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1 Definitions

• χ(r) : orthogonal basis

• χ′(r) : non-orthogonal basis

• Ĥ : The Hamiltonian in orthogonal basis representation (N -dimension)

Hnn′ =

∫∫
d3rd3r′χ∗n(r)H(r, r′)χn′(r′), (1)

where H(r, r′) is the Hamiltonian in the real space representation.

• |ϕn〉 : The Kohn-Sham orbital in orthogonal basis representation

• εn : The Kohn-Sham energy. The Kohn-Sham equation becomes

Ĥ|ϕn〉 = εn|ϕn〉 (2)

in the orthogonal basis representation.

• Ĥ ′ : The Hamiltonian in non-orthogonal basis representation (N -dimension)

H ′nn′ =

∫∫
d3rd3r′χ′∗n (r)H(r, r′)χ′n′(r

′). (3)

• |ϕn〉′ : The Kohn-Sham orbital in non-orthogonal basis representation

• Ŝ ′ : The overlap matrix

S ′nn′ =

∫
d3rχ′∗n (r)χ′n′(r). (4)

The Kohn-Sham equation becomes

Ĥ ′|ϕn〉′ = εnŜ
′|ϕn〉′ (5)

in the non-orthogonal basis representation.

• sn : The eigenvalue of the overlap matrix.

• |sn〉′ : The eigenvector of the overlap matrix.

Ŝ ′|sn〉′ = sn|sn〉′ (6)
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• ĜC(ω) : Green functions of the central (device) region in orthogonal basis representation

• Γ̂L(ω), Γ̂R(ω) : Linewidths calculated as follows:

Γ̂L(ω) ≡ i
[
Σ̂L(ω)− Σ̂†L(ω)

]
, Γ̂R(ω) ≡ i

[
Σ̂R(ω)− Σ̂†R(ω)

]
, (7)

where Σ̂L(ω), Σ̂R(ω) are the self energy coming from leads.

2 Löwdin orthogonalization

In this section, the Löwdin orthogonalization method is explained; this method is used in the
calculations of the Kohn-Sham energy/orbital, the Green’s function, the transmission matrix,
the eigenchannel, etc. in the non-orthogonal basis representation.

2.1 Kohn-Sham equation

In this section, we obtain the Kohn-Sham equation in the orthogonal basis representation [Eq.
(2)] from that equation in the non-orthogonal representation [Eq. (5)].

We decompose the overlap matrix Ŝ ′ as

Ŝ ′ = Ŝ ′1/2Ŝ ′1/2†, (8)

where Ŝ ′1/2 is a N ′ ×N matrix (N ≤ N ′) as

Ŝ ′1/2 ≡ (
√
s1|s1〉′, · · · ,√sN |sN〉′) . (9)

The Kohn-Sham equation in the non-orthogonal basis representation [Eq. (5)] becomes

Ŝ ′−1/2Ĥ ′Ŝ ′−1/2†Ŝ ′1/2†|ϕn〉′ = εnŜ
′1/2†|ϕn〉′, (10)

where

Ŝ ′−1/2† ≡ (1/
√
s1|s1〉′, · · · , 1/√sN |sN〉′) . (11)

Comparing Eq. (10) and the Kohn-Sham equation in the orthogonal basis representation
[Eq. (2)], we obtain

Ĥ ≡ Ŝ ′−1/2Ĥ ′Ŝ ′−1/2†, (12)

|ϕn〉 ≡ Ŝ ′1/2†|ϕn〉′. (13)

We can calculate Kohn-Sham orbitals in the non-orthogonal basis representation from those
in the orthogonal basis representation as follows:

|ϕn〉′ = Ŝ ′−1/2†|ϕn〉. (14)
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2.2 Non-orthogonal basis and orthogonal basis

From (14), we can see the orthogonal basis χn(r) becomes

χn(r) =
∑

n′
χ′n′(r)[Ŝ

′−1/2†]n′n. (15)

If we have a enough number of orthogonal basis, the transformation from a matrix in the
real space representation to that in the orthogonal basis representation

[X̂]nn′ ≡
∫∫

d3rd3r′χ∗n(r)X(r, r′)χn′(r′) (16)

is considered as a unitary transformation. In this case we can perform the inversion of this
matrix in the orthogonal basis space. Therefore the inversion of this matrix in the orthogonal
basis space is identical to the orthogonal basis representation of the inversion of this matrix in
the real space:

[
X̂−1

]
nn′

=

∫∫
d3rd3r′χ∗n(r)[X(r, r′)]−1χn′(r

′). (17)

On the other hand, in general, inversion of this matrix in the orthogonal basis space is
different from the non-orthogonal basis representation of the inversion of this matrix in the real
space:

[
X̂ ′−1

]
nn′
6=
∫∫

d3rd3r′χ′∗n (r)[X(r, r′)]−1χ′n′(r
′). (18)

2.3 Green’s function and self energy

The Green’s function of the Kohn-Sham equation in the non-orthogonal basis space [Eq. (5)]
is as follows

Ĝ′0(ε) = (εŜ ′ − Ĥ ′)−1 (19)

According to the discussion in the previous section, this Green’s function is different from
the non-orthogonal basis representation of the Green function of the real-space Kohn-Sham
equation, i.e.

[
Ĝ′
]
nn′
6=
∫∫

d3rd3r′χ′∗n (r)G(r, r′)χ′n′(r
′). (20)

We can obtain the Green’s function of the orthogonal basis-space Kohn-Sham equation [Eq.
(2)] from above Ĝ′0(ε) as follows:

Ĝ0(ε) = (ε− Ĥ)−1

= [ε− Ŝ ′−1/2Ĥ ′Ŝ ′−1/2†]−1

= Ŝ ′1/2†[εŜ ′1/2Ŝ ′1/2† − Ĥ ′]−1Ŝ ′1/2

= Ŝ ′1/2†Ĝ′0(ε)Ŝ ′1/2 (21)

We can obtain the self energy for the orthogonal basis-space Green’s function from the self
energy for Ĝ′−1

0 (ε)

Σ̂′(ε) = Ĝ′−1
0 (ε)− Ĝ′−1(ε), (22)
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by using the transformation identical to that for the Hamiltonian [Eq. (12)].
The device Green’s function and linewidths in the orthogonal basis space (ĜC, Γ̂L(R) ) can

be obtained by using those calculated from the Hamiltonian in the non-orthogonal basis space
(Ĝ′C, Γ̂

′
L(R) ) as follows:

ĜC(ε) = Ŝ ′1/2†Ĝ′C(ε)Ŝ ′1/2, (23)

Γ̂L(R)(ε) = Ŝ ′−1/2Γ̂′L(R)(ε)Ŝ
′−1/2†. (24)

These transformations can be established by using cancellation of intermediate Ŝ ′1/2 and Ŝ ′−1/2.

2.4 Transmission matrix

In this section, we obtain the orthogonal basis representation of the transmission matrix

[T̂ ]nn′ =

∫∫
d3rd3r′χ∗n(r)T (r, r′)χn′(r′)

=

∫∫
d3rd3r′χ∗n(r)

∫∫∫
d3r1d

3r2d
3r3GC(r, r1)ΓL(r1, r2)G∗C(r3, r2)ΓR(r3, r

′)χn′(r′)

= [ĜCΓ̂LĜ
†
CΓ̂R]nn′ ≡ [ÂLΓR]nn′ (25)

(where ÂL ≡ ĜCΓ̂LĜ
†
C) by using the device Green’s function Ĝ′C and linewidths Γ̂′L(R) obtained

from the Hamiltonian in the non-orthogonal basis space. It is performed as follows:

ÂL = Ŝ ′1/2†Ĝ′CŜ
′1/2Ŝ ′−1/2Γ̂′LŜ

′−1/2†Ŝ ′1/2†Ĝ′†CŜ
′1/2 = Ŝ ′1/2†Ĝ′CΓ̂′LĜ

′†
CŜ
′1/2, (26)

Γ̂R = Ŝ ′−1/2Γ̂′RŜ
′−1/2†. (27)

3 Eigenchannels

In this section, we explain the energy normalized eigenchannel proposed in Ref. [1]. The
eigenchannel in the orthogonal basis representation |tn〉 and the corresponding eigenvalue tn
are calculated as follows:

T̂ |tn〉 = tn|tn〉
ÂLΓ̂R|tn〉 = tn|tn〉

Â
1/2
L Â

1/2†
L Γ̂R|tn〉 = tn|tn〉

Â
1/2
L Â

1/2†
L Γ̂RÂ

1/2
L Â

−1/2
L |tn〉 = tnÂ

1/2
L Â

−1/2
L |tn〉

Â
1/2†
L Γ̂RÂ

1/2
L Â

−1/2
L |tn〉 = tnÂ

−1/2
L |tn〉

Â
1/2†
L Γ̂RÂ

1/2
L |t̃n〉 = tn|t̃n〉, (28)

where Â1/2 is obtained as follows:

ÂL|an〉 = an|an〉
Â

1/2
L = (

√
a1|a1〉, · · · ,√aN |aN〉). (29)

We defined |t̃n〉 ≡ Â
−1/2
L |tn〉.
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The eigenchannel in the non-orthogonal basis representation |tn〉′ is obtained in the same
way to the Kohn-Sham orbital [Eq. (14)];

|tn〉′ = Ŝ ′−1/2†|tn〉 = Ŝ ′−1/2†Â1/2
L |t̃n〉. (30)

The eigenchannel in the real space representation Tn(r) is calculated as follows:

Tn(r) = {χ′1(r), · · · , χ′N ′(r)} |tn〉′. (31)

Because T̂ is not an Hermite matrix, eigenchannels {|tn〉} are not orthogonal in each other,
i.e. even if n 6= n′,

〈tn′|tn〉 = 〈t̃n′|Â1/2†
L Â

1/2
L |t̃n〉 6= 0. (32)

On the othe hand, |t̃n〉 are orthogonal in each other,

〈t̃n′|t̃n〉 = δnn′ , (33)

because Â
1/2†
L Γ̂RÂ

1/2
L is an Hermite matrix.

4 Current density

In this section, we explain a method to calculate the current density together with the non-
local potential which appears in the Hybrid DFT calculation, non-local pseudopotentials, etc.
This method is proposed in Ref. [2]. In this case, we have to consider both the local- and the
non-local contributions to the current density as follows [Eqn. (9) in Ref. [2]]:

J(r) = JLoc(r) + JNL(r) (34)

4.1 Local term

The first term in Eq. (34) is the local term; this term is calculated as follows [Eqs. (12) and
(22) in Ref. [2]]:

JLoc(r) =

∫
dE

2π
JLoc(r, E) (35)

JLoc(r, E) ≡ i[(∇r −∇r′)DR(r, r′, E)]r′=r{f(E − µL)− f(E − µR)}, (36)

where f(E) = 1/{exp(E/Te) + 1} (Te is the electronic temperature), and

DR(r, r′, Z) ≡
∫∫

d3r1d
3r2GC(r, r1, Z)ΓR(r1, r2, Z)GC(r2, r

′, Z∗), (37)

where Z = E + iη, and η is a positive infinitesimal.
In the orthogonal basis representation, [(∇r −∇r′)DR(r, r′, E)]r′=r becomes as follows:

[(∇r −∇r′)DR(r, r′, E)]r′=r =
∑

k

[(∇r −∇r′)e
ik(r−r′)∑

ij

Dk
ijχi(r)χ

∗
j(r
′)]r′=r

=

[∑

k

eik(r−r′)∑
ij

Dk
ijχ
∗
j(r
′)(ik +∇r)χi(r)− χi(r)(−ik +∇r′)χ

∗
j(r
′)

]

r′=r

=
∑

k

∑
ij

Dk
ij{2ikχ∗j(r)χi(r) + χ∗j(r)∇rχi(r)− χi(r)∇rχ

∗
j(r)}, (38)
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where

Dk
ij ≡

∫∫
d3rd3r′e−ikrχ∗n(r)DR(r, r′, E)eikrχn′(r

′) (39)

Finally, we can obtain the following non-orthogonal representation by using Eq. (15).

=
∑

k

∑
ij

[Ŝ
′1/2†
k D′Ŝ ′1/2k ]kij{2ik[Ŝ

′−1/2
k χ′∗(r)]j[χ′(r)Ŝ

′−1/2†
k ]i(r)

+ [S−1/2χ′(r)]j∇r[χ
′S−1/2†(r)]i − [χ(r)Ŝ

′−1/2†
k ]i∇r[Ŝ

′−1/2
k χ′∗(r)]j}

=
∑

k

∑
ij

D′kij{2ikχ′∗j (r)χ′i(r) + χ′∗j (r)∇rχ
′
i(r)− χ′i(r)∇rχ

′∗
j (r)}, (40)

where D̂′k = Ĝ′kC Γ̂′RĜ
′k†
C .

4.2 Non-local term

The second term in Eq. (34) is the non-local term; this term is calculated as follows [Eqs. (10)
and (11) in Ref. [2]]:

JNL(r) = −∇ϕn(r), (41)

∇2ϕn(r) = −ρn(r), (42)

where the source of non-local current (ρn(r)) is calculated as follows [Eqn. (23) in Ref. [2]]:

ρn(r) =

∫
dE

2π
ρn(r, E) (43)

ρn(r, E) = i

∫
d3r′2iIm[V (r, r′)D(r′, r)][f(E − µR)− f((E − µL)] (44)

V (r, r′)D(r′, r) =
∑

k

∑
ij

[V kDk]ijχi(r)χ
∗
j(r)

=
∑

k

∑
ij

[Ŝ
′−1/2†
k V ′kD′kŜ ′1/2k ]ij[χ

′(r)Ŝ ′−1/2†
k ]i[Ŝ

′−1/2
k χ′∗(r)]j

=
∑

k

∑
ij

[Ŝ ′−1
k V ′kD′k]ijχ′i(r)χ

′∗
j (r), (45)

where

V k
ij ≡

∫∫
d3rd3r′e−ikrχ∗n(r)V (r, r′)eikrχn′(r′), (46)

and

V ′kij ≡
∫∫

d3rd3r′e−ikrχ′∗n (r)V (r, r′)eikrχ′n′(r
′), (47)

4.3 Boundary conditions of the Poisson equation

The Poisson equation (42) is solved under the following boundary conditions:

• For directions perpendicular to the conducting direction, a two dimensional periodic
boundary condition is applied.
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• For the conducting direction, we apply the Neumann’s boundary condition,

[∇ϕNL(r)]|| = −JNL,LB||(r) at the left boundary, and (48)

[∇ϕNL(r)]|| = −JNL,RB||(r) at the right boundary. (49)

Although there is a study in which JNL,LB(r) and JNL,RB(r) are assumed to be 0[3], we employ
the following method [2] to calculate JNL,bound(r) because this method forces the total current
to be identical in the boundary.

From the Eq. (34), we obtain

JNL,LB||(r) = JLB||(r)− JLoc,||(r) at the left boundary, and (50)

JNL,RB||(r) = JRB||(r)− JLoc,||(r) at the right boundary, (51)

where we obtain JLB||(r) and JRB||(r) with the help of the Landauer-Büttiker formula as follows
[Eqn. (25) in Ref. [2]]:

Left boundary

JLB(xb, xc) =

∫
dE

2π
{f(E − µR)− f(E − µL)}

∫
dxaTL(xa, xb, xc) (52)

TL(r) ≡
∑

k

[GCkΓRkG
†
CkΓLk](r, r)

=
∑

k

∑
ij

χi(r)[GCkΓRkG
†
CkΓLk]ijχ

∗
j(r)

=
∑

k

∑
ij

[χ′(r)Ŝ ′−1/2†
k ]i[Ŝ

′1/2†
k G′CkΓ

′
RkG

′†
CkΓ

′
LkŜ

′−1/2
k ]ij[Ŝ

′−1/2
k χ′∗(r)]j

=
∑

k

∑
ij

χ′i(r)[G
′
CkΓ

′
RkG

′†
CkΓ

′
LkŜ

′−1
k ]ijχ

′∗
j (r) (53)

Right Boundary

JRB(xb, xc) =

∫
dE

2π
{f(E − µR)− f(E − µL)}

∫
dxaTR(xa, xb, xc) (54)

TR(r) ≡
∑

k

[GCkΓLkG
†
CkΓRk](r, r)

=
∑

k

∑
ij

χ′i(r)[G
′
CkΓ

′
LkG

′†
CkΓ

′
RkŜ

′−1
k ]ijχ

′∗
j (r) (55)

4.4 Spin-current density

We can calculate the spin/charge current density together with a collinear magnetism. In this
case, first we calculate separately contributions to J in Eq. (34) from each spin (↑ and ↓)

Jσ(r) = JLocσ(r) + JNLσ(r). (56)

we calculate the spin/charge current density by using these spin dependent currents as follows

JC(r) = J↑(r) + J↓(r) Charge current density, (57)

JS(r) = J↑(r)− J↓(r) Spin current density (58)
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4.5 k-inversion symmetry

In these calculations, we can use the following k-inversion symmetries:

Ĥ−k = Ĥ∗k = ĤT
k (59)

Ŝ−k = Ŝ∗k = ŜT
k (60)

Ĝ−k(Z) = (Z − Ĥ∗k)−1 = {(Z∗ − Ĥk)
−1}∗ = Ĝ∗k(Z

∗) = ĜT
k (Z) (61)

Γ̂R−k(Z) = Γ̂∗Rk(Z) = Γ̂T
Rk(Z) (62)

4.6 Non-collinear spin-current density

When we consider the non-collinear magnetization, we calculate the diagonal and the off-
diagonal part J↑↑,J↓↓,J↑↓ as follows:

Jσσ′(r) = JLocσσ′(r) + JNLσσ′(r) (63)

JLocσσ′(r) =
∑

k

∑
ij

∫
dE

2π
[f(E − µL)− f(E − µR)]iD′kiσjσ′

× {2ikχ′∗j (r)χ′i(r) + χ′∗j (r)∇rχ
′
i(r)− χ′i(r)∇rχ

′∗
j (r)} (64)

JNLσσ′(r) = −∇ϕNLσσ′(r) (65)

∇2ϕNLσσ′(r) = −ρNLσσ′(r) (66)

ρNLσσ′(r) =

∫
dE

2π
i
∑

k

∑
σ1

∫
d3r′[f(E − µR)− f(E − µL)]

× [Vσσ1(r, r′)Dσ1σ(r′, r)− V ∗σ′σ1
(r, r′)D∗σ1σ

(r′, r)]

=

∫
dE

2π
i
∑

k

[f(E − µR)− f(E − µL)]

×
{∑

ij

[Ŝ ′−1
k V̂ ′kD̂′k]iσjσ′χ′i(r)χ

′∗
j (r)−

∑
ij

[Ŝ ′−1
k V̂ ′kD̂′k]∗iσ′jσχ

′∗
i (r)χ′j(r)

}

=
∑
ij

[f(E − µR)− f(E − µL)]χ′i(r)χ
′∗
j (r)

×
∫
dE

2π
i
∑

k

{
[Ŝ ′−1
k V̂ ′kD̂′k]iσjσ′ − [Ŝ ′−1

k V̂ ′kD̂′k]∗jσ′iσ
}

(67)

The Poisson equation for ϕNLσσ′(r) is written as follows:

∇ϕNLσσ′(r) · eB = JNL,L/RB,σσ′(r) (68)

JLB,σσ′(xb, xc) =

∫
dE

2π
{f(E − µR)− f(E − µL)}

∫
dxaTLσσ′(xa, xb, xc) (69)

TL,σσ′(r) ≡
∑

k

[ĜCkΓ̂RkĜ
†
CkΓ̂Lk]σσ′(r, r) =

∑

k

∑
ij

χ′i(r)[Ĝ
′
CkΓ̂

′
RkĜ

′†
CkΓ̂

′
LkŜ

′−1
k ]iσjσ′χ

′∗
j (r)

(70)

JRB,σσ′(xb, xc) =

∫
dE

2π
{f(E − µR)− f(E − µL)}

∫
dxaTRσσ′(xa, xb, xc) (71)

TR,σσ′(r) =
∑

k

∑
ij

χ′i(r)[Ĝ
′
CkΓ̂

′
LkĜ

′†
CkΓ̂

′
RkŜ

′−1
k ]iσjσ′χ

′∗
j (r) (72)
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4.7 Implementation

These calculations are performed as that represented in Fig. 1.
We explain functions in the call graph (Fig. 2) as follows:

4.7.1 Functions in TRAN Main Analysis.c

• void MTRAN Set MP(int job, int atomnum, int WhatSpecies[atomnum+1],

int Spe Total CNO[atomnum+1], int NUM, output, int MP[atomnum+1]);

Set the first index of each atoms in the basis space.

4.7.2 Functions in TRAN Channel Functions.c

• void TRAN Calc Diagonalize(int n, dcomplex evec[n*n], double eval[n],

int lscale)

Diagonalize matrix evec and replace it with its eigenvectors. If lscale=1, eigenvectors
are scaled by a fuctor sqrt(eval[i]).

• int TRAN Calc OrtSpace(int NUM c, dcomplex SCC[NUM c * NUM c],

dcomplex rtS[NUM c * NUM c], dcomplex rtSinv[NUM c * NUM c])

Compute Ŝ1/2(rtS) and Ŝ−1/2(rtSinv) from Ŝ(SCC). This function returns the number
of the orthogonal basis; it becomes smaller that the number of the non-orthogonal ba-
sis(NUM_c).

• void TRAN Calc Linewidth(int NUM c, dcomplex SigmaL R[NUM c * NUM c], dcomplex

SigmaR R[NUM c * NUM c])

Compute Γ̂ = i[Σ̂− Σ̂†].

• void TRAN Calc MatTrans(int NUM c, dcomplex SigmaL R[NUM c * NUM c], dcomplex

GC R[NUM c * NUM c], char* trans1, char* trans2)

Compute ĜCΓ̂Ĝ†C.

• void TRAN Calc LowdinOrt( int NUM c, dcomplex SigmaL R[NUM c * NUM c], dcomplex

SigmaR R[NUM c * NUM c],

int NUM cs, dcomplex rtS[NUM c * NUM c], dcomplex rtSinv[NUM c * NUM c],

dcomplex ALbar[NUM cs * NUM cs], dcomplex GamRbar[NUM cs * NUM cs])

Perform the Löwdin orthogonalization of ÂL and Γ̂R.

• void TRAN Calc ChannelLCAO(int NUM c, int NUM cs,

dcomplex rtSinv[NUM c * NUM c], dcomplex ALbar[NUM cs * NUM cs],

dcomplex GamRbar[NUM cs * NUM cs], double eval[NUM cs],

dcomplex GC R[NUM c * NUM c], int TRAN Channel Num,

dcomplex EChannel[TRAN Channel Num][NUM c],

double eigentrans[TRAN Channel Num])

Transform Eigenchannel in the orthogonalized basis space into that in the non-orthogonalized
basis space.
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Start

Figure 1: Flow Chart
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main

Figure 2: Call graph
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4.7.3 Functions in TRAN Channel Output.c

• static void Print CubeTitle EigenChannel( FILE *fp,

double TRAN Channel kpoint[2], double TRAN Channel energy, double eigentrans,

int ispin)

• static void Print CubeTitle EigenChannel Bin( FILE *fp,

double TRAN Channel kpoint[2], double TRAN Channel energy, double eigentrans,

int ispin)

Output the comment, atomic positions, the number of grid, and the grid offset to a .cube

or a .cube.bin file.

• void TRAN Output ChannelLCAO( int myid0, int kloop, int iw, int ispin,

int NUM c, double TRAN Channel kpoint[2], double TRAN Channel energy,

double eval[NUM c], dcomplex GC R[NUM c * NUM c],

double eigentrans sum[TRAN Channel Nenergy][SpinP switch+1])

Output eigenchannels as a LCAO coefficient.

• TRAN Output ChannelCube( int kloop, int iw, int ispin, int orbit,

int NUM c, double *TRAN Channel kpoint, dcomplex EChannel[NUM c],

int MP[atomnum], double eigentrans, double TRAN Channel energy)

Output eigenchannels as a real-space .cube format.

• void TRAN Output eigentrans sum( int TRAN Channel Nkpoint,

int TRAN Channel Nenergy,

double eigentrans sum[TRAN Channel Nkpoint][TRAN Channel Nenergy])

Output the sum of transmission eigenvalues in each k and energy.

4.7.4 Functions in TRAN Calc CurrentDensity.c

• void TRAN Calc Sinv( int NUM c, dcomplex SCC[NUM c * NUM c],

dcomplex Sinv[NUM c * NUM c])

Compute Ŝ−1.

• void TRAN Calc CurrentDensity( int NUM c, dcomplex GC[NUM c * NUM c],

dcomplex GammaL[NUM c * NUM c], dcomplex GammaR[NUM c * NUM c],

dcomplex VCC[NUM c * NUM c], dcomplex Sinv[NUM c * NUM c], double kvec[2],

double fL, double fR, double Tran current energy step,

double JLocSym[2][NUM c][NUM c], double JLocAsym[NUM c][NUM c],

double RhoNL[NUM c][NUM c], double Jmat[2] )

• void TRAN Calc CurrentDensity NC( int NUM c, dcomplex GC[NUM c * NUM c],

dcomplex GammaL[NUM c * NUM c], dcomplex GammaR[NUM c * NUM c],

dcomplex VCC[NUM c * NUM c], dcomplex Sinv[NUM c * NUM c], double kvec[2],

double fL, double fR, double Tran current energy step,

double JLocSym[4][2][NUM c * NUM c], double JLocAsym4[4][NUM c * NUM c],

double RhoNL[4][NUM c * NUM c], double Jmat[4][2][NUM c * NUM c] )

Compute the contribution from each k, energy component to the currentdensity.
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4.7.5 Functions in TRAN Cden Main.c

• static double TRAN Calc Orb2Real( int NUM c, int MP[atomnum],

double JOrb[NUM c][NUM c], double JReal[TNumGrid], dcomplex SCC[NUM c * NUM c])

Compute
∑

ij Aijχi(r)χj(r).

• static void TRAN Current dOrb(int NUM c, int *MP, double JSym[2][NUM c][NUM c],

double JASym[NUM c][NUM c], double JReal[3][TNumGrid])

Compute
∑

ij Aijχj(r)∇χi(r).
• static void TRAN Integrate1D(double Jmat[2][TNumGrid],

dcomplex Jbound[2][Ngrid2*Ngrid3], double Current[TNumGrid])

Compute partial trace for T̂ for the boundary current.

• static void TRAN Current Boundary(dcomplex JBound[2][Ngrid2*Ngrid3])

Perform the Fourier transform of the boundary current.

• static void FFT2D CurrentDensity(double ReRhok[My Max NumGridB],

double ImRhok[My Max NumGridB])

Perform 2D-FFT of ρNLoc(r) into the reciplocal space.

• static void TRAN Poisson Current(double Rho[TNumGrid],

dcomplex Jbound[2][Ngrid2*Ngrid3])

Solve the Poisson equation for ϕNloc(r).

• static void TRAN Current AddNLoc(double Rho[TNumGrid],

double Current[3][TNumGrid])

Sum the local- and non-local part of the currentdensity.

• static void TRAN Current Spin(double CDensity[SpinP switch + 1][3][TNumGrid])

Compute the charge- and the spin currentdensities from the each spin components of the
currentdensity.

• static void TRAN Voronoi CDEN(double CDensity[SpinP switch + 1][3][TNumGrid],

int TRAN OffDiagonalCurrent)

Perform the Voronoianalysis of the currentdensity and output it.
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