1

Eigenchannels and current density: Ver. 1.0

Mitsuaki Kawamura, ISSP
February 10, 2016

Definitions

x(r) : orthogonal basis
X'(r) : non-orthogonal basis

H : The Hamiltonian in orthogonal basis representation (N-dimension)

H,yp = // drd> e’ (r)H (r, 7")Xo (7)),
where H(r,r’) is the Hamiltonian in the real space representation.
|on) : The Kohn-Sham orbital in orthogonal basis representation
g, © The Kohn-Sham energy. The Kohn-Sham equation becomes

Hlpn) = enlgn)
in the orthogonal basis representation.

A

H'’ : The Hamiltonian in non-orthogonal basis representation (N-dimension)
H). . = // drd> ' (r)H (r, 7)) X (1),

|on)’ : The Kohn-Sham orbital in non-orthogonal basis representation

~

S’ . The overlap matrix
St = [@),
The Kohn-Sham equation becomes
Hl|90n>/ = 5n§,|@ﬂ>/
in the non-orthogonal basis representation.
S, @ The eigenvalue of the overlap matrix.

|sn)’ : The eigenvector of the overlap matrix.

S/|Sn>/ = 3n|3ny

A

e G¢(w) : Green functions of the central (device) region in orthogonal basis representation

~ A

e I'L(w),'g(w) : Linewidths calculated as follows:

A A A

Ip(w) =i |SL(w) — 2 (w)], Tr(w) =i |Sr(w) = Shw)|, (7)

where 31, (w), Sr(w) are the self energy coming from leads.

2 Lowdin orthogonalization

In this section, the Lowdin orthogonalization method is explained; this method is used in the
calculations of the Kohn-Sham energy/orbital, the Green’s function, the transmission matrix,
the eigenchannel, etc. in the non-orthogonal basis representation.

2.1 Kohn-Sham equation

In this section, we obtain the Kohn-Sham equation in the orthogonal basis representation [Eq.
(2)] from that equation in the non-orthogonal representation [Eq. (5)].
We decompose the overlap matrix S’ as

S = §Rgn (8)
where $/2 is a N’ x N matrix (N < N’) as
S = (Vailsi)', -+ Vswlsw)') - (9)
The Kohn-Sham equation in the non-orthogonal basis representation [Eq. (5)] becomes
SR = 5V (10
where
S = (1/Vsils)', oo 1/ VEwsw)') - (11)

Comparing Eq. (10) and the Kohn-Sham equation in the orthogonal basis representation
[Eq. (2)], we obtain

ﬁ = S,_1/2_H,S/_1/2T7 (12)
|on) = 5% 0,)". (13)

We can calculate Kohn-Sham orbitals in the non-orthogonal basis representation from those
in the orthogonal basis representation as follows:

lpn) = 5"). (14)

2.2 Non-orthogonal basis and orthogonal basis

From (14), we can see the orthogonal basis y,(r) becomes
an S . (15)

If we have a enough number of orthogonal basis, the transformation from a matrix in the
real space representation to that in the orthogonal basis representation

[X],m/ = // dErd® e’ (1) X (r, 7)) X (77) (16)

is considered as a unitary transformation. In this case we can perform the inversion of this
matrix in the orthogonal basis space. Therefore the inversion of this matrix in the orthogonal
basis space is identical to the orthogonal basis representation of the inversion of this matrix in
the real space:

,m //d3 G ()X ()] o (). (17)

On the other hand, in general, inversion of this matrix in the orthogonal basis space is
different from the non-orthogonal basis representation of the inversion of this matrix in the real
space:

x4 / / Erd ' ()X (r)] (). (18)

2.3 Green’s function and self energy

The Green’s function of the Kohn-Sham equation in the non-orthogonal basis space [Eq. (5)]
is as follows

Gi(e) = (eS8 — H)) (19)

According to the discussion in the previous section, this Green’s function is different from
the non-orthogonal basis representation of the Green function of the real-space Kohn-Sham
equation, i.e.

G’ A / / Brdr'y (1) G,)X (7). (20)

We can obtain the Green’s function of the orthogonal basis-space Kohn-Sham equation [Eq.
(2)] from above Gy(e) as follows:

~

Goe) = (e —H)™!
_ [8 i S/fl/QlﬁI/Sv/fl/ZT]fl
_ g/1/2T [83/1/25“«/1/21 -]—A{/]flsﬂ/l/Z
= SN2 GL (2) 8/ (21)
We can obtain the self energy for the orthogonal basis-space Green’s function from the self

energy for G (e)

A

2(e) =Gt e) = G, (22)

by using the transformation identical to that for the Hamiltonian [Eq. (12)].

The device Green’s function and linewidths in the orthogonal basis space (éc, fL(R)) can
be obtained by using those calculated from the Hamiltonian in the non-orthogonal basis space
(GY,, IA“’L(R)) as follows:

éc(g) _ Sv/l/QTé/ ()S«/l/Q (23)
f‘L(R (5) Sl 1/21—\/ ()SI 1/21‘ (24)

These transformations can be established by using cancellation of intermediate S/2 and 5'~1/2.

2.4 Transmission matrix

In this section, we obtain the orthogonal basis representation of the transmission matrix
(e = [[drarog (T
// dErd®r'\: (r)/// Prid®rod®rsGe(r, r)TL(r1, 79) G (13, m2) Tr (73,) X (1)
= [GTLGET R = [ALTR)uw (25)

(where Ay = G’CfLGE) by using the device Green’s function G, and linewidths fi(R) obtained
from the Hamiltonian in the non-orthogonal basis space. It is performed as follows:

AL _ 5111/2TG«ICS«/l/2$«/—1/2fw£S«/—1/2Tg11/2fég§/1/2 _ Sll/2Té,(JfLGAgSN1/27 (26)
[g = 5"~V 8 Y2, (27)

3 Eigenchannels

In this section, we explain the energy normalized eigenchannel proposed in Ref. [1]. The
eigenchannel in the orthogonal basis representation |t,) and the corresponding eigenvalue ¢,
are calculated as follows:

Tltn> - tnltn>
ALTR[tn) = taltn)
A2 APTTR) = taltn)
Ai/2A1/2TF A1/2 _1/2|tn> tAi/2A£1/2|tn>
A1/2TF AI/QA 1/2|tn> 14151/2“”>
AV AT 1) = talfn), (28)

where A2 is obtained as follows:

Aplayn) = ap|an)
A = (Varlar), -+, Vanlan)). (29)

We defined |t,) = A£1/2|tn>.

The eigenchannel in the non-orthogonal basis representation |¢,)" is obtained in the same
way to the Kohn-Sham orbital [Eq. (14)];

[t} = 872 t) = S). (30)
The eigenchannel in the real space representation 7T),(r) is calculated as follows:
Ta(r) = O4(r), - X (1)} [) (31)

Because T is not an Hermite matrix, eigenchannels {|¢,,)} are not orthogonal in each other,
ie. even if n # n/,

(tltn) = (Eor | AL AL E0) # 0. (32)
On the othe hand, |f,) are orthogonal in each other,

<£n’|£n> = 5nn’a (33)

AL/2tR 4172 . . :
because AL/ TFRAL/ is an Hermite matrix.

4 Current density

In this section, we explain a method to calculate the current density together with the non-
local potential which appears in the Hybrid DF'T calculation, non-local pseudopotentials, etc.
This method is proposed in Ref. [2]. In this case, we have to consider both the local- and the
non-local contributions to the current density as follows [Eqn. (9) in Ref. [2]]:

J(T‘) = JLoc(T) + JNL(T) (34)

4.1 Local term
The first term in Eq. (34) is the local term; this term is calculated as follows [Eqgs. (12) and
(22) in Ref. [2]]:
JLoc /_JLOC T, E (35)
Jroc(r; E) = i[(Vr = Vi) Dr(r,r', E)lp—{ f(E — p) = f(E = pr)}, (36)
where f(E) = 1/{exp(E/T.) + 1} (T is the electronic temperature), and

Dr(r,r", Z) = // dErid*roGeo(r,r, Z)Tr(r1, 9, Z)Go(re, v, Z7), (37)

where Z = F +in, and 7 is a positive infinitesimal.
In the orthogonal basis representation, [(V, — V,.)Dg(r, 7', E)], =, becomes as follows:

(Ve = Vo) Dr(r, 7, B)lyy = Y [(Vy = Vo) ZDW) -

k

_ [Z 0T S DGk D) =)k T

r'=r

= Z Z Dj {2“% (1) X Voxalr) — xa(r) Vo (r), (38)

where
D} = // Erd®r'e™*x* (r)Dr(r, v, B)e™ (1) (39)
Finally, we can obtain the following non-orthogonal representation by using Eq. (15).
=2 D SIS 2k (S X ()L (1) 8 ()
ko ij

+[s7Y 2x’()] VSTV)] = D) STV IS A ()
= Z Z D{2ikx; (r)xi(r) + X5 (N Vaxi(r) = xi(r) Vex ()}, (40)

where D'* = G’kF’ G/kT

4.2 Non-local term

The second term in Eq. (34) is the non-local term; this term is calculated as follows [Egs. (10)
and (11) in Ref. [2]]:

Jni(r) = =V (r), (41)
V2 (r) = —pa(r), (42)

where the source of non-local current (p,(r)) is calculated as follows [Eqn. (23) in Ref. [2]]:

plr) = [Sl B (13)
pulr, B) =i / TV (r,) D Pf(E —) — FUE —pr)] (44)

V(r,r)D(r',r) = Z 2:[V'“D’“]z:jxi(T)X}f (r)

_ ZZ S VDS () S IS e ()

— Z Z SI’C 1V/kD/k ini(T)Xj (7“), (45)
ko ij
where
= [[@G Vi), (46)
and

V= [[@ s v e e),)

4.3 Boundary conditions of the Poisson equation
The Poisson equation (42) is solved under the following boundary conditions:

e For directions perpendicular to the conducting direction, a two dimensional periodic
boundary condition is applied.

e For the conducting direction, we apply the Neumann’s boundary condition,

V()] = =Ny (1) at the left boundary, and (48)
Veonu(r)]) = —Jnirs) (1) at the right boundary. (49)

Although there is a study in which Jyp, () and JyxLrp(r) are assumed to be 0[3], we employ
the following method [2] to calculate Jnp bound(7) because this method forces the total current
to be identical in the boundary.

From the Eq. (34), we obtain

JNL’LBH(T) = JLBH(T) — JLOCM(T) at the left boundary, and (50)
Iners||(1) = e (1) — Jroc, () at the right boundary, (51)

where we obtain Jyg)|(r) and Jgg|(r) with the help of the Landauer-Biittiker formula as follows
[Eqn. (25) in Ref. [2]]:

Left boundary
hnlanv) = [52 = un) ~ F(B =)} [doTu(en,zz) (52)
TL(r) = Z[GCkFRkGTCkFLk](T, T)
k
= Z Z Xi(r)[GCkFRkGTCkFLk]in;(r)
= Z 2 S PSE Gal GG LS ulS X ()

= Z ZXZ ol Rk G LSt iy (r) (53)

Right Boundary

JrB(Tp, T:) = /Z—f{f(E — pr) — [(E — ML)}/dxaTR(Im%’xc) (54)
Ta(r) = [GorlGhTrel(r,7)
k

= Z Z X;(r)] /(]krikG/CTkF/RkSI/c_l]in;’*(r> (55)
k i

4.4 Spin-current density

We can calculate the spin/charge current density together with a collinear magnetism. In this
case, first we calculate separately contributions to J in Eq. (34) from each spin (1 and)

JU(T) = JLOC(,(T) + JNLU(T). (56)
we calculate the spin/charge current density by using these spin dependent currents as follows

Jo(r) = Jy(r) + I (r) Charge current density, (57)
Js(r) = Jy(r) — Iy () Spin current density (58)

4.5 k-inversion symmetry

In these calculations, we can use the following k-inversion symmetries:

H_,=H; = H' (59)
S, =8 =5 (60)
Gw(2)=(Z—H) " ={(Z" = Hy) '} = Gi(2") = Gi(2) (61)
fR—k(Z) = fﬁk(z) = fgk(z) (62)

4.6 Non-collinear spin-current density

When we consider the non-collinear magnetization, we calculate the diagonal and the off-
diagonal part Jyq, J, Jy; as follows:

Jo'cr’ (7”) = ']Loca'o'/ (T) + JNLO'U’ (T> (63)
JLOCO’U’(T) = Z Z / Cé_f[f(E - ML) - f(E - ILLR)]ZDZ’;']U
x {2ikxG (r)xi(r) + X5 (1) Vexi(r) = xi(r) Vexg' (r)}

JINLoo’ (T) - _VQONLUG’(T)
VQSONLM' (1) = —pNLoot (7) (
pNLoa’(r) = /Z_fz Z Z/d3r/[f(E - ,UR) - f(E - ML)]
X Voo (1,7") Do (v, 1) = Vi (r,7) D (7, 7))

ooy o010

:/—i [f(E —ur) — f(E — pL)]
k

—~
(@)
g

S~—

—~
D O
S Ot
=

y {Z[S’é1V’kl5’k]iajafxé(7“)x§-*(SIS >x;<r>}

ij ij

=Y [f(E = pr) = F(E = p)Xi(r)x (r)

ij

dE. AI—1Y 71k 7V /— / /
x / i 2 SV D s — (S VD, | (67)
k

The Poisson equation for @i,/ (7) is written as follows:

VnLoo (T) - €8 = INLL/RB 0o (T) (68)
dE
JLB,O’O”('T(NxC) = / _{f(E - MR) - f(E - ML)}/dmaTLUU'<xmxb’ l’c) (69)
Tioor(r) =) _[Gorl meGlylirloo (r,7) Z le ol R G LSk iaor X (7)
k
(70)
dE
JRB,O’O”('IIH'Z'C) = / _{f(E - H’R) - f(E - /LL)}/dIaTRUU/(iL’a,DS'b, ZL‘C) (71)
TR0 (1) = Z Z Xi(r G, krl kGCkF/ kS/ I]IUJU’X;‘*<T) (72)

4.7 Implementation

These calculations are performed as that represented in Fig. 1.
We explain functions in the call graph (Fig. 2) as follows:

4.7.1 Functions in TRAN Main Analysis.c

e void MTRAN Set MP(int job, int atomnum, int WhatSpecies[atomnum+1],
int Spe Total CNO[atomnum+1], int NUM, output, int MP[atomnum+1]);

Set the first index of each atoms in the basis space.

4.7.2 Functions in TRAN_Channel Functions.c

e void TRAN Calc Diagonalize(int n, dcomplex evec[n*n], double eval[n],
int 1lscale)

Diagonalize matrix evec and replace it with its eigenvectors. If 1scale=1, eigenvectors
are scaled by a fuctor sqrt(eval[i]).

e int TRAN Calc OrtSpace(int NUM_c, dcomplex SCC[NUM_c * NUM_c],
dcomplex rtS[NUM c * NUM c], dcomplex rtSinv[NUM c * NUM c])

Compute 57/2(rtS) and S~'/2(rtSinv) from S(SCC). This function returns the number
of the orthogonal basis; it becomes smaller that the number of the non-orthogonal ba-
sis(NUM_c).

e void TRAN Calc Linewidth(int NUM_c, dcomplex SigmaL R[NUM c * NUM_c], dcomplex
SigmaR R[NUM_c * NUM c])

Compute I' = i[>~ — 2.

e void TRAN Calc MatTrans(int NUM_c, dcomplex Sigmal R[NUM_c * NUM_c], dcomplex
GC_R[NUM_c * NUM_c], char* transl, char* trans2)

Compute écfég

e void TRAN Calc LowdinOrt(int NUM_c, dcomplex Sigmal R[NUM_c * NUM_c], dcomplex
SigmaR R[NUM_c * NUM._c],
int NUM cs, dcomplex rtS[NUM c * NUM c], dcomplex rtSinv[NUM c * NUM c],
dcomplex ALbar[NUM_cs * NUM_cs], dcomplex GamRbar [NUM_cs * NUM_cs])

Perform the Lowdin orthogonalization of flL and f‘R.

e void TRAN_Calc_ChannelLCAQO(int NUM_c, int NUM_cs,
dcomplex rtSinv[NUM_c * NUM.c], dcomplex ALbar[NUM.cs * NUM cs],
dcomplex GamRbar [NUM cs * NUM cs], double eval[NUM cs],
dcomplex GC_R[NUM_c * NUM_c], int TRAN_Channel Num,
dcomplex EChannel [TRAN Channel Num] [NUM_c],
double eigentrans[TRAN_Channel Num])

Transform Eigenchannel in the orthogonalized basis space into that in the non-orthogonalized
basis space.

Read input
parameter

@ead fISCF etc. /
!

Allocation,
Set k grid

Compre§sd Hgcp
— full Hscr ete.

|

Compute transmissions,
in each k

|

Compute each k
compontents for
the total current and
a part of current density

Compute
JLoc(r) from Dy

Output
transmission,
total current,
conductance

Compute T'(r)
from CA}’CIC‘LCAr'Ile“RS'*1

~. 7

| Boundary Current |

Compressd I:ISCF
— full Hgor ete.

|Compute 3',1/2, SA',C_I/QTl

| Compute Gy, @RR|

Compute fJL, fJR

Compute Gc

|L6Wdin ort. of Ap, le

Compute Ai/QT

ALf‘R — Ai/szRAi/Q

Compute eigenchannels

Compute pxLoe(r)
from S~V Dg

| Solve Poisson’s eq.

Sum local and
non-local part

N

Print J(r) in
volume(cube) and
vector(xsf) format

Figure 1: Flow Chart

10

in LCAO

!

/ Output eigenchannels /

as the cube format

Transform eigenchannels
into real space

put
eigenchannels
in LCAO

End

TRAN Input St

__TRAN.DFT or TRAN_DFT_NC |

TRAN Output Trans_HS |

[TRAN_Main_Analysis or TRAN Main_Analysis_NC|

MTRAN Input Sys

MTRAN Read Tran HS|

MTRAN Input

MTRAN Set MP

TRAN Calc OneTransmission

TRAN Calc SurfGreen direct

MTRAN_Allocate HS|

TRAN Calc SelfEnergy
MTRAN_Set_SurfOver lap
MTRAN Set CentOverlap TRAN Calc CentGreen
— L
MTRAN Transmission / TR

MTRAN Current TRAN Calc CurrentDensity or TRANfCalchurrentDensitnyC|

MTRAN70utput7Transmission| TRAN MatProds5

TRAN MatProds3

MTRAN_Output_Current]|

MTRAN Output_Conductance] [TRAN Store Matrix| [TRAN_Store Matrix_NC
- TRAN_Store Matrix NC_vec
TRAN_CDen_Main TRAN Calc Orb2Real] [TRAN_Store. NC vec]

_ > TRAN_Current_dOrb]|

TRAN IntegratelD|

TRANiCurrentiBoundaryl

TRAN Poisson Current

TRAN Current AddNLoc |

TRAN Current_Spin|

TRAN_Current_OutPutCube|

TRAN_Current_OutputVector |

> TRAN Voronoi CDEN|
TRAN Qutput_AveCdensi ty|
[MTRAN_EigenChannel or MTRAN_EigenChannel NC}

TRAN_Calc_OrtSpace |

TRAN Calc_Linewidth|

TRAN Calc MatTrans|

TRAN70utput7eigentransisum| TRAN Calc LowdinOrt

TRAN Calc Diagonalize|

[TRAN Output_Channe LCube] TRAN_Calc_ChannelLCAO|

TRAN Output ChanneLLCAO|

MTRAN Free ALL

Figure 2: Call graph

11

4.7.3 Functions in TRAN Channel Qutput.c

static void Print_CubeTitle _EigenChannel(FILE *fp,
double TRAN_Channel kpoint[2], double TRAN Channel energy, double eigentrans,
int ispin)

static void Print_CubeTitle EigenChannel Bin(FILE x*fp,

double TRAN_Channel kpoint[2], double TRAN Channel energy, double eigentrans,
int ispin)

Output the comment, atomic positions, the number of grid, and the grid offset to a . cube
or a .cube.bin file.

void TRAN_Output_ChannelLCAO(int myidO, int kloop, int iw, int ispin,
int NUM_c, double TRAN Channel kpoint[2], double TRAN_Channel energy,
double eval[NUM_c], dcomplex GC_R[NUM_c * NUM_c],

double eigentrans_sum[TRAN Channel Nenergy] [SpinP_switch+1])

Output eigenchannels as a LCAO coefficient.

TRAN Qutput_ChannelCube(int kloop, int iw, int ispin, int orbit,
int NUM_c, double *TRAN Channel kpoint, dcomplex EChannel [NUM_c],
int MP[atomnum], double eigentrans, double TRAN Channel energy)

Output eigenchannels as a real-space .cube format.

void TRAN Output_eigentrans_sum(int TRAN_Channel Nkpoint,
int TRAN_Channel_Nenergy,
double eigentrans_sum[TRAN Channel Nkpoint] [TRAN Channel Nenergy])

Output the sum of transmission eigenvalues in each k and energy.

4.7.4 Functions in TRAN Calc_CurrentDensity.c

void TRAN Calc_Sinv(int NUM_c, dcomplex SCC[NUM_c * NUM_c],
dcomplex Sinv[NUM_c * NUM_c])

Compute S,

void TRAN_Calc_CurrentDensity(int NUM_c, dcomplex GC[NUM_c * NUM_c],
dcomplex GammaL [NUM_c * NUM_c], dcomplex GammaR[NUM_c * NUM_c],

dcomplex VCC[NUM c * NUM c], dcomplex Sinv[NUM c * NUM c], double kvec[2],
double fL, double fR, double Tran_current_energy_step,

double JLocSym[2] [NUM_c] [NUM_c], double JLocAsym[NUM_c] [NUM_c],

double RhoNL[NUM_c] [NUM_c], double Jmat[2])

void TRAN_Calc_CurrentDensity NC(int NUM_c, dcomplex GC[NUM_c * NUM_c],
dcomplex GammaL [NUM_c * NUM_c], dcomplex GammaR[NUM_c * NUM_c],

dcomplex VCC[NUM_c * NUM_c], dcomplex Sinv[NUM_c * NUM_c], double kvec[2],
double fL, double fR, double Tran_current_energy_step,

double JLocSym[4] [2] [NUM_c * NUM_c], double JLocAsym4[4] [NUM_c * NUM c],
double RhoNL[4] [NUM_c * NUM_c], double Jmat[4] [2] [NUM_c * NUM_c])

Compute the contribution from each k, energy component to the currentdensity.

12

4.7.5 Functions in TRAN_Cden Main.c

e static double TRAN_Calc_Orb2Real(int NUM_c, int MP[atomnum],
double JOrb[NUM c] [NUM c], double JReal [TNumGrid], dcomplex SCC[NUM c * NUM_ c])

Compute 3, Aiixi(r)x; (r)-

e static void TRAN Current dOrb(int NUM_c, int *MP, double JSym[2] [NUM c] [NUM c],
double JASym[NUM_c] [NUM_c], double JReal[3] [TNumGrid])

Compute). Ayx; (1) Vxi(r).

e static void TRAN_ IntegratelD(double Jmat[2] [TNumGrid],
dcomplex Jbound[2] [Ngrid2xNgrid3], double Current [TNumGrid])

Compute partial trace for T for the boundary current.

e static void TRAN Current Boundary(dcomplex JBound[2] [Ngrid2*Ngrid3])

Perform the Fourier transform of the boundary current.

e static void FFT2D_CurrentDensity(double ReRhok[My Max NumGridB],
double ImRhok[My Max NumGridB])

Perform 2D-FFT of pnpoc(r) into the reciplocal space.

e static void TRAN_Poisson_Current(double Rho[TNumGrid],
dcomplex Jbound[2] [Ngrid2*Ngrid3])

Solve the Poisson equation for ¢niee(r).

e static void TRAN_Current_AddNLoc(double Rho[TNumGrid],
double Current [3] [TNumGrid])

Sum the local- and non-local part of the currentdensity.

e static void TRAN Current Spin(double CDensity[SpinP_switch + 1] [3] [TNumGrid])

Compute the charge- and the spin currentdensities from the each spin components of the
currentdensity.

e static void TRAN Voronoi CDEN(double CDensity[SpinP_switch + 1] [3] [TNumGrid],
int TRAN_0ffDiagonalCurrent)

Perform the Voronoianalysis of the currentdensity and output it.

References

[1] M. Paulsson and M. Brandbyge, Phys. Rev. B 76, 115117 (2007).
[2] C. Li, L. Wan, Y. Wei, and J. Wang, Nanotechnology 19, 155401 (2008).

[3] L. Zhang, B. Wang, and J. Wang, Phys. Rev. B 84, 115412 (2011).

13

