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3Energy problem

➢ The 1/3 of industrial primary energy is only used, meanwhile, 
that of 2/3 represents a huge unused energy resource available 
worldwide 

➢ The waste heat below 150℃ accounts for a large percentage  

Some technology that can regenerate 
that waste heat into available energy is necessary. 

Graphic: Oregon State University

Subway

Substation

Steel industry
Rubbish
incinerator

◆ The overview of industrial primary energy

The unused 
waste heat

The temperature profile of 
industrial waste heat



4Thermoelectric conversion

𝑉 = −𝑆Δ𝑇
𝑆 : Seebeck coefficient
Δ𝑇: Temperature difference
𝑉 : thermoelectromotive force

𝜎 : Electrical conductivity
𝜅el : Electron thermal conductivity
𝜅lat: Lattice thermal conductivity
𝑇 : Absolute temperature
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𝑍𝑇 =
𝑆2𝜎

𝜅el + 𝜅lat
𝑇

➢ Thermoelectric (TE) effect enables a direct conversion from 
thermal energy into electrical energy

➢ The temperature deference of the module generates electromotive 
force by Seebeck effect

➢ We can evaluate the TE performance by using figure of merit ZT

*Assumption: 
ZT is independent to temperature. 



5New thermoelectric material to replace Bi-Te thermoelectric material

◆Conventional TE 
materials
Bi2Te3，PbTe
😊High performance

😩Te is rare

Sulfide 

Phosphide 

Need to develop new 
thermoelectric materials 
to replace Te compounds

[1] G. B. Haxel et al., USGS Fact Sheet, 087-02(2002). 

➢ Amount of Te: 38000 t ~ 8×109 modules:  ~ 1 module / person
😩Too few amount of Tellurium

➢ Earth abundant elements in a crust.
➢ Lattice thermal conductivity tends to be comparative 

high due to including light mass element P phospher.



6Ag-P compounds which show low lattice thermal conductivity

AgP2

*M. H. Moeller et al. Z. Anorg. Allg. Chem. 491, 225 (1982).

Ag3SnP7

➢ Primitive cell of AgP2 contains 
four Ag and eight P, and the Ag-
P clusters whose P atoms 
locate around Ag, tetrahedrally.

➢ The chain-structured phosphide Ag3SnP7 has P7 chain structure extended to b-axis. 

*M. M. Shatruk et al., Angew. Chem. Int. Ed. 39, 14, 2508(2000).
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Electronic and phonon properties of the binary phosphide AgP2
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Experiments show that AgP2 has both high Hall mobility μH and 
low lattice thermal conductivity klat

 Experimental synthesis and transport properties of AgP2

@300K ~ 51 cm2 V-1 s-1
@300 K ~ 1.2 WK-1m-1

10 mm
Chemical vapor transport method
(600°C, 8hours, iodine added)

ΔT ~ 2 K (≈ temperature variation in furnace)

Hot press
Melting method (600°C, 8h)

Unreacted P burns off and cannot 
be synthesized

 Hall mobility μH  Lattice thermal conductivity klat
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ALAMODE
➢ Phonon dispersion 
➢ Density of states
➢ Lifetime of phonons
➢ Mean square displacement (MSD)
➢ Mode Grüneisen Parameters g
➢ Lattice thermal conductivity

OpenMX
➢ Variable cell relaxation 
➢ E-k relation, density of states

 Electronic structure and transport calculations

 Phonon Transport Calculations

➢ Exchange correlation potential: 
GGA-PBE

➢ Cutoff energy: 500 Ryd
➢ Max Force: 1.0×10-6 Hartree Bohr-1

➢ Number of k-points used for transport 
calculation: approx. 50000

<Interatomic force constant> 
・Harmonic term(2nd order): 

Displacement = 0.04 Å
・Anharmonic term (3rd order): 

Displacement = 0.08 Å

➢ Supercell size 
2×2×2 primitive cell

*T. Tadano et al. J. Phys.: Condens. Matter 26, 
225402 (2014).

* T. Ozaki, Phys. Rev. B 67, 155108 (2003).
* M. Miyata, Taisuke Ozaki et al.,

Journal of Electronic Materials, 47(6) 3254-3259 (2018)

BoltzTraP
➢ Electron transport properties

Condition of DFT calculation

*G. K. H. Madsen and D. J. S. Singh, Comput. Phys. 
Commun. 175, 67 (2006).



9Determination of experimental chemical potential μExp
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E = 0 (= mDFT)

E =mExp

＜Seebeck coeffieint＞

𝑆 = −
1

𝑒 𝑇

𝐾1
𝐾0

𝐾𝑛 = න𝜁 𝜀, 𝑇 𝜀 − 𝜇 𝑛 −
d𝑓 𝜀, 𝑇

d𝜀
d𝜀,

𝜁 𝜀, 𝑇 ∝ 𝐷 𝜀 𝑣 𝜀 2𝜏 𝜀, 𝑇
𝐷 𝜀 : Density of states
𝑣 𝜀 : Group velocity of electrons

𝑓 𝜀, 𝑇 ：Fermi-Dirac distribution function
𝜇  ：Chemical potential
𝜁 𝜀, 𝑇 : Spectrum conductivity

➢ We determined the chemical 
potential μExp by comparison 
of experimental and 
theoretical S-T curves.

➢ The existence of excess holes 
in experimental sample of 
AgP2 were clarified.



10Electronic structure of AgP2

 E-k relation  Electrical conductivity στ -1

➢ The chemical potential μExp is 300 K 
locates in the forbidden band.
 → Intrinsic semiconductor

➢ στ-1 at μExp is 1.22×1016 Ω-1 m-1 s-1 .
We estimated the relaxation time of 
electron for AgP2.

Relaxation time τ = 3.3 fs 

Relatively long carrier relaxation time τ are the origin of large μH
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11Phonon properties of AgP2

 Phonon dispersion relation  Phonon DOS

➢ The optical phonon modes which show 
large mode Grüneisen parameter γ are 
generated  around 60 cm-1.

➢ Ag phonon modes are dominant 
less than 100 cm-1.
→ This result indicates that the 
large anharmonic phonons around 
60 cm-1 are originated from Ag.
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12Anisotropy of bonding of Ag atoms, and large vibration of Ag

 Analysis of bonding states using difference electron density 

 The mean square displacement (MSD) for each atom
➢ In AgP2 , the MSD for Ag atoms is about 

1.6-1.7 times larger than those of P atoms, 
indicating the scattering cross section for 
Ag with phonon-phonon process is large.

We compared AgP2 and related materials 
that of phonon properties.
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➢ From the point of view of the geometry and difference electron 
density,  the anisotropy of Ag-P cluster in AgP2 are large.



13Comparison with phonon properties of other phosphides

 CuP2 

Cu-P Cluster
 Bond distance (Cu-P): 2.274- 2.500 Å
 Bond angle (P-Cu-P): 95.18- 118.59 deg.

Mass of ratio 
P : Cu : Ag = 1 : 2.05 : 3.48

✓ Bonds and geometry: Anisotropic

 InP

In-P Cluster
 Bond distance (In-P): 2.541Å for all
 Bond angles (P-In-P): 109.47 deg.

Mass of ratio
P : In : Ag = 1 : 3.71 : 3.48 

✓ Bonds and geometry: Isotropic

For clarifying the origin of large MSD, we investigated which 
is effective to MSD for mass of ratio or anisotropic bond.
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The origin of large vibration of Ag atoms in AgP2

 Phonon scattering probability tq
-1

➢ AgP2 has a very high phonon scattering 
probability τq

-1 in the low frequency 
region compared to that of CuP2 and 
InP.

 Ratio of MSD

Bond anisotropy

Mass difference

T = 300 K

➢ The ratio of MSD of Ag with Pave is  larger 
that of In in InP, denoting that the bond 
anisotropy is more effective to large MSD 
than that of mass difference.

The anharmonic phonons of Ag is originated from the bond anisotropy of 
Ag-P cluster. 



15Comparison of lattice thermal conductivity for experiment and theory

➢ The theoretical value of klat -T assuming polycrystalline AgP2 with a crystallite 
diameter of 300 nm is quantitatively reproduces the experimental value of klat for 
the experimentally synthesized polycrystalline AgP2

We clarified that AgP2 exhibits low lattice thermal conductivity, experimentally and 
theoretically.

𝜏𝑞
−1

𝜏𝑞
−1 + 𝜏Grain

−1



16Ag-P compounds which show low lattice thermal conductivity

AgP2

Crystal system: Monoclinic (P2 /c)1

*M. H. Moeller et al. Z. Anorg. Allg. Chem. 491, 225 (1982).

Ag3SnP7

➢ Primitive cell of AgP2 contains 
four Ag and eight P, and the Ag-
P clusters whose P atoms 
locate around Ag, tetrahedrally.

➢ The chain-structured phosphide Ag3SnP7 has P7 chain structure extended to b-axis. 

*M. M. Shatruk et al., Angew. Chem. Int. Ed. 39, 14, 2508(2000).
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10 mm

Sample Synthesis and Evaluation
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Polycrystalline

Hot press

Ag3SnP7

A homogeneous and single-phase Ag3 SnP7 sample was successfully 
obtained using the CVT method.

Chemical vapor transport 
(CVT) method
(550℃, 1week, added iodine)

ΔT ~ 2 K (≈ temperature variation in furnace)

Hot press

Melting method (550°C, 8h)

Unreacted P burns off and cannot 
be synthesized

 Sample Synthesis

 XRD  SEM-EDS



18Temperature dependence of thermal conductivity k
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➢ The lattice thermal conductivity 
klat at room temperature is
about 1.5 WK-1m-1.

kel ~ 0

➢ klat - T-1 shows liner dependence 
more than 200 K, indicating 
phonon-phonon scattering is 
dominant more than 200 K.
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ALAMODE
➢ Phonon dispersion 
➢ Density of states
➢ Lifetime of phonons
➢ Mean square displacement (MSD)
➢ Mode Grüneisen Parameters g
➢ Lattice thermal conductivity
➢ Self-consistent phonon calculation(SCPH)

OpenMX
➢ Variable cell relaxation 
➢ E-k relation, density of states

 Electronic structure and transport calculations

 Phonon Transport Calculations

➢ Exchange correlation potential: 
GGA-PBE

➢ Cutoff energy: 500 Ryd
➢ Max Force: 1.0×10-6 Hartree Bohr-1

<Interatomic force constant> 
・Harmonic term(2nd order): 

Displacement = 0.04 Å
・Anharmonic term (3rd and 4th order): 

Displacement = 0.08 Å

➢ Supercell size 
2×2×2 primitive cell

*T. Tadano et al. J. Phys.: Condens. Matter 26, 
225402 (2014).

* T. Ozaki, Phys. Rev. B 67, 155108 (2003).
* M. Miyata, Taisuke Ozaki et al.,

Journal of Electronic Materials, 47(6) 3254-3259 (2018)

Condition of DFT calculation



20Self-consistent phonon calculation
Solving the Dyson equation from the phonon Green's function finally yields the 
following equation

➢ Compute the two equations self-consistently until the renormalized 
frequency Ωq convergence.

We finally obtain the Ωq which include effective potential of 4th order 
anharmonic phonons.

𝜔𝑞: Harmonic phonon frequency at phonon q

𝐼𝑞 : Self-energy of phonon at q

Φ 𝑞; − 𝑞; 𝑞′; −𝑞′ : 4th order of anharmonic phonon term at 𝒒, −𝒒, 𝒒′ -𝒒′
𝑛: Bose-Einstein distribution function



21Phonon dispersion
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➢ In the SCPH calculation, in which the fourth-order anharmonic term 
is renormalized to the second-order harmonic term, the phonon 
dispersion relation shifts overall to the high-frequency side.



22Comparison of lattice thermal conductivity klat

➢ Calculations using second-
order IFC obtained from the 
harmonic approximation 
underestimate klat compared 
to experimental values

➢ SCPH calculation with 4th 
order IFC renormalization 
reproduces the experimental 
value k lat

In the phonon transport of Ag3SnP7 , consideration of the 4th

order anharmonic phonons are important.

Cumulative lattice thermal conductivity klat
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23Lattice specific heat Cv , Group velocity v, Lifetime of phonon τlat

tlat𝜅lat =
1

3
𝐶V𝑣

2𝜏lat

➢ Lattice specific heat Cv, group velocity of phonons v is not significantly 
different between harmonic calculation and SCPH.

➢ The underestimation of lifetime of phonon is occurred tlat caused by the 
lack of consideration of 4th order anharmonic phonon.

For Ag3SnP7 system, the consideration of 4th order anharmonic phonon is 
important!



24Ag3 SnP7 Anharmonic phonons in

Phonon band , Mode-Grüneisen parameter g

➢ In the frequency range below 160 cm-1, g is large negative value, 
indicating anharmonicity of phonon at low frequency region is large.

Black: g < 0
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➢ In the frequency region below 160 cm-1 where g  shows large 
negative values, the PDOS of Ag atoms at the 4f site is the largest.

Phonon modes of Ag atoms at the 4f site contribute most to the 
anharmonicity of Ag3SnP7.



26Large anharmonicity of Ag at 4f site
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➢ At 300 K, the mean square displacement 
of the Ag atoms at the 4f site is large, 
signifying that the phonon scattering 
cross section of Ag at 4f site is the 
largest.

➢ For the Ag at 4f site, the atomic 
displacement dependence of total 
energy U is far from parabolic curve

The origin of the anharmonic phonon mode is the Ag atoms at the 4f 
site.



27Comparison with experimental values for other inorganic materials

➢ Conventional semiconductors, insulators, and thermoelectric materials located in the 
dotted line at constant lifetime of phonons.

➢ The effective lifetime phonon τ of Ag3SnP7 is 0.24 ps and 1/40th of that of 
conventional semiconductors, and is comparable to SnSe and clathrate compounds 
which show large anharmonicity of phonons.

Decrease τ due to the 
increase in phonon scattering 
intensity

Decrease Cv(~Cp) , vm due to large unit 
cell or heavy atoms

log𝜅lat = log𝐶V𝑣𝑚
2 + log

1

3
𝜏

T = 300 K

𝜅lat =
1

3
𝐶V𝑣𝑚

2𝜏

*Theoretical results: Ag3SnP7, AgP2

Other materials were refered the reference 
value of experimental single crystal

Assumption: 
Cv ~ Cp: Heat capacity at constant pressure 



28Summary
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➢ We succeeded in creating Ag-P compounds with extremely low 
lattice thermal conductivity and elucidating the mechanism by 
making full use of experiments and first-principle calculations.

➢ The anharmonicity of the phonons in Ag-P compounds is due to the 
anharmonic phonons of the Ag atom, and the anisotropy of the 
bonds around the Ag atom is important.

➢ Using OpenMX and ALAMODE, we performed self-consistent 
phonon calculations considering fourth-order anharmonic phonons 
and found that fourth-order anharmonic phonons are important in 
the phonon transport of Ag3SnP7.
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