and 

robust method to calculate Wannier functions (WFs), while keeping the 

shape of atomic orbitals as much as possible. 

⚫ Such WFs can be utilized for calculations including 

⚫ Effective atomic charge 

⚫ Local decomposition of total energy

⚫ Analysis of magnetic interaction by the 

Liechtenstein method

⚫ Coherent potential method 

⚫ Speed-up of the SCF calculation
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Intrinsic Atomic Orbital (IAO)

J. Chem. Theory Comput., 9, 4834 (2013).

The IAO charge seems to be a 

good descriptor to explain the 

XPS binding energies.
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Polar decomposition and an inequality

Proc. Amer. Math. Soc. 6, 111 (1955).

It is found that the inequality is very important for our formulation. 

In the paper, they showed a theorem on a matrix inequality:
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|| ||  is the Frobenius norm.
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Maximally Localized Wannier Functions

Phys. Rev. B 56, 12847 (1997).

The MLWFs are obtained by minimizing the spread function, while 

keeping the unitary transformation. 

Graphene case

MLWFs

Wannier interpolated bands
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Closest Wannier Functions (CWFs)

The CWFs are obtained by minimizing the distance measure (DM) function, 

while keeping the unitary transformation. 

arXiv:2306.15296

Graphene case CWFs

7/25



Projection and window function

Window function:

For a localized function of Q, the projection is considered with a window function:

The window function allows us to 

focus on the targeted states in the 

window region. 
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Distance measure (DM) function

Wannier function:Projection function:

Residual function:

We define the distance measure function as 

where X is given by a squared Frobenius norm:
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Minimization of the DM function #1

It is proven that the minimum is obtained when B=U which is calculated from the 

polar decomposition of A as.

The difference of X at U and B is given by

From the Cauchy-Schwarz inequality, the diagonal term of D is bounded by 1. 

Thus, we obtain 
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Minimization of the DM function #2
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Thus, we find the minimum of F[B] at U as 

This means that the mean squared distance between L and 

W is related to the deviation of the singular values σ from 

unity.
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Algorithm

1. Determining the target region.

2. Choosing a set of localized orbitals {Q}.

3. Calculation of the projection matrix of A(k).

4. Performing the SVD of A(k) ⇒WΣV † .

5. Calculation of U(k) as W(k)V †(k).

6. Summation over k and μ.

No iterative calculation is required. 
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Cancellation of nondeterministic phases

Nondeterministic phases appear in three places:

1. Calculation of Bloch functions at each k-point

2. SVD of A: 

3. Singular vectors for degenerate singular values

It is quite important to note that the three nondeterministic phases are 

all canceled out through the polar decomposition. 

Thus, it turns out that the proposed method is free from complications 

arising from the choice of gauge.
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X is a diagonal phase matrix.

K is a unitary matrix.
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Relation to the Löwdin orthogonalization

The CWF method is closely related to the Löwdin orthogonalization. 

By Fourier-transforming overlap integrals of L, we have
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By using the polar decomposition of A, we have

Comparing (A) with                                            , one obtains  
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Thus, we see that in some cases the CWF is equivalent to the Löwdin 

orthogonalization.  
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The closest property is also shown in B.C. Carlson and J.M. Keller, PR 105, 102 (1957).



Guiding functions

⚫ Atomic orbitals (AOs)

⚫ Hybrid Orbitals (HOs)

⚫ Embedded Molecular Orbitals (EMOs)

PAOs are used as the guiding functions.

By diagonalizing the on-site density matrix, one can obtain the 

hybrid orbitals, which will be used as the guiding functions.

The EMOs can be obtained by the singular value decomposition for the 

local trace of occupation projector. 
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Embedded molecular orbitals (EMOs)
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Embedded molecular orbitals are calculated by considering a partial trace 

of a projection operator and performing SVD for Λ for a group of atomic 

basis orbitals. 

Bloch function Projection operator for the occupied states

The total number of electrons is given by 

where

† 2 †

g g g g gY Y  = 

Performing SVD for                , we obtain Yg as EMOs.
†

g g 
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• Software package for density functional calculations of molecules and bulks

• Norm-conserving pseudopotentials (PPs)

• Variationally optimized numerical atomic basis functions

• SCF calc. by LDA, GGA, DFT+U

• Total energy and forces on atoms

• Band dispersion and density of states

• Geometry optimization by BFGS, RF, EF

• Charge analysis by Mullken, Voronoi, ESP

• Molecular dynamics with NEV and NVT ensembles

• Charge doping 

• Fermi surface

• Analysis of charge, spin, potentials by cube files

• Database of optimized PPs and basis funcitons

• O(N) and low-order scaling diagonalization

• Non-collinear DFT for non-collinear magnetism

• Spin-orbit coupling included self-consistently

• Electronic transport by non-equilibrium Green function

• Electronic polarization by the Berry phase formalism

• Maximally localized Wannier functions

• Effective screening medium method for biased system

• Reaction path search by the NEB method

• Band unfolding method

• STM image by the Tersoff-Hamann method

• etc.

OpenMX Open source package for Material eXplorer

Basic functionalities Extensions
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https://www.openmx-square.org/cwf/

Benchmark calculation: Si

I have performed the benchmark calculations for 30 systems, and found that 

the method works well.

Silicon

Wannier interpolated bands

Solid: conventional

Red circle: Wannier interpolated

CWFs Tight-binding hopping integrals as 

a function of distance
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https://www.openmx-square.org/cwf/

Benchmark calculation: Copper

FCC copper

Wannier interpolated bands

Solid: conventional

Red circle: Wannier interpolated

CWFs
Tight-binding hopping integrals as 

a function of distance
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Benchmark calculation: Fe

BCC iron

Wannier interpolated bands

Solid: conventional

Red circle: Wannier interpolated

CWFs for up-spin states
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Benchmark calculation: TTF-TCNQ

TTF-TCNQ

Wannier interpolated bands

Solid: conventional

Red circle: Wannier interpolated

CWFs Tight-binding hopping integrals as 

a function of distance
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Benchmark calculation: Bi2Se3

Bi2Se3

Wannier interpolated bands

Solid: conventional

Red circle: Wannier interpolated

CWFs

Tight-binding hopping integrals as 

a function of distance
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Effective charge

• The calculated charges by CWF quickly converge as a function of basis functions.

• MLWF and Bader overestimate the charge transfer in a HCN molecule.
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CWF vs. MLWF for HCN

CWFs MLWFs

The CWFs preserves the shape of atomic orbitals, while the MLWFs (j), (k), (l), 

(o), and (p) largely deform as a result of the maximally localization. In 

particularly, (l) and (p) are bond-centered, leading to no justification for 

attributing the population to a single atom. 

The number that follows is the population number considering the spin degeneracy.
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Summary

Refs: arXiv:2306.15296

https://www.openmx-square.org/cwf/

⚫ We introduced a distance measure function of F[B], and defined 

CWFs as WFs which minimize F[B]. 

⚫ The minimization of F[B] can be performed by a polar 

decomposition of the projection matrix with a window function. 

⚫ The disentanglement of bands is inherently addressed by 

introducing a smoothly varying window function and  a greater 

number of Bloch functions, even for isolated bands.

⚫ Wannier interpolated bands well reproduce the conventional 

bands of a wide variety of systems. 

⚫ We further showed the usefulness of the proposed method in 

calculating effective atomic charges. 
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