

The 4th OpenMX developer's meeting 2023/11/9

Material Design of Thermoelectric Materials through Experiments and Phonon Transport Calculations

Masanobu Miyata

Japan Advanced Institute of Science and Technology

M. Miyata and M. Koyano, Materials Research Express **9**, 5, 055901 (2022). Masanobu Miyata, Journal of Applied Physics 130, 035104 (2021).

Contents

2

- **1. Introduction of thermoelectric conversion**
- 2. Experimental and theoretical investigation of phonon transport properties for Ag-P compounds which shows low lattice thermal conductivity
 - > Anisotropy bond of Ag-P cluster in AgP₂
 - ➢ 4th order anharmonic phonons in Ag₃SnP₇
- 3. Summury

Energy problem

- The 1/3 of industrial primary energy is only used, meanwhile, that of 2/3 represents a huge unused energy resource available worldwide
- ➢ The waste heat below 150°C accounts for a large percentage

Some technology that can regenerate

that waste heat into available energy is necessary.

Thermoelectric conversion

Thermoelectric (TE) effect enables a direct conversion from thermal energy into electrical energy

- The temperature deference of the module generates electromotive force by Seebeck effect
- We can evaluate the TE performance by using figure of merit ZT

10⁹ Abundance, atoms of element per 10⁶ atoms of Si **Conventional TE** Relative abundance of **Rock-forming** the chemical elements in materials elements 10⁶ Earth's upper continental crust Bi₂**Te**₃, Pb**Te High performance** 10³ Te is rare Mo Major industrial Need to develop new metals in Bold 10-3 thermoelectric materials **Precious metals** Rarest "metals" in Italic to replace Te compounds 10⁻⁶ 20 30 60 10 40 50 Atomic number, Z

> Amount of Te: 38000 t ~ 8×10^9 modules: ~ 1 module / person \triangleright Too few amount of Tellurium

Sulfide **Phosphide**

Earth abundant elements in a crust. \succ

Lattice thermal conductivity tends to be comparative high due to including light mass element P phospher.

[1] G. B. Haxel et al., USGS Fact Sheet, 087-02(2002).

earth

70

80

90

Primitive cell of AgP₂ contains four Ag and eight P, and the Ag-P clusters whose P atoms locate around Ag, tetrahedrally.

*M. H. Moeller et al. Z. Anorg. Allg. Chem. 491, 225 (1982).

 \succ The chain-structured phosphide Ag₃SnP₇ has P₇ chain structure extended to b-axis.

*M. M. Shatruk et al., Angew. Chem. Int. Ed. 39, 14, 2508(2000).

Electronic and phonon properties of the binary phosphide AgP₂

Condition of DFT calculation

Electronic structure and transport calculations

- **OpenNX** * T. Ozaki, Phys. Rev. **B 67**, 155108 (2003). * M. Miyata, Taisuke Ozaki *et al.*, Journal of Electronic Materials, 47(6) 3254-3259 (2018)
- Variable cell relaxation \geq
- E-k relation, density of states

BoltzTrap *G. K. H. Madsen and D. J. S. Singh, Comput. Phys. Commun. **175**, 67 (2006).

Electron transport properties

- Exchange correlation potential: **GGA-PBE**
- Cutoff energy: 500 Ryd
- Max Force: 1.0×10^{-6} Hartree Bohr⁻¹
- \geq Number of k-points used for transport calculation: approx. 50000

Phonon Transport Calculations

ALANODE *T. Tadano *et al.* J. Phys.: Condens. Matter 26, 225402 (2014).

- Phonon dispersion
- Density of states
- Lifetime of phonons
- Mean square displacement (MSD)
- Mode Grüneisen Parameters γ \succ
- Lattice thermal conductivity

<Interatomic force constant>

- Harmonic term(2nd order): Displacement = 0.04 Å
- Anharmonic term (3rd order): Displacement = 0.08 Å
- Supercell size $2 \times 2 \times 2$ primitive cell

Determination of experimental chemical potential μ_{Exp}

Electronic structure of AgP₂

D *E-k* relation

D Electrical conductivity $\sigma \tau^{-1}$

- > The chemical potential μ_{Exp} is 300 K locates in the forbidden band.
 - \rightarrow Intrinsic semiconductor

> $\sigma \tau^{-1}$ at μ_{Exp} is $1.22 \times 10^{16} \Omega^{-1} m^{-1} s^{-1}$. We estimated the relaxation time of electron for AgP₂.

Relaxation time τ = 3.3 fs

Relatively long carrier relaxation time au are the origin of large $\mu_{\rm H}$

Phonon properties of AgP₂

- The optical phonon modes which show large mode Grüneisen parameter γ are generated around 60 cm⁻¹.
- Ag phonon modes are dominant less than 100 cm⁻¹.
 - → This result indicates that the
 large anharmonic phonons around
 60 cm⁻¹ are originated from Ag.

Analysis of bonding states using difference electron density

From the point of view of the geometry and difference electron density, the anisotropy of Ag-P cluster in AgP₂ are large.

The mean square displacement (MSD) for each atom

In AgP₂, the MSD for Ag atoms is about 1.6-1.7 times larger than those of P atoms, indicating the scattering cross section for Ag with phonon-phonon process is large.

We compared AgP_2 and related materials that of phonon properties.

Comparison with phonon properties of other phosphides

For clarifying the origin of large MSD, we investigated which is effective to MSD for mass of ratio or anisotropic bond.

The origin of large vibration of Ag atoms in AgP_2 14

The anharmonic phonons of Ag is originated from the bond anisotropy of Ag-P cluster.

Comparison of lattice thermal conductivity for experiment and theory

> The theoretical value of κ_{lat} -*T* assuming polycrystalline AgP₂ with a crystallite diameter of 300 nm is quantitatively reproduces the experimental value of κ_{lat} for the experimentally synthesized polycrystalline AgP₂

We clarified that AgP₂ exhibits low lattice thermal conductivity, experimentally and theoretically.

 Primitive cell of AgP₂ contains four Ag and eight P, and the Ag-P clusters whose P atoms locate around Ag, tetrahedrally.

Crystal system: Monoclinic (P2 /c)₁

*M. H. Moeller et al. Z. Anorg. Allg. Chem. 491, 225 (1982).

*M. M. Shatruk et al., Angew. Chem. Int. Ed. 39, 14, 2508(2000).

Sample Synthesis and Evaluation

A homogeneous and single-phase Ag₃ SnP₇ sample was successfully obtained using the CVT method.

- κ_{lat} T⁻¹ shows liner dependence more than 200 K, indicating phonon-phonon scattering is dominant more than 200 K.

Condition of DFT calculation

Electronic structure and transport calculations

- **OpenNX** * T. Ozaki, Phys. Rev. **B 67**, 155108 (2003). * M. Miyata, Taisuke Ozaki *et al.*, Journal of Electronic Materials, 47(6) 3254-3259 (2018)
- Variable cell relaxation
- E-k relation, density of states

- Exchange correlation potential: GGA-PBE
- Cutoff energy: 500 Ryd
- Max Force: 1.0 × 10⁻⁶ Hartree Bohr⁻¹

Phonon Transport Calculations

ALANODE *T. Tadano *et al.* J. Phys.: Condens. Matter 26, 225402 (2014).

- Phonon dispersion
- Density of states
- Lifetime of phonons
- Mean square displacement (MSD)
- > Mode Grüneisen Parameters γ
- Lattice thermal conductivity
- Self-consistent phonon calculation(SCPH)

<Interatomic force constant>

- Harmonic term(2nd order):
 Displacement = 0.04 Å
- Anharmonic term (3rd and 4th order): Displacement = 0.08 Å
- Supercell size 2 × 2 × 2 primitive cell

Self-consistent phonon calculation

Solving the Dyson equation from the phonon Green's function finally yields the following equation

$$\Omega_q^2 = \omega_q^2 + \Omega_q I_q,$$

$$I_q = \sum_{q'} \frac{\hbar \Phi(q; -q; q'; -q')}{4\Omega_q \Omega_{q'}} \left[1 + 2n(\Omega_{q'})\right]$$

 ω_q : Harmonic phonon frequency at phonon q I_q : Self-energy of phonon at q $\Phi(q; -q; q'; -q')$: 4th order of anharmonic phonon term at q, -q, q' -q'n: Bose-Einstein distribution function

Compute the two equations self-consistently until the renormalized frequency Ω_q convergence.
 We finally obtain the Ω_q which include effective potential of 4th order anharmonic phonons.

Phonon dispersion

In the SCPH calculation, in which the fourth-order anharmonic term is renormalized to the second-order harmonic term, the phonon dispersion relation shifts overall to the high-frequency side.

Comparison of lattice thermal conductivity κ_{lat}

 \Box Cumulative lattice thermal conductivity κ_{lat}

In the phonon transport of Ag_3SnP_7 , consideration of the 4th order anharmonic phonons are important.

Lattice specific heat C_v , Group velocity v, Lifetime of phonon τ_{lat}

- Lattice specific heat C_v , group velocity of phonons v is not significantly different between harmonic calculation and SCPH.
- > The underestimation of lifetime of phonon is occurred τ_{lat} caused by the lack of consideration of 4th order anharmonic phonon.

For Ag₃SnP₇ system, the consideration of 4th order anharmonic phonon is important!

Ag₃ SnP₇ Anharmonic phonons in

 \blacksquare Phonon band , Mode-Grüneisen parameter γ

In the frequency range below 160 cm⁻¹, γ is large negative value, indicating anharmonicity of phonon at low frequency region is large.

Phonon DOS with SCPH

> In the frequency region below 160 cm⁻¹ where γ shows large negative values, the PDOS of Ag atoms at the 4f site is the largest.

Phonon modes of Ag atoms at the 4f site contribute most to the anharmonicity of Ag_3SnP_7 .

Large anharmonicity of Ag at 4f site

- At 300 K, the mean square displacement of the Ag atoms at the 4f site is large, signifying that the phonon scattering cross section of Ag at 4f site is the largest.
- For the Ag at 4f site, the atomic displacement dependence of total energy U is far from parabolic curve

The origin of the anharmonic phonon mode is the Ag atoms at the 4f site.

- Conventional semiconductors, insulators, and thermoelectric materials located in the dotted line at constant lifetime of phonons.
- The effective lifetime phonon τ of Ag₃SnP₇ is 0.24 ps and 1/40th of that of conventional semiconductors, and is comparable to SnSe and clathrate compounds which show large anharmonicity of phonons.

Summary

- We succeeded in creating Ag-P compounds with extremely low lattice thermal conductivity and elucidating the mechanism by making full use of experiments and first-principle calculations.
- The anharmonicity of the phonons in Ag-P compounds is due to the anharmonic phonons of the Ag atom, and the anisotropy of the bonds around the Ag atom is important.
- Using OpenMX and ALAMODE, we performed self-consistent phonon calculations considering fourth-order anharmonic phonons and found that fourth-order anharmonic phonons are important in the phonon transport of Ag₃SnP₇.

Acknowledgement

Theoretical calculations in this study were performed on the supercomputers 'KAGAYAKI' Japan Advanced Institute of Science and Technology. This study was supported by JSPS KAKENHI (Grant No. JP20K15021)

