Analysis of spin texture in the k-space: Ver. 1.0

Hiroki Kotaka (ESICB, Kyoto Univ.)
Naoya Yamaguchi (NanoMaRi, Kanazawa Univ.)
Fumiyuki Ishii (NanoMaRi, Kanazawa Univ.)
2019/10/08
A postprocessing code “kSpin”

• “kSpin” calculates the k-space spin density matrices from a scfout file for every state at every k-point.
• The k-space spin density matrices are used to analyze spin textures.
• There are four different methods in terms of how to choose k-points.
• From the k-space spin density matrix, the direction and magnitude of the spin for a state at a k-point are calculated to draw spin textures.
• The k-space spin density matrices are decomposed into the contribution to each atom and pseudo atomic orbital (PAO).
k-space spin density matrix [1]

\[P_{\sigma\sigma'}(\mathbf{k}, \mu) = \left\langle \psi_{\sigma\mu}^{(k)} \right| \psi_{\sigma'\mu}^{(k)} \right\rangle = \left(c_{\sigma}^{(k)} \right)^\dagger S^{(k)} c_{\sigma'}^{(k)} \right\rangle_{\mu\mu} \]

k: a wave vector
\(\mu \): states (band indices)
\(\sigma \): spin indices (\(\sigma = \alpha, \beta \))
\(\left| \psi_{\sigma\mu}^{(k)} \right\rangle \): Bloch states
\(c_{\sigma} \): LCPAO expansion coefficients
\(S^{(k)} \): The overlap matrix

Eigenvalue problems for the Kohn-Sham equation:

\[H_{\sigma}^{(k)} c_{\sigma}^{(k)} = S^{(k)} c_{\sigma}^{(k)} \varepsilon_{\sigma}^{(k)} \]

\(H_{\sigma}^{(k)} \): The Hamiltonian
\(\varepsilon_{\sigma}^{(k)} \): Energy eigenvalues
Decomposition of the k-space spin density matrices

\[M_{\sigma\sigma',ia}(k,\mu) = \sum_{jb} c^{(k)*}_{\sigma\mu,ia} S^{(k)}_{iajb} c^{(k)}_{\sigma',\mu,jb}, \]

where

\[P_{\sigma\sigma'}(k,\mu) = \sum_{ia} M_{\sigma\sigma',ia}(k,\mu). \]

\(k \): a wave vector
\(\mu \): states (band indices)
\(\sigma \): spin indices
\(i, j \): site indices
\(ia, jb \): PAO indices

\(|\psi^{(k)}_{\sigma\mu}\rangle \): Bloch states
\(c_{\sigma} \): LCPAO expansion coefficients
\(S^{(k)} \): The overlap matrix
Method 1: GridCalc

1. Set an n by m k-point grid in a user-specified two-dimensional reciprocal space.
2. Solve eigenvalue problems at each k-point.
3. Calculate the k-space spin density matrices at each k-point.

An example in the case of $n = m = 4$
Method 2: FermiLoop – 1st step

1. Set an n by m k-point grid in a user-specified two-dimensional reciprocal space.
 (We call it the first k-point grid hereafter.)
2. Solve eigenvalue problems at each k-point.

An example in the case of $n = m = 4$
Method 2: FermiLoop – 1st step

3. Find squares crossing curves that connects k-points where the energy is equal to an user-specified energy level (a green region in the below figure).

An example in the case of $n = m = 4$

Curve that connects k-points where the energy is equal to an user-specified energy level.
Method 2: FermiLoop – 2nd step

4. Set an triangle mesh as the second k-point grid in the squares on the first k-point grid.
5. Solve eigenvalue problems at each k-point on the second k-point grid.
6. Pick up sides of triangles, which compose the k-point grid, that crosses Fermi arcs.
Method 2: FermiLoop – 2nd step

7. Determine k-points on the curves by linear interpolation or Brent’s method for energy eigenvalues. Data of these k-points is stored as it is useful to draw closed curves by connecting them. It is important to constant energy lines for Rashba spin splittings, for example.
Method 2: FermiLoop – 2nd step

8. Calculate the k-space spin density matrices at each k-point on Fermi arcs.
Method 3: BandDispersion

1. Specify k-paths.
2. Solve eigenvalue problems at each of k-points on k-paths.
3. Calculate the k-space spin density matrices at each k-point.

Specification of k-paths:

```
Band.Nkpath 2
<Band.kpath
  135 0.0 0.500000 0.000000 0.0 0.000000 0.000000 M G
  135 0.0 0.000000 0.000000 0.0 -0.500000 0.000000 G -M
Band.kpath>
```
Method 4: MulPOnly

1. Solve eigenvalue problems at each of given sets of a k-point and a state (band index).
2. Calculate the k-space spin density matrices at each k-point.

Specification of sets of a k-point and a state:

<table>
<thead>
<tr>
<th>k_x</th>
<th>k_y</th>
<th>k_z</th>
<th>μ (State, Band index)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000000000000000</td>
<td>0.1800000000000000</td>
<td>0.0000000000000000</td>
<td>55</td>
</tr>
<tr>
<td>0.0000000000000000</td>
<td>0.17778390130712</td>
<td>0.02815820370724</td>
<td>55</td>
</tr>
<tr>
<td>0.0000000000000000</td>
<td>0.17119017293313</td>
<td>0.05562305898749</td>
<td>55</td>
</tr>
<tr>
<td>0.0000000000000000</td>
<td>0.16038117435391</td>
<td>0.08171828995312</td>
<td>55</td>
</tr>
<tr>
<td>0.0000000000000000</td>
<td>0.14562305898749</td>
<td>0.10580134541265</td>
<td>55</td>
</tr>
<tr>
<td>0.0000000000000000</td>
<td>0.12727922061358</td>
<td>0.12727922061358</td>
<td>55</td>
</tr>
<tr>
<td>0.0000000000000000</td>
<td>0.10580134541265</td>
<td>0.14562305898749</td>
<td>55</td>
</tr>
<tr>
<td>0.0000000000000000</td>
<td>0.08171828995312</td>
<td>0.16038117435391</td>
<td>55</td>
</tr>
<tr>
<td>0.0000000000000000</td>
<td>0.05562305898749</td>
<td>0.17119017293313</td>
<td>55</td>
</tr>
</tbody>
</table>

...