Householder Method for Tridiagonalization: Ver. 1.0

Taisuke Ozaki, RCIS, JAIST
August 17, 2007

The Householder method [1] is a way of transforming a Hermitian matrix B to a real symmetric tridiagonalized matrix B_{TD}. Let b be a column vector of B, and consider that the vector b consists of the real part b_r and the imaginary part b_i as

$$|b\rangle = |b_r\rangle + i|b_i\rangle. \quad (1)$$

Also let us introduce a vector s of which real part has just one non-zero component $s(= \sqrt{(b b^*)})$ and imaginary part is a zero vector as

$$|s\rangle = \begin{pmatrix} s \\ 0 \\ \vdots \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}. \quad (2)$$

Then, consider a mirror transform Q^\dagger bridging the two vectors b and s by

$$Q^\dagger = I - \alpha^*|v\rangle\langle v|, \quad (3)$$

where let us assume that

$$|s\rangle = Q^\dagger b). \quad (4)$$

Putting Eq. (3) into Eq. (4), and solving it with respect to $|v\rangle$, we have

$$|v\rangle = \frac{1}{\alpha^* (v|b)} (|b\rangle - |s\rangle). \quad (5)$$

Thus, Eq. (5) allows us to write $|v\rangle$ as

$$|v\rangle = \beta (|b\rangle - |s\rangle) = \beta |u\rangle. \quad (6)$$

If v is normalized, β is given by

$$\beta = \frac{1}{\sqrt{(b|b) - (s|b) - (s|s)}} = \frac{1}{\sqrt{(b^* b) + (s|b) - (b|s) - (s|s)}} = \frac{1}{\sqrt{2s^2 - (s|b) - (s|s)}}. \quad (7)$$
Comparing Eqs. (5) with (6) and making use of Eq. (7), we have

\[\alpha^* = \frac{2a_r}{a_r^2 + a_i^2}(a_r - ia_i) \]

(8)

with \(a_r \) and \(a_i \) given by

\[a_r = \frac{1}{2}\left(2s^2 - \langle b|s\rangle - \langle s b\rangle\right) \]

(9)

and

\[a_i = \langle b_i|s\rangle. \]

(10)

Then, it is verified that

\[QQ^\dagger = (I - \alpha|v\rangle\langle v|)(I - \alpha^*|v\rangle\langle v|), \]

\[= I - \alpha^*|v\rangle\langle v| - \alpha|v\rangle\langle v| + \alpha\alpha^*|v\rangle\langle v|\langle v|\langle v|, \]

\[= I - \frac{(2a_r)^2}{a_r^2 + a_i^2}|v\rangle\langle v| + \frac{(2a_r)^2}{a_r^2 + a_i^2}|v\rangle\langle v|, \]

\[= I. \]

(11)

Thus, the transformation \(Q^\dagger BQ \) for the Hermitian matrix \(B \) is a similarity transformation, and given by

\[Q^\dagger BQ = (I - \alpha^*|v\rangle\langle v|) B (I - \alpha^*|v\rangle\langle v|), \]

\[= B - \alpha^*|v\rangle\langle v| B - \alpha^*|v\rangle\langle v| B + \alpha^*|v\rangle\langle v| B |v\rangle\langle v|. \]

(12)

By defining

\[|p\rangle \equiv B|v\rangle, \]

(13)

Eq. (12) becomes

\[Q^\dagger BQ = B - \alpha^*|v\rangle\langle p| - \alpha|p\rangle\langle v| + \alpha^*\alpha|v\rangle\langle v| |p\rangle\langle v|, \]

\[= B - \alpha^*|v\rangle \left(|p\rangle - \frac{\alpha}{2}|v\rangle|p\rangle\langle v|\right) - \alpha \left(|p\rangle - \frac{\alpha^*}{2}|v\rangle|p\rangle\right) \langle v|. \]

(14)

Moreover, by defining

\[|q\rangle \equiv \alpha \left(|p\rangle - \frac{\alpha^*}{2}|v\rangle|p\rangle\right), \]

(15)

we have a compact form:

\[Q^\dagger BQ = B - |v\rangle|q\rangle - |q\rangle\langle v|. \]

(16)

For the numerical stability, we furthermore modify Eq. (16) as shown below. Let us introduce a vector \(p' \) as.

\[|p'\rangle = \frac{B|u\rangle}{|u|^2}. \]

(17)
Then, \(\mathbf{p} \) can be written by \(\mathbf{p}' \) as

\[
|\mathbf{p}\rangle = \frac{|\mathbf{v}\rangle}{\sqrt{2a_r}},
\]

\[
= \frac{|\mathbf{u}\rangle}{\sqrt{2a_r}},
\]

\[
= \frac{|\mathbf{p}'\rangle}{\sqrt{2a_r}},
\]

\[
= \frac{\sqrt{2a_r}}{2}|\mathbf{p}'\rangle.
\]

Also, noting that

\[
|\mathbf{v}\rangle = \frac{1}{\sqrt{2a_r}}|\mathbf{u}\rangle,
\]

\(\mathbf{q} \) can be rewritten by

\[
|\mathbf{q}\rangle = \alpha\frac{\sqrt{2a_r}}{2} \left(|\mathbf{p}'\rangle - \frac{\alpha^*}{4a_r}|\mathbf{u}\rangle\langle\mathbf{u}|\mathbf{p}'\rangle \right).
\]

Putting Eqs. (19) and (20) into Eq. (16), we have

\[
Q^\dagger BQ = B - |\mathbf{u}\rangle\langle\mathbf{u}| - |\mathbf{q}'\rangle\langle\mathbf{q}'| - |\mathbf{q}\rangle\langle\mathbf{q}| - |\mathbf{q}'\rangle\langle\mathbf{q}'|.
\]

with \(\mathbf{q}' \) defined by

\[
|\mathbf{q}'\rangle = \frac{\alpha}{2} \left(|\mathbf{p}'\rangle - \frac{\alpha^*}{4a_r}|\mathbf{u}\rangle\langle\mathbf{u}|\mathbf{p}'\rangle \right),
\]

where

\[
|\mathbf{p}'\rangle = \frac{1}{a_r}|\mathbf{u}\rangle.
\]

The transformation by Eq. (21) can be applied to each column vector step by step in which the place occupied by \(s \) in Eq. (2) is shifted one by one. Then, the tridiagonalized matrix \(B_{TD} \) is given by

\[
B_{TD} = Q_{n-1}^\dagger Q_{n-2}^\dagger \cdots Q_3^\dagger Q_2^\dagger Q_1^\dagger B Q_1 Q_2 Q_3 \cdots Q_{n-2} Q_{n-1}.
\]

References