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onjun
tion with on-site terms of the unrestri
ted Hartree-Fo
k theory, the total energy of a LDA+Umethod [1℄ within the 
ollinear spin treatment 
ould be de�ned byELDA+U = ELDA +EU (1)with EU = 12X� Xi Xp Xl Uipl hTr(N�ipl)�Tr(N�iplN�ipl)i ;= 12X� Xs Us [Tr(N�s )� Tr(N�s N�s )℄ ; (2)where i is a site index, l an angular momemtum quantum number, p a multipli
ity number of radialbasis fun
tions, � a spin index, and s an organized index of (ipl). N is an diagonalized o

upationmatrix. U is the e�e
tive Coulomb ele
tron-ele
tron intera
tion energy. Considering the rotationalinvarian
e of total energy with respe
t to ea
h subshell s, Eq. (2) 
an be transformed as follows:EU = 12X� Xs Us hTr(AsN�s Ays)�Tr(AsN�s AysAsN�s Ays)i ;= 12X� Xs Us [Tr(n�s )� Tr(n�sn�s )℄ ;= 12X� Xs Us 24Xm n�smm � Xm;m0 n�smm0n�sm0m35 : (3)In the Eq. (3), although o�-diagonal o

upation terms in ea
h subshell s are taken into a

ount,however, those between subshells are negle
ted. This treatment is 
onsistent with their rotationalinvariant fun
tional by Dudarev et al. [2℄, and is a simple extension of the rotational invariantfun
tional for the 
ase that a di�erent U-value is given for ea
h basis orbital indexed with s � (ipl).In this simple extension, we 
an not only in
lude multiple d-orbitals as basis set, but also 
an easilyderive the for
e on atoms in a simple form as dis
ussed later on.The ELDA+U 
an be expressed in terms of the Kohn-Sham eigenenergies "�� as follows:ELDA+U = ELDA +EU;= Eband + "Eee +E

 +Ex
 �X�;� h �� jv̂�LDAj �� i#+ "EU �X�;� h �� jv̂�Uj �� i# ;
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= Eband +�ELDA + 12X� Xs Us Xm;m0 n�smm0n�sm0m;= Eband +�ELDA +�EU; (4)where �ELDA and �EU are the double 
outing 
orre
tions of LDA- and U-energies, respe
tively.2 O

upation numberThe o

upation number n may be de�ned byn�smm0 = X� f�h �� jn̂�smm0 j �� i; (5)where, to 
ount the o

upation number n, we de�ne three o

upation number operators given byon-site n̂�smm0 = j ~sm�ih ~sm0�j; (6)full n̂�smm0 = jsm�ihsm0�j; (7)dual n̂�smm0 = 12 �j ~sm�ihsm0�j+ jsm�ih ~sm0�j� ; (8)where j ~sm�i is the dual orbital of a original non-orthogonal basis orbital jsm�i, and is de�ned byj ~sm�i = Xs0m0 S�1sm;s0m0 js0m0�i (9)with the overlap matrix S between non-orthogonal basis orbitals. Then, the following bi-orthogonalrelation is veri�ed: h ~sm�js0m0�i = Æsm�;s0m0�0 : (10)The on-site and full o

upation number operators have been proposed by Es
hrig et al. [3℄ and Pi
kettet al. [4℄, respe
tively. It is noted that these de�nitions do not satisfy a sum rule that the tra
e ofthe o

upation number matrix is equivalent to the total number of ele
trons, while only the dualo

upation number operator ful�lls the sum rule as follows:X� Tr(n�) =X� 12 fTr(S��) + Tr(��S)g = Nele; (11)where �� is the density matrix de�ned by��sm;s0m0 = X� f�h �� j�̂�sm;s0m0 j �� i;= X� f�
�;�sm
�s0m0 (12)with a density operator: �̂�sm;s0m0 = j ~sm�ih ~s0m0�j: (13)2



The notes limit the dis
ussion to non-Blo
h wave fun
tions for simpli
ity, but the extension is straight-forward. For three de�nition of o

upation number operators, on-site, full, and dual, the o

upationnumbers are given byon-site n�smm0 = ��sm;sm0 ; (14)full n�smm0 = Xtn;t0n0 ��tn;t0n0Stn;smSsm0;t0n0 ; (15)dual n�smm0 = 12Xtn nSsm0;tn��tn;sm + ��sm0;tnStn;smo : (16)3 E�e
tive potentialThe derivative of the total energy Eq. (1) with respe
t to LCAO 
oeÆ
ient 
��;tn is given by�ELDA+U�
�;��;tn = �ELDA�
�;��;tn + �EU�
�;��;tn ;= �ELDA�
�;��;tn + Xsmm0 �EU�n�smm0 �n�smm0�
�;��;tn= �ELDA�
�;��;tn + Xsmm0 Us(12Æmm0 � n�smm0)�n�smm0�
�;��;tn= �ELDA�
�;��;tn + Xsmm0 v�U;smm0 �n�smm0�
�;��;tn (17)withon-site �n�smm0�
�;��;tn = ÆstÆmn
��;sm0 (18)full �n�smm0�
�;��;tn =Xt0n0 Stn;smSsm0;t0n0
��;t0n0 (19)dual �n�smm0�
�;��;tn = 12 (ÆstÆmnXt0n0 Ssm0;t0n0
��;t0n0 + 
��;sm0Stn;sm) (20)Substituting Eqs. (18)-(20) for the se
ond term of Eq. (17), we seeon-site Xsmm0 v�U;smm0 �n�smm0�
�;��;tn =Xt0n0htn�j " Xsmm0 j ~sm�iv�U;smm0h ~sm0�j# jt0n0�i
��;t0n0 ; (21)
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full Xsmm0 v�U;smm0 �n�smm0�
�;��;tn =Xt0n0htn�j " Xsmm0 jsm�iv�U;smm0hsm0�j# jt0n0�i
��;t0n0 ; (22)dual Xsmm0 v�U;smm0 �n�smm0�
�;��;tn =Xt0n0htn�j12 Xsmm0 hj ~sm�iv�U;smm0hsm0�j+ jsm�iv�U;smm0h ~sm0�ji jt0n0�i
��;t0n0 ;(23)Therefore, the e�e
tive proje
tor potentials v̂�U 
an be expressed byon-site v̂�U = Xsmm0 j ~sm�iv�U;smm0h ~sm0�j; (24)full v̂�U = Xsmm0 jsm�iv�U;smm0hsm0�j; (25)dual v̂�U = 12 Xsmm0 hj ~sm�iv�U;smm0hsm0�j+ jsm�iv�U;smm0h ~sm0�ji : (26)It is 
lear that the e�e
tive potentials of on-site and full are Hermitian. Also, it is veri�ed that thee�e
tive potential of dual is Hermitian as follows:htn�jv̂�Ujt0n0�i = 12Xm0 v�U;tnm0Stm0;t0n0 + 12Xm Stn;t0mv�U;t0mn0 ; (27)= ht0n0�jv̂�Ujtn�i: (28)It should be noted that in the full and dual the v�U of the site i 
an a�e
t the di�erent sites by theproje
tor potentials by Eqs. (25) and (26) be
ause of the overlap.4 For
e on atomThe derivative of the total energy with respe
t to atomi
 
oordinates �k 
onsists of two 
ontributions:�ELDA+U��k = �ELDA��k + �EU��k : (29)
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The �rst term 
an be evaluated in the same way as in the LDA. The se
ond term is given by�EU��k = X�;smm0 �EU�n�smm0 �n�smm0��k ;= X�;smm0 v�U;smm0 �n�smm0��k= X�;� Xtn;t0n0 (�
�;��;tn��k htn�jv̂�Ujt0n0�i
��;t0n0 + 
�;��;tnhtn�jv̂�Ujt0n0�i�
��;t0n0��k + 
�;��;tn
��;t0n0 �htn�jv̂�Ujt0n0�i��k ) : (30)Considering H
� = "�S
� and 
yS
 = I, the �rst and se
ond terms in Eq. (30) 
an be transformedinto derivatives of the overlap matrix. The third term in Eq. (30) is analyti
ally di�erentiated, sin
eit 
ontains just two-
enter integrals.
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5 Enhan
ement of orbital polarizationThe LDA+U fun
tional 
an possess multiple stationary points due to the degree of freedom in the
on�guration spa
e of o

upation ratio for degenerate orbitals. If ele
trons are o

upied with a nearlysame o

upan
y ratio in degenerate orbitals at the �rst stage of SCF steps, the �nal ele
troni
 stateoften 
onverges a stationary minimum with non-orbital polarization after the SCF iteration. Also, itis often likely that ele
trons are disproportionately o

upied in some of degenerate orbitals due to theex
hange intera
tion, whi
h is so-
alled 'orbital polarization'. As an example of the multiple minima,we 
an point out a 
obalt oxide (CoO) bulk in whi
h d-orbitals of the 
obalt atom are split to t2g andeg states, and the �ve of seven d-ele
trons are o

upied in t2g and eg states of the majority spin, andremaining two d-ele
trons are o

upied in the t2g state of the minority spin. Then, it depends on theinitial o

upan
y ratios for the t2g states of the minority spin how the remaining two d-ele
trons areo

upied in three t2g states. If the initial o

upan
y ratios are uniform, we may arrive at the non-orbitalpolarized state. In fa
t, unless any spe
ial treatment is 
onsidered for the initial o

upan
y ratios, wesee the non-orbital polarized state of the CoO bulk. In order to explore the degree of freedom for theorbital o

upation, therefore, it is needed to develop a general method whi
h expli
itly indu
es theorbital polarization. To indu
e the orbital polarization, a polarized redistribution s
heme is proposedas follows: diagonalize d�s = V yn�sV d�s : as
ending order (31)summation D = 2l+1Xm=1 d�sm (32)redistribution d02l+1 = 1;d02l = 1;:::;d0m = D � (2l + 1�m);d0m�1 = 0; :::: (33)where D =Xm d0m (34)ba
k trasform n0�s = V d0�mV y (35)After diagonalizing ea
h subshell matrix 
onsisting of o

upation numbers, we introdu
e a polarizedredistribution s
heme given by Eq. (33) while keeping Eq. (34). Then, by a ba
k transformationEq. (35), we 
an obtain a polarized o

upation matrix for ea
h subshell. This polarized redistributions
heme is applied during the �rst few SCF steps, and then no modi�
ation is made during subsequentSCF steps. This proposed s
heme maybe appli
able to a general 
ase: any 
rystal �eld, any numberof ele
trons in the subshell, and any orbitals: p,d,f,...6 Orbital optimization within LDA+UIn the orbital optimization within LDA+U, let us assume that the e�e
tive U-potential in the LDA+Umethod is applied to the primitive basis orbital � instead of the optimized basis orbital �, whi
h ismore natural in a physi
al sense than the opposite assumption.
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A Kohn-Sham (KS) orbital  � in the orbital optimization method is expressed by a linear 
ombi-nation of primitive orbitals �: j �� i = Xi� 
��;i�j�i�i;= Xi� 
��;i�(Xq ai�qj�i�i) ;= Xi� Xq 
��;i�ai�qj�i�i;= Xi� (Xp 
��;i�ai�q) j�i�i;= Xi� b��;i�j�i�i; (36)where � � (plm), � � (qlm), 
 and b are LCAO 
oeÆ
ients for 
ontra
ted and primitive orbitals,respe
tively, and a 
ontra
tion 
oeÆ
ients. For simpli
ity we 
onsider an non-Blo
h expression ofthe one-parti
le wave fun
tions, but the extention of the below des
ription to Blo
h wave fun
tionsis straightforward. Assuming that the o

upation number operators de�ned by Eqs. (6)-(8) are 
on-stru
ted by the primitive orbitals, we have the o

upation numbers for the on-site, full, and dual givenbyon-site n�smm0 = %�sm;sm0 ; (37)full n�smm0 = Xtn;t0n0 %�tn;t0n0Stn;smSsm0;t0n0 ; (38)dual n�smm0 = 12Xtn nSsm0;tn%�tn;sm + %�sm0;tnStn;smo ; (39)where %� is the primitive density matrix de�ned by%�sm;s0m0 = X� f�h �� j%̂�sm;s0m0 j �� i;= X� f�b�;�smb�s0m0 (40)with a primitive density operator: %̂�sm;s0m0 = j~�sm�ih~�s0m0�j: (41)Moreover, by de�ning a 
ontra
ted density operator:�̂�sm;s0m0 = j~�sm�ih~�s0m0�j; (42)we have the 
ontra
ted density matrix �� given by��sm;s0m0 = X� f�h �� j�̂�sm;s0m0 j �� i;= X� f�
�;�sm
�s0m0 : (43)
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Then, the primitive density matrix % is written by the 
ontra
ted density matrix � as follows:%�iqlm;i0q0l0m0 = Xp;p0 aiplmqai0p0l0m0q0��iplm;i0p0l0m0 : (44)Considering the variation of the total energy Eq. (1) with respe
t to b, we �nd the e�e
tive potentialsof the LDA+U method with respe
t to the primitive basis orbital. They are given by the sameexpression as Eqs. (24)-(26), while the o

upation number is given by Eqs. (37)-(39). After theHamiltonian matrix with respe
t to the primitive basis orbital � is 
onstru
ted, it is transformed tothat of the optimized basis orbital � as follows:h�iplmjĤj�i0p0l0m0i = Xq;q0 aiplmqai0p0l0m0q0h�iqlmjĤ j�i0q0l0m0i: (45)The Hamiltonian matrix with respe
t to the 
ontra
ted basis orbital is diagonalized. The pro
edureis summarized as follows:1. diagonalize the 
ontra
ted Hamiltonian h�iplmjĤj�i0p0l0m0i2. 
al
ulate the 
ontra
ted density matrix by Eq. (43)3. 
al
ulate the primitive density matrix by Eq. (44)4. 
al
ulate the o

upation number by Eq. (37), (38), or (39)5. 
onstru
t the Hamitonian by Eq. (24), (25), or (26)6. 
ontra
t the Hamitonian by Eq. (45)7. return 1Although the optimization pro
edure of the 
ontra
ted 
oeÆ
ients a is not dis
ussed here, it 
an beeasily veri�ed that the same pro
edure as in the LDA method is derived. Thus, the orbital optimization
an be performed within the LDA+U method as well as the LDA method.Referen
es[1℄ M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 73, 045110 (2006).[2℄ S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505(1998).[3℄ H. Es
hrig, K. Koepernik, and I. Chaplygin, J. Solid State Chem. 176, 482 (2003).[4℄ W. E. Pi
kett, SC. Erwin, E. C. Ethridge, Phy. Rev. B 58, 1201 (1998).
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