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What is ADPACK?

ADPACK (Atomic Density functional program PACKage) is a software to 

perform density functional calculations for a single atom 

•All electron calculation by the Schrödinger or Dirac equation

• LDA and GGA treatment to exchang-correlation energy

• Finite element method (FEM) for the Schrödinger equation

• Pseudopotential generation by the TM, BHS, MBK schemes

• Pseudopotential generation for unbound states by Hamann's scheme

• Kleinman and Bylander (KB) separable pseudopotential

• Separable pseudopotential with Blöchl multiple projectors

• Partial core correction to exchange-correlation energy

• Logarithmic derivatives of wave functions

• Detection of ghost states in separable pseudopotentials

• Scalar relativistic treatment

• Fully relativistic treatment with spin-orbit coupling 

• Generation of pseudo-atomic orbitals under a confinement potential

The features are listed below:

The pseudopotentials and pseudo-atomic orbitals can be the input data for OpenMX.



http://www.openmx-square.org/

ADPACK is freely available

ADPACK can be available under GNU-GPL.



Programs of ADPACK

65 C rounties and 5 header files (50,000 lines)Programs:

Link:            LAPACK and BLAS

Main routine: adpack.c

All electron calculations: All_Electron.c, Initial_Density.c, Core.c 

Numerical solutions for Schroedinger and Dirac eqs.:Hamming_I.c, Hamming_O.c

Density: Density.c, Density_PCC.c, Density_V.c

Exchange-Correlation: XC_CA.c, XC_EX.c, XC_PW91.c, XC_VWN.c, XC_PBE.c

Mixing: Simple_Mixing.c

Pseudopotentials: MBK.c, BHS.c, TM.c

Pseudo-atomic orbitals: Multiple_PAO.c

The global variables are declared in adpack.h.

Input: readfile.c, Inputtool.c

Output: Output.c



1D-Dirac equation with a spherical potential

1-dimensional radial Dirac equation for the majority component G is given by

Lの満たすべき条件

The mass term is given by 

By expressing the function G by the following form,

One obtain a set of equations: 

Minority component

The charge density is obtained from 



Solving the 1D-Dirac equation

By changing the varial r to x with              ,  and applying a predictor and 

corrector method, we can derive the following equations:  

L
M

For a given E, the L and M 

are solved from the origin and 

distant region, and they are 

matched at a matching point.

In All_Electron.c, the calculation is performed. 



Incident wave

Scattered wave

Phase shift

If the norm of pseudized wave is conserved within r0 and the 

logarithmic derivative coincides with that for the all electron case, 

the phase shift coincides with the all electron case to first order.

sca ( , ) (2 1) sin (cos )l

iqr
ii

l l

l

e
r e l e P

qr

     q r

0

0

0 0

0

0 0

( ) | ( ) ( )

tan ( , )

( ) | ( ) ( )

l r l l

l

l r l l

d
r j kr D j kr

drr
d

r n kr D n kr
dr


 









l

( , ) ln ( )l l

d
D r r r

dr
 

Logarithmic derivative of ψ

0

0

2 2

2 0
0 0

2
( , ) | | ( ) |

( )

r

l r l

l

D r drr r
d r r

 
 


  

ie q r

21

2
q 

Scattering by a spherical potential



Norm-conserving pseudopotential by Troullier and Matins

N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

For         ,  the following form is used.

Putting ul into radial Schroedinger eq. and solving it with respect to V, we have

c0 ～c12 are determined by the following conditions:

• Norm-conserving condition within the cutoff radius

• The second derivatives of V (scr) is zero at r=0   

• Equivalence of the derivatives up to 4th orders of ul at the cutoff radius



Ultrasoft pseudopotential by Vanderbilt
D. Vanderbilt, PRB 41, 7892 (1990). 

The phase shift is reproduced around multiple reference 

energies by the following non-local operator.

If the following generalized norm conserving condition is fulfilled, 

the matrix B is Hermitian. Thus, in the case the operator VNL is also 

Hermitian. 

If Q=0, then B-B*=0



How the non-local operator works?

Operation of the non-local operator to pseudized wave function

Note that

It turns out that the following Schroedinger equation is satisfied. 



The matrix B and the generalized norm conserving condition

The matrix B is given by 

Thus, we have 

By integrating by parts

By performing the similar calculations, we obtain for the all electron wave functions

・・・(1)

・・・(2)

By subtracting (2) from (1), we have the following relation.



Norm-conserving pseudopotential by MBK
I. Morrion, D.M. Bylander, and L. Kleinman, PRB 47, 6728 (1993).

If Qij = 0, the non-local operator can be transformed to a diagonal form.

The form is exactly the 

same as that for the Blochl

expansion, resulting in no 

need for modification of 

OpenMX. 

To satisfy Qij=0, the pseudized wave function is written by 

The coefficients can be determined by matching up to the third derivatives to 

those for the all electron, and Qij=0. Once  c’s are determined, χ is given by 



The form of MBK pseudopotentials

(ps)

loc NL( )V V r V 

The pseudopotential is given by the sum of a local term Vloc and non-local term VNL.

NL | |i i i

i

V    

The local term Vloc is independent of the angular channel l. On the other hand, 

the non-local term VNL is given by projectors

The projector consists of radial and spherical parts, and depends on species, 

radial and l-channels. 



Optimization of pseudopotentials

1. Choice of valence electrons (semi-core included?)

2. Adjustment of cutoff radii by monitoring shape of 

pseudopotentials

3. Adustment of the local potential

4. Generation of PCC charge

(i) Choice of parameters

(ii) Comparison of logarithm derivatives

If the logarithmic derivatives 

for PP agree well with those 

of the all electron potential, 

go to the step (iii), or return 

to the step (i). 

(iii) Validation of quality of PP by performing 

a series of benchmark calculations.
good

No good

No good

good

Good PP

Optimization of PP 

typically takes a half 

week per a week. 



Database (2013)

http://www.openmx-square.org/

Optimized VPS and PAO 

are available, which 

includes relativistic effect 

with spin-orbit coupling.



Close look at “vps” files #1

In the header part, the input file 

for the ADPACK calculations 

are shown, which maybe 

helpful for the next generation 

of pseudopotentials.

Input file



Close look at “vps” files #2

The eigenvalues with 

j=l±1/2 for the all 

electron calculations by 

the Dirac equation are 

included, which can be 

used to estimate the 

splitting by spin-orbit 

coupling

Eigenvalues for all electron calculation



Close look at “vps” files #3

The specification for the 

pseudopotentials is 

made by vps.type, 

number.vps, and 

pseudo.NandL.

Information for pseudopotentials

The project energies λ is shown as follows:



Close look at “vps” files #4

The generated pseudopotentials are output by Pseudo.Potentials

1st column: x

2nd column: r=exp(x) in a.u.

3rd column: radial part of local pseudopotential

4th and later columns: radial part of non-local pseudopotentials. 



Close look at “vps” files #5

Charge density for partial core correction

1st column: x

2nd column: r=exp(x) in a.u.

3rd column: charge density for PCC



Primitive basis functions

1. Solve an atomic Kohn-Sham eq.

under a confinement potential:

2. Construct the norm-conserving

pseudopotentials.

3. Solve ground and excited states for the 

the peudopotential for each L-channel.

s-orbital of oxygen

In most cases, the accuracy and efficiency can be controlled by

Cutoff radius

Number of orbitals PRB 67, 155108 (2003)

PRB 69, 195113 (2004)



Variational optimization of basis functions

One-particle wave functions Contracted orbitals

The variation of E with respect to c with fixed a gives

Regarding c as dependent variables on a and assuming KS

eq. is solved self-consistently with respect to c, we have 

Ozaki, PRB 67, 155108 (2003)

→



Optimization of basis functions

1. Choose typical chemical environments

2. Optimize variationally the radial functions

3. Rotate a set of optimized orbitals within the subspace, and 

discard the redundant funtions

××



Close look at “pao” files #1

Contraction coefficients

The optimized PAO are 

generally obtained by two or 

three calculations for orbital 

optimization. The contraction 

coefficients are attached in the 

header of the pao file.



Close look at “pao” files #2

The input file for the ADPACK 

calculations is attached which 

can be helpful for checking the 

computational condition.

Input file



Close look at “pao” files #3

1

2

3

4

5

6

7

8

e.g., Si7.0.pao
The eigenvalues of pseudized and confined states are shown.

The information can be used to choose basis functions step by step. 

One may find that the 

structural properties can 

be obtained by Si7.0-

s2p2d1.

Also, it is found that the 

cutoff of 7.0 (a.u) 

reaches the convergent 

result from the 

comparison between 

Si7.0-s3p2d2f1 and 

Si8.0-s3p2d2f1. 



Close look at “pao” files #4

Valence density

1st column: x

2nd column: r=exp(x) in a.u.

3rd column: valence density for the chosen states



The generated radial functions are output by 

pseudo.atomic.orbitals.L=0,1,…

1st column: x

2nd column: r=exp(x) in a.u.

3rd and later columns: radial part of basis functions

Close look at “pao” files #4



Δ-factor

The delta factor is defined as difference of total energy between Wien2k 

(FLAPW+LO)  and a code under testing, which is shown as shaded 

region in figure below, where the volume is changed by plus and  minus 

6 % taken from the equilibrium V0 .

Lejaeghere et al., Critical Reviews in Solid State and Materials Sciences 39, 1-24 (2014).  



Comparison of codes in terms of Δ-factor

http://molmod.ugent.be/deltacodesdft



Structures of OpenMX

• Language: C, fortran90

• 265 sub files, about 1000 sub routines

• 21 header files

• About 300,000 lines

• Compilation by makefile

• Eigenvalue solver: ELPA included

• Linking of LAPACK, BLAS, FFTW3

• Hybrid parallelization by MPI,OpenMP

openmx()

DFT()

MD_pac()

OutData()

openmx_common.h

Basic structure

truncation()

Common functions and 

common variables are 

declared in the header file.

Main computational flow

Analysis of geometrical structure, 

memory allocation, analysis of 

communication pattern

SCF, total energy, forces

Molecular dynamics and 

geometry optimization

Output

Input_std() Reading input file



Input_std.c

The input file is analyzed in Input_std() which employs Inputtool.c. After searching 

keywords, the value after the keyword is set for the keyword. The variables for the 

keywords are declared in openmx_common.h.

Inputtool.c allows us to write the input file in arbitrary order for the keywords.



Implementation: Total energy (1)

The total energy is given by the sum of six terms, and a proper integration 

scheme for each term is applied to accurately evaluate the total energy.

Kinetic energy

Coulomb energy with external potential

Hartree energy

Exchange-correlation 

energy

Core-core Coulomb energy

TO and H.Kino, PRB 72, 045121 (2005)



The reorganization of Coulomb energies gives three new energy terms. 

The neutral atom energy

Difference charge Hartree energy 

Screened core-core repulsion energy

Neutral atom potentialDifference charge

Implementation: Total energy (2)

Short range and separable to two-

center integrals

Long range but minor contribution

Short range and two-center 

integrals

s



So, the total energy is given by

}

}

Each term is evaluated by using a different numerical grid 

with consideration on accuracy and efficiency.

Spherical coordinate in 

momentum space

Real space regular mesh

Real space fine mesh

Implementation: Total energy (3)

Set_OLP_Kin.c, Total_Energy.c

Set_ProExpn_VNA.c, Total_Energy.c

Set_Nonlocal.c, Total_Energy.c

The relevant subroutines 

Poisson.c, Total_Energy.c

Set_XC_Grid.c, Total_Energy.c

Total_Energy.c



Atomic 3D atomic partitioning

T.V.T. Duy and T. Ozaki, Comput. Phys. 

Commun. 185, 777-789 (2014).

Requirement: 

• Locality

• Same computational 

cost

• Applicable to any 

systems

• Small computational 

overhead

How one can partition atoms to 

minimize communication and memory 

usage in the parallel calculations ?



Modified recursive bisection

If the number of MPI processes is 19, then the following binary 

tree structure is constructed. 

In the conventional recursive bisection, the bisection is made so that 

a same number can be assigned to each region. However, the 

modified version bisects with weights as shown above.

This is performed in Set_Allocate_Atom2CPU.c



Reordering of atoms by an inertia tensor

This is performed in Set_Allocate_Atom2CPU.c



Recursive atomic partitioning

T.V.T. Duy and T. Ozaki, CPC 185, 777 (2014).

The method guarantees

 Locality of atomic 

partitioning 

 Balanced 

computational cost

 Applicability to any 

systems 

 Small computational 

cost



Diamond 16384 atoms, 19 processes

Allocation of atoms to processess

Multiply connected CNT, 16 processes



Definition of neighboring atoms

Each atom has strictly localized 

basis functions. Thus, the non-

zero overlap between basis 

functions occurs if r12 < (rc1 + rc2).

The analysis is performed in 

Trn_System() of truncation.c, and 

relevant variables for the 

information are 

FNAN[]: # of  neighboring atoms

natn[][]:  global index of the 

neighboring atom

ncn[][]:  cell index of the  

neighboring atom

r12

rc2

rc1



Three indices for atoms

Global index: if there are N atoms in the unit cell, then each atom has a global 

index which is within 1 to N. 

interMediate index: a set of atoms (Np atoms) are assigned to each 

MPI process. Then index within the MPI process each atom has an 

intermediate which is within 1 to Np.

Local index: The second index of natn[][] and ncn[][] runs for a local 

index which is within 1 to FNAN[].



Example: the three indices of atoms

Only the non-zero Hamiltonian matrix elements are stored in H. An example is 

given below to show how the conversion among the three indices is made.

where Mc_AN is the intermediate index, and Gc_AN is the global index, h_AN is 

the local index, respectively. 

M2G,  F_G2M, and S_G2M can be used to convert the indices. 



Cutoff energy for regular mesh

The two energy components Eδee + Exc are calculated on real space 

regular mesh. The mesh fineness is determined by plane-wave cutoff 

energies.

The cutoff energy can be related to the mesh

fineness by the following eqs.



Partitioning of grids

Uniform grid is used to calculate 

matrix elements and solve Poisson’s 

equation. A hundred million grid 

points for a few dozen thousand 

atoms.

A proper one of four data structures 

for grid is used for each calculation.

They are designed to minimize the 

MPI communication.

These data structure are all constructed in Construct_MPI_Data_Structure_Grid() and 

Set_Inf_SndRcv() of truncation.c.



Case study #1

Values of basis functions are calculated on grids in the structure A. 

In Set_Orbitals_Grid.c

Nc runs over grids in 

the structure A. 



Case study #2: 
2D-parallelization of 3D-FFT in Poisson.c

→ →
c

a

b

c

b

a

Compared to 1D-parallelization, no increase 

of  MPI communication up to N. Even at N2, 

just double communication.



Case study #3

Each MPI process calculates a part of the energy terms evaluated 

on the regular mesh using the structure B(ABC) as follows:

In Total_Energy.c

BN runs over grids in 

the structure B(ABC). 



In Set_XC_Grid.c

MN runs over grids 

in the structure D. 

Case study #4

Each MPI process calculates exchange-correlation potential and 

energy density using the structure D as follows:



Summary

The data structure of OpenMX is carefully designed so that the size 

of memory and MPI communication can be minimized. 

The first step to construct the data structure is how atoms are 

allocated to each MPI process by using the modified bisection and 

inertia tensor projection methods. 

The second step to construct the data structure is how four sorts of 

grid structure  are constructed. 

Each of calculations are performed by choosing one of the four grid 

structures, and changing the grid structure requires the MPI 

communication, of which pattern is determined beforehand in 

truncation().


