

Outline of Lecture			
1. Pseudo-Potentials and Projectors 1) & 2)			
2. Transformation Theory: Wave Functions, Expectation Values and Charge Density Distribution 3) & 4)			
 Formulation of Total Energy: Kinetic Energy, Exchange- Correlation Energy, Hartree Energy and Compensation Charge 3) & 4) 			
4. Hamiltonian, Kohn-Sham Equation, and Atomic Forces 4)			
5. Representation by Plane-Wave Basis Set			
6. Stress Tensor by Nielsen-Matrin Scheme 5)			
7. Efficient Scheme to Obtain Ground-State Electronic Structure			
1) P.E. Blöchl, PRB 41 (1990) 5414, 2) D. Vanderbilt, PRB 41 (1990) 7892, 3) P.E. Blöchl, PRB 50 (1994) 17953, 4) G. Kresse and D. Joubert, PRB59 (1999) 1758, 5) O.H. Nielsen and R.M. Martin, PRB 32 (1985) 3780			
Detailed Formulation ⇒ See <i>PAW Note</i> by QMAS Group			
AIST National Institute of Advanced Industrial Science & Technology (AIST)			

P: Norm-Cons Generalized	<mark>seudo-Potential</mark> erving PP, KB-S I Separable PP,	's (PP) & Project Separable PP, Ge and Ultrasoft (V	ors eneralized PP, anderbilt) PP
NCPP in Usual Semilocal Form	$\mathbf{V} \mathbf{ps} = \sum_{l} \mathbf{v}_{l}(r)$	$P_l^{\mu} = \mathbf{v}_{local}(r) + \sum_{l}$	$\Delta \mathbf{v}_l(r) \ddot{P}_l$
$\dot{P}_l = \sum Y_{lm}(i) $	$(t^*) > < Y_{lm}(t^*)$ Angula	ar-Momentum Proje	ction Operator
$v_l(r) \stackrel{m}{\underset{\text{Atomic Cal}}{\overset{m}{\text{Stomic Cal}}}} v_l(r)$	ach <i>l</i> from $\Delta v_l(r)$ culations Non-loc	$\mathbf{v} = \mathbf{v}_{l}(r) - \mathbf{v}_{local}(r)$ cal PP, Zero for r>r _c	V _{local} Screened Local PP
Kleinman- Bylander (KB) Separable Form of NCPP	$\mathbf{V} \text{ ps} = \mathbf{v}_{local}(r) + \sum_{lm} \sum_{lm} \mathbf{v}_{lm}(r) + \sum_{$	$ \begin{aligned} & \left Y_{lm} > \Delta \mathbf{v}_{l}(r) < Y_{lm} \right \\ & \tilde{\Phi}_{l} Y_{lm} > (1 / C_{l}) < \Delta \end{aligned} $	Kleinman & Bylander, PRL48(1982)1425 $\mathbf{v}_{l} \ \mathbf{\Phi}_{l} Y_{lm} \mid = \mathbf{V} \mathbf{ps}^{\mathbf{KB}}$
$C_l = < \widetilde{\Phi}_l Y_{lm} \mid \Delta \mathbf{v}_l \mid$	$\widetilde{\Phi}_{l}Y_{lm} > Proof Free Pro$	side the Atomic Regionation states and the states of the s	on, the Pseudo Wave tely Expressed as
$\widetilde{\Phi}_l(r)Y_{lm}(r)$ Pseudo Atomic Wa Function for v ₁	Thus ave $V ps \widetilde{\Psi}(\vec{r}) = v_{loc}$	$\widetilde{\Psi}(\vec{r}) = \sum_{lm} A_{lm}$ $_{cal} \widetilde{\Psi} + \sum_{lm} A_{lm} \Delta \mathbf{v}_{l}(r) \widetilde{\Phi}_{l}$	$\widetilde{\Phi}_{l}(r)Y_{lm}(\widetilde{r})$ $(r)Y_{lm}(\widetilde{r}) = \mathrm{V}\mathrm{ps}^{\mathrm{KB}}\widetilde{\Psi}(\vec{r})$
AIST	Natio	nal Institute of Advanced Industria	l Science & Technology (AIST)

	Outline of Lecture			
1.	Pseudo-Potentials and Projectors 1) & 2)			
2.	 Transformation Theory: Wave Functions, Expectation Values and Charge Density Distribution 3) & 4) 			
3.	 Formulation of Total Energy: Kinetic Energy, Exchange- Correlation Energy, Hartree Energy and Compensation Charge 3) & 4) 			
4.	Hamiltonian, Kohn-Sham Equation, and Atomic Forces 4)			
5.	5. Representation by Plane-Wave Basis Set			
6.	6. Stress Tensor by Nielsen-Matrin Scheme 5)			
7.	Efficient Scheme to Obtain Ground-State Electronic Structure			
	 P.E. Blöchl, PRB 41 (1990) 5414, D. Vanderbilt, PRB 41 (1990) 7892, P.E. Blöchl, PRB 50 (1994) 17953, G. Kresse and D. Joubert, PRB59 (1999) 1758, O.H. Nielsen and R.M. Martin, PRB 32 (1985) 3780 			
	Detailed Formulation ⇒ See PAW Note by QMAS Group			
AIST	National Institute of Advanced Industrial Science & Technology (AIST)			

$$\hat{E} = \sum_{n} f_{n} \langle \tilde{\Psi}_{n} | -\frac{1}{2} \Delta | \tilde{\Psi}_{n} \rangle + E_{xc} [\tilde{n} + \tilde{n} + \tilde{n}_{c}] + E_{H} [\tilde{n} + \tilde{n}]^{\frac{3}{2} \cdot 25} \\ + \int v_{H} [\tilde{n}_{zc}] (\tilde{n} + \tilde{n}) d\vec{r}^{3} + U(\vec{R}, Z_{ion})$$
(1.20)
$$\hat{E}^{1} = \sum_{(i,j)} \rho_{ij} \langle \tilde{\phi}_{i} | -\frac{1}{2} \Delta | \tilde{\phi}_{j} \rangle + \overline{E_{xc}} [\tilde{n}^{1} + \tilde{n} + \tilde{n}_{c}] \\ + \overline{E_{H}} [\tilde{n}^{1} + \tilde{n}] + \int_{\Omega_{r}} v_{H} [\tilde{n}_{zc}] (\tilde{n}^{1} + \tilde{n}) d^{3} \vec{r}^{\frac{3}{2} \cdot 26}$$
(1.21)
$$E^{1} = \sum_{(i,j)} \rho_{ij} \langle \phi_{i} | -\frac{1}{2} \Delta | \phi_{j} \rangle + \overline{E_{xc}} [n^{1} + n_{c}] \\ + \overline{E_{H}} [n^{1}] + \int_{\Omega_{r}} v_{H} [n_{zc}] n^{1} d^{3} \vec{r} \qquad (1.22)$$
$$EWNODE V.1.20$$

$$\begin{aligned} \bullet \quad \tilde{\rho} &= \sum_{n} f_{n} |\tilde{\Psi}_{n}\rangle \langle \tilde{\Psi}_{n} | : \text{Pseudodensity Operator.} \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$$

•
$$\tilde{E}^{1}$$
 (1.21) 式の変分
(3) 項のみ、まず、 $\langle \tilde{\phi}_{i} | -\frac{1}{2}\Delta | \tilde{\phi}_{j} \rangle \times [\tilde{p}_{i} \rangle \langle \tilde{p}_{j} |$
 \hat{n} での変分 → 原子内積分項について.
 $\int (v_{xc}[\tilde{n}^{1} + \hat{n} + \tilde{n}_{c}] + v_{H}[\tilde{n}_{zc} + \tilde{n}^{1} + \hat{n}]) \times \sum_{L} \hat{Q}_{ij}^{L}(\tilde{r}) d\tilde{r}^{3} \times |\tilde{p}_{i} \rangle \langle \tilde{p}_{j} |$
 \tilde{n}^{1} での変分
同様に (原子内) → $\langle \tilde{\phi}_{i} | \tilde{v}_{eff}^{-1} | \tilde{\phi}_{j} \rangle \times | \tilde{p}_{i} \rangle \langle \tilde{p}_{j} |$
以上まとめると
 $\langle \tilde{\phi}_{i} | -\frac{1}{2}\Delta + \tilde{v}_{eff}^{-1}(\tilde{r}) | \tilde{\phi}_{j} \rangle \times | \tilde{p}_{i} \rangle \langle \tilde{p}_{j} |$
 $+ \int \tilde{v}_{eff}^{-1}(\tilde{r}) \times \sum_{L} \hat{Q}_{ij}^{L}(\tilde{r}) d\tilde{r}^{3} \times | \tilde{p}_{i} \rangle \langle \tilde{p}_{j} |$
 $= \tilde{D}_{ij}^{1} \times | \tilde{p}_{i} \rangle \langle \tilde{p}_{j} |$ (1.36)
 $\tilde{v}_{eff}^{-1} = v_{xc} [\tilde{n}^{1} + \hat{n} + \tilde{n}_{c}] + v_{H} [\tilde{n}_{zc} + \tilde{n}^{1} + \hat{n}] \rightarrow \mathbb{R}$ 子内のみ

以上まとめると.
(1.34), (1.35), (1.37), (1.36) 式
↓

$$H = -\frac{1}{2}\Delta + \tilde{v}_{\text{eff}}(\vec{r}) + \sum_{(i,j)} |\tilde{p}_i\rangle \left(\hat{D}_{ij} + D^1_{ij} - \tilde{D}^1_{ij}\right) \langle \tilde{p}_j| \qquad (1.38)$$

$$\tilde{v}_{\text{eff}}(\vec{r}) = v_H [\tilde{n}_{zc} + \tilde{n} + \hat{n}] + v_{xc} [\tilde{n} + \hat{n} + \tilde{n}_c] \quad \leftarrow (1.34)$$

$$\hat{D}_{ij} = \sum_L \int \tilde{v}_{\text{eff}}(\vec{r}) \hat{Q}^L_{ij}(\vec{r}) d\vec{r}^3 \quad \leftarrow (1.35)$$

$$D^1_{ij} = \langle \phi_i | - \frac{1}{2}\Delta + v_{\text{eff}}^1 | \phi_j \rangle$$

$$v_{\text{eff}}^1 = v_H [n_{zc} + n^1] + v_{xc} [n^1 + n_c] \qquad \leftarrow (1.37)$$

$$\tilde{D}^1_{ij} = \langle \tilde{\phi}_i | - \frac{1}{2}\Delta + \tilde{v}_{\text{eff}}^1 | \tilde{\phi}_j \rangle + \sum_L \int_{\Omega_r} \sum_{\vec{v} \in \text{eff}} (\vec{r}) \hat{Q}^L_{ij}(\vec{r}) d\vec{r}^3$$

$$\tilde{v}_{\text{eff}}^1 = v_H [\tilde{n}_{zc} + \tilde{n}^1 + \hat{n}] + v_{xc} [\tilde{n}^1 + \hat{n} + \tilde{n}_c]$$

$$\begin{aligned}
\vec{F} &= -\frac{dE_{tot}}{dt_{a}} = -\frac{\partial}{\partial t_{a}} \sum_{n} f_{n} \frac{\langle \tilde{\Psi}_{n} | H[\rho, \{i\}] | \tilde{\Psi}_{n} \rangle}{\langle \tilde{\Psi}_{n} | S | \tilde{\Psi}_{n} \rangle} - \frac{\partial U(\tilde{t}_{a}, Z_{ton})}{\partial \tilde{t}_{a}} \\
&= -\sum_{n} f_{n} \langle \tilde{\Psi}_{n} | \frac{\partial (H[\rho, \{i_{a}\}] - \varepsilon_{n} S[\{i_{a}\}])}{\partial \tilde{t}_{a}} | \tilde{\Psi}_{n} \rangle - \frac{\partial U(\tilde{t}_{a}, Z_{ton})}{\partial \tilde{t}_{a}} \\
\vec{F}_{1} &= -\int (\tilde{n}(\vec{r}) + \tilde{n}(\vec{r})) \times \frac{\partial v_{H}[\tilde{n}_{zc}]}{\partial \tilde{t}_{a}} d\vec{r}^{3} \quad \bigstar \quad v_{H}(\vec{r}) \text{ in } \tilde{v}_{eff}(\vec{r}) \text{ and } \tilde{D}_{ij} \\
\vec{F}_{2} &= -\sum_{(i,j),L} \rho_{ij} \int \tilde{v}_{eff}(\vec{r}) \times \frac{\partial}{\partial \tilde{t}_{a}} \tilde{\mathcal{Q}}_{ij}^{L} d\vec{r}^{3} \quad \bigstar \quad \tilde{\mathcal{Q}}_{ij}^{L}(\vec{r}) \text{ in } \tilde{D}_{ij} \\
\vec{F}_{3} &= -\sum_{n,(i,j)} (\tilde{D}_{ij} + D_{ij}^{1} - \tilde{D}_{ij}^{1} - \varepsilon_{n} q_{ij}) \times f_{n} \langle \tilde{\Psi}_{n} | \frac{\partial |\tilde{P}_{i} \rangle \langle \tilde{P}_{j} |}{\partial \tilde{t}_{a}} | \tilde{\Psi}_{n} \rangle \\
\vec{F}_{nlec} &= -\frac{\partial E_{xc}}{\partial \tilde{n}_{c}} \times \frac{\partial \tilde{n}_{c}}{\partial \tilde{t}_{a}} = -\int v_{xc} [\tilde{n} + \tilde{n} + \tilde{n}_{c}] \times \frac{\partial \tilde{n}_{c}(\vec{r})}{\partial \tilde{t}_{a}} d\vec{r}^{3}
\end{aligned}$$

9.3 Atomic Force の導出: Hellmann-Feynman の定理の証明
•
$$E_{tot}[\{\vec{R}_a\}, \{\tilde{\Psi}_n\}] \geq \overline{z} \Rightarrow \bigcup L \geq \overline{z} \Rightarrow$$
, Atomic Force $\frac{dE_{tot}}{dR_a}$ は、 \vec{R}_a の直接依存項と、 $\{\tilde{\Psi}_n\} \Rightarrow$
通じて依存する項に分けて考える.
 $-\vec{F_a} = \frac{dE_{tot}}{d\vec{R}_a} = \frac{\partial E_{tot}}{\partial \vec{R}_a} + \sum_n \left\{ \frac{\delta E_{tot}}{\delta \Psi_n} \times \frac{\partial \tilde{\Psi}_n}{\partial \vec{R}_a} + \frac{\delta E_{tot}}{\delta \Psi_n} \times \frac{\partial \tilde{\Psi}_n^*}{\partial \vec{R}_a} \right\}$ (9.17)
• 開接依存項 ((9.12) 式, (9.15) 式を用いる)
 $\sum_n \left\{ \frac{\delta E_{tot}}{\delta \Psi_n} \times \frac{\partial \tilde{\Psi}_n}{\partial \vec{R}_a} + \frac{\delta E_{tot}}{\delta \Psi_n^*} \times \frac{\partial \tilde{\Psi}_n^*}{\partial \vec{R}_a} \right\} = \sum_n \left\{ \langle \tilde{\Psi}_n | H | \frac{\partial \tilde{\Psi}_n}{\partial \vec{R}_a} \rangle + \langle \frac{\partial \tilde{\Psi}_n}{\partial \vec{R}_a} | H | \tilde{\Psi}_n \rangle \right\} \times f_n$
 $= \sum_n \varepsilon_n \left\{ \langle \tilde{\Psi}_n | S | \frac{\partial \Psi_n}{\partial \vec{R}_a} + \frac{\delta E_{tot}}{\delta \Psi_n^*} \times \frac{\partial \tilde{\Psi}_n^*}{\partial \vec{R}_a} \right\} = \sum_n \varepsilon_n \left\{ \langle \tilde{\Psi}_n | S | \frac{\partial \tilde{\Psi}_n}{\partial \vec{R}_a} \rangle + \langle \frac{\partial \tilde{\Psi}_n}{\partial \vec{R}_a} | S | \tilde{\Psi}_n \rangle \right\} \times f_n$
 $= -\sum_n f_n \varepsilon_n \langle \tilde{\Psi}_n | S | \frac{\partial \Psi_n}{\partial \vec{R}_a} | S | \tilde{\Psi}_n \rangle = 0,$
 $\frac{\partial}{\partial \vec{R}_a} \langle \tilde{\Psi}_n | S | \tilde{\Psi}_n \rangle = 0,$
 $\frac{\partial}{\partial \vec{R}_a} \langle \tilde{\Psi}_n | S | \tilde{\Psi}_n \rangle = \langle \frac{\partial \tilde{\Psi}_n}{\partial \vec{R}_a} | S | \tilde{\Psi}_n \rangle + \langle \tilde{\Psi}_n | \frac{\partial S}{\partial \vec{R}_a} | \tilde{\Psi}_n \rangle + \langle \tilde{\Psi}_n | S | \frac{\partial \tilde{\Psi}_n}{\partial \vec{R}_a} \rangle = 0 \right)$
PAW Note V1.6

	Outline of Lecture
1.	Pseudo-Potentials and Projectors 1) & 2)
2.	Transformation Theory: Wave Functions, Expectation Values and Charge Density Distribution 3) & 4)
3.	Formulation of Total Energy: Kinetic Energy, Exchange- Correlation Energy, Hartree Energy and Compensation Charge 3) & 4)
4.	Hamiltonian, Kohn-Sham Equation, and Atomic Forces 4)
5.	Representation by Plane-Wave Basis Set
6.	Stress Tensor by Nielsen-Matrin Scheme 5)
7.	Efficient Scheme to Obtain Ground-State Electronic Structure
	 P.E. Blöchl, PRB 41 (1990) 5414, D. Vanderbilt, PRB 41 (1990) 7892, P.E. Blöchl, PRB 50 (1994) 17953, G. Kresse and D. Joubert, PRB59 (1999) 1758, O.H. Nielsen and R.M. Martin, PRB 32 (1985) 3780
	Detailed Formulation ⇒ See PAW Note by QMAS Group
AIST	National Institute of Advanced Industrial Science & Technology (AIST)

Representation by Plane-Wave Basis Set: Total $\begin{aligned} & \int_{tot} = E_{kin} + E_{xc} + E_{H} + E_{local} + E^{1} - \widetilde{E}^{1} + E_{i-i} \end{aligned}$ $\begin{aligned} & \int_{tot} = E_{kin} + E_{xc} + E_{H} + E_{local} + E^{1} - \widetilde{E}^{1} + E_{i-i} \end{aligned}$ $\begin{aligned} & \int_{kin} \sum_{k \in \mathbb{N}^{n}} \int_{ki} \sum_{k \in \mathbb{N}^{n}} \int_{k} \sum_{k \in \mathbb{N}^{n}} \sum_{k \in$

Stress Tensor in Plane-Wave Basis (Reciprocal-
Space) Expression
$$E_{tot} = E_{kin} + E_{xc} + E_{H} + E_{local} + E^{1} - \tilde{E}^{1} + E_{i-l} \qquad E_{non-local} = E^{1} - \tilde{E}^{1}$$
$$\frac{\partial E_{kin}}{\partial \varepsilon_{\alpha\beta}} = (-2)\sum_{n}^{\infty} \sum_{k \in LP.} f_{kn} \sum_{\mathbf{R}} \sum_{G} |C_{k+\mathbf{R}}^{n} \cdot \overline{G}|^{2} [\mathbf{R}(\vec{k} + \mathbf{R}^{-1}\vec{G})]_{\alpha} [\mathbf{R}(\vec{k} + \mathbf{R}^{-1}\overline{G})]_{\beta}$$
$$= (-2)\sum_{\mathbf{R}} \sum_{\gamma,\delta} R_{\alpha\gamma} R_{\beta\delta} \sum_{n}^{\infty} \sum_{k \in LP.} f_{kn} \sum_{G} |C_{k+\bar{G}}^{n}|^{2} (\vec{k} + \bar{G})_{\gamma} (\vec{k} + \bar{G})_{\delta} \qquad \text{R: Rotation Matrix} of the Symmetric Element$$
$$\frac{\partial E_{xc}}{\partial \varepsilon_{\alpha\beta}} = \delta_{\alpha\beta} \Omega_{c} \sum_{G} \varepsilon_{xc} (\bar{G}) n(\bar{G})^{*} - \delta_{\alpha\beta} \Omega_{c} \sum_{G} \mu_{xc} (\bar{G}) \tilde{n}(\bar{G})^{*} \qquad \text{Element}$$
$$+ \Omega_{c} \sum_{G} \mu_{xc} (\bar{G}) \left(\frac{\partial \tilde{n}(\bar{G})^{*}}{\partial \varepsilon_{\alpha\beta}} + \frac{\partial \tilde{n}_{c}(\bar{G})^{*}}{\partial \varepsilon_{\alpha\beta}} \right) \qquad \text{LDA Form}$$
$$n(\vec{r}) = \tilde{n}(\vec{r}) + \tilde{n}(\vec{r}) = \sum_{G} n(\bar{G}) e^{i\vec{G}\cdot\vec{r}} \\n(\bar{G}) = \tilde{n}(\bar{G}) + \tilde{n}(\bar{G})$$
$$+ \frac{1}{2} \Omega_{c} \sum_{G \neq 0} \frac{4\pi e^{2} |n(\bar{G})|^{2}}{|\vec{G}|^{2}} \times \frac{G_{\alpha}G_{\beta}}{|\vec{G}|^{2}} \qquad n(\vec{G}) = \tilde{n}(\bar{G}) + \tilde{n}(\bar{G})$$

Stress Tensor in Plane-Wave Basis (Reciprocalbasis) $E_{tot} = E_{kin} + E_{xc} + E_{H} + E_{local} + E^{1} - \tilde{E}^{1} + E_{i-i} \qquad E_{non-local} = E^{1} - \tilde{E}^{1}$ $\stackrel{O}{=} \int_{\sigma_{\alpha} \sigma_{\alpha}} V_{loc}(\vec{G}) \left(-\delta_{\alpha\beta} \tilde{n}^{*}(\vec{G}) + \frac{\partial \tilde{n}^{*}(\vec{G})}{\partial \varepsilon_{\alpha\beta}} \right) \qquad V^{a}_{loc}: Unscreened Atomic Local PP$ $\stackrel{O}{=} \int_{\sigma_{\alpha} \sigma_{\alpha}} V_{loc}(\vec{G}) \left(-\delta_{\alpha\beta} \tilde{n}^{*}(\vec{G}) + \frac{\partial \tilde{n}^{*}(\vec{G})}{\partial \varepsilon_{\alpha\beta}} \right) \qquad V^{a}_{loc}: Unscreened Atomic Local PP$ $\stackrel{O}{=} \int_{\sigma_{\alpha} \sigma_{\alpha}} V_{loc}(\vec{G}) \left(-\delta_{\alpha\beta} \tilde{n}^{*}(\vec{n}) + \sum_{i_{\alpha}} e^{-i\vec{G}\cdot\vec{i}} \int_{0}^{\infty} V_{loc}^{a}(r) \times r^{3} \times j_{1}(|\vec{G}| r) tr$ $\stackrel{O}{=} \int_{\sigma_{\alpha} \sigma_{\alpha}} V_{loc}(\vec{G}) \left(\delta_{\alpha} - \delta_{\alpha} - \delta_{\alpha} + \delta_{\alpha} - \delta_{\alpha} + \delta_{\alpha} - \delta_{\alpha} + \delta_{\alpha} + \delta_{\alpha} + \delta_{\alpha} - \delta_{\alpha} + \delta_{\alpha} +$

