
Structure of OpenMX extension: NEB

• Introduction of the NEB method

• Implementation of NEB in OpenMX

• Usage of the NEB functionality

• Examples

• Relevant routines

• Paralleliztion

• Close loot at codes

(A)

H. Jonsson, G. Mills, and K. W. Jacobsen, in Classical and

Quantum Dynamics in Condensed Phase Simulations,

edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World

Scientific, Singapore, 1998), p. 385.

(B)

G. Henkelman and H. Jonsson, JCP 113, 9978 (2000).

In later slides, they are referred as Refs. (A) and (B).

References

Nudged Elastic Band (NEB) method

The NEB method provides a way to find a minimum energy

pathway (MEP) connecting two local minima.

Taken from Ref. (A). Taken from Ref. (B).

Plain Elastic Band (PEB) method

Taken from Ref. (A).

A simple idea to find a MEP is to introduce an interaction between

neighboring images by a spring. The optimization of the object function S

tries to shorten the length of MEP.

The idea is called a plain elastic band

(PEB) method. However, the PEB

method tends to cause a drift of energy

pathway as shown in the left figure.

One should consider another way to

avoid the drift of the energy pathway.

Nudged Elastic Band (NEB) method

The force can be divided to two contributions:

Parallel force

Perpendicular force

To calculate the

force, only two

terms are taken into

account among

four contributions.

The treatment allows

us to avoid the drift of

energy pathway, while

the physical meaning

of the object function is

not clear anymore.

causing the drift of energy pathway

upward along the perpendicular

direction.

causing non-equidistance

distribution of images along

the energy pathway.

T. Ozaki (JAIST), May 3, 2011

Implementation of NEB in OpenMX

Implementation

: � Calc. of tangents: Eqs. (8)-(11) in Ref. (B)

� Calc. of perpendicular forces: Eq. (4) in Ref. (B)

� Calc. of parallel forces: Eq. (12) in Ref. (B)

� Optimization method: a hybrid DIIS+BFGS optimizer

Based on Ref.[1], a nudged elastic band (NEB) method has been implemented

in OpenMX. The detail of the implementation is summarized as follows:

Features:

� Easy to use

� Hybrid OpenMP/MPI parallelization

� Initial path by the straight line or user’s definition

� Only three routines added

In order to minimize user’s efforts in using it, the functionality of NEB has been

realized as one of geometry optimizers with the following features:

How to perform the NEB calculation

The NEB calculation is performed by the following three steps:

1. Geometry optimization of a precursor,

2. Geometry optimization of a product,

3. Optimization of a minimum energy path (MEP) connecting

the precursor and product,

where in the three calculations users have to use the same computational

parameters such as unit cell, cutoff energy, basis functions, pseudopotentials,

and electronic temperatures to avoid numerical inconsistency.

After the calculations 1 and 2, files *.dat# are generated. By using the atomic

coordinates in the files *.dat#, one can easily construct an input file for the

calculation 3. Once you have an input file for the calculation 3, the execution

of the NEB calculation is same as for the conventional OpenMX calculation

such as

mpirun –np 32 openmx input.dat –nt 4

Examples

Two input files are provided as examples.

C2H4_NEB.dat

Cycloaddition reaction of two ethylene molecules to cyclobutane

Si8_NEB.dat

Diffusion of an interstitial hydrogen atom in the diamond Si

The input file, C2H4_NEB.dat, will be used to illustrate the NEB

calculation in the proceeding explanation.

Providing two terminal structures

The atomic coordinates of the precursor are specified in the input file by
<Atoms.SpeciesAndCoordinates

1 C -0.66829065594143 0.00000000101783 -2.19961193219289 2.0 2.0

2 C 0.66817412917689 -0.00000000316062 -2.19961215251205 2.0 2.0

3 H 1.24159214112072 -0.92942544650857 -2.19953308980064 0.5 0.5

4 H 1.24159212192367 0.92942544733979 -2.19953308820323 0.5 0.5

5 H -1.24165800644131 -0.92944748269232 -2.19953309891389 0.5 0.5

6 H -1.24165801380425 0.92944749402510 -2.19953309747076 0.5 0.5

7 C -0.66829065113509 0.00000000341499 2.19961191775648 2.0 2.0

8 C 0.66817411530651 -0.00000000006073 2.19961215383949 2.0 2.0

9 H 1.24159211310925 -0.92942539308841 2.19953308889301 0.5 0.5

10 H 1.24159212332935 0.92942539212392 2.19953308816332 0.5 0.5

11 H -1.24165799549343 -0.92944744948986 2.19953310195071 0.5 0.5

12 H -1.24165801426648 0.92944744880542 2.19953310162389 0.5 0.5

Atoms.SpeciesAndCoordinates>

<NEB.Atoms.SpeciesAndCoordinates

1 C -0.77755846408657 -0.00000003553856 -0.77730141035137 2.0 2.0

2 C 0.77681707294741 -0.00000002413166 -0.77729608216595 2.0 2.0

3 H 1.23451821718817 -0.88763832172374 -1.23464057728123 0.5 0.5

4 H 1.23451823170776 0.88763828275851 -1.23464059022330 0.5 0.5

5 H -1.23506432458023 -0.88767426830774 -1.23470899088096 0.5 0.5

6 H -1.23506425800395 0.88767424658723 -1.23470896874564 0.5 0.5

7 C -0.77755854665393 0.00000000908006 0.77730136931056 2.0 2.0

8 C 0.77681705017323 -0.00000000970885 0.77729611199476 2.0 2.0

9 H 1.23451826851556 -0.88763828740000 1.23464060936812 0.5 0.5

10 H 1.23451821324627 0.88763830875131 1.23464061208483 0.5 0.5

11 H -1.23506431230451 -0.88767430754577 1.23470894717613 0.5 0.5

12 H -1.23506433587007 0.88767428525317 1.23470902573029 0.5 0.5

NEB.Atoms.SpeciesAndCoordinates>

The atomic coordinates of the product are specified in the input file by

Note that these structures were obtained by prior geometry optimizations.

Keywords for the NEB calculation

MD.NEB.Number.Images 8 # default=10

The number of images in the path is given by

where the two terminals are excluded from the number of images.

MD.Type NEB

The NEB calculation can be performed by setting the keyword, MD.Type, as

MD.NEB.Spring.Const 0.1 # default=0.1(hartee/borh^2)

In most cases, the obtained path does not largely depend on the value.

MD.Opt.DIIS.History 4 # default=7

MD.Opt.StartDIIS 10 # default=5

MD.maxIter 100 # default=1

MD.Opt.criterion 1.0e-4 # default=1.0e-4 (Hartree/bohr)

The optimization of MEP is performed by a hybrid DIIS+BFGS scheme which is

controlled by the following keywords:

The specification of these keywords are same as for the geometry optimization.

So, see the manual for the details.

The spring constant is given by

Execution of the NEB calculation

mpirun –np 16 openmx C2H4_NEB.dat

One can perform the NEB calculation for C2H4_NEB.dat by

If the calculation successfully completed, the following four files are

generated.

c2h4.neb.opt history of optimization for finding MEP

c2h4.neb.ene total energy of each image

c2h4.neb.xyz atomic coordinates of each image in XYZ format

C2H4_NEB.dat# input file for restarting

c2h4.neb.opt, c2h4.neb.ene, and c2h4.neb.xyz

c2h4.neb.opt
c2h4.neb.ene & c2h4.neb.xyz

They can be used to analyze MEP as follows:

In case of Si8_NEB.dat

As well as the case of C2H4_NEB.dat, one can perform the NEB calculation by

Si8_NEB.dat. After the successful calculation, the following results are obtained.

si8_neb.neb.opt
si8_neb.neb.ene & si8_neb.neb.xyz

Restarting the NEB calculation

It often happens that the convergence is not achieved even

after the maximum optimization step. In such a case, one has

to continue the optimization as a new job starting from the

last optimization step in the previous job. A file, *.dat#, is

generated after every optimization step. The file contains a

series of atomic coordinates for images in the last step.

Using *.dat# one can restart the optimization.

User defined initial path

As default, the initial path connecting the precursor and the product is a straight line

connecting them. However, in some cases the geometrical structure of images generated

on the straight line can be very erratic so that distance between atoms can be too close to

each other. In this case, one should explicitly provide the atomic coordinates of images.

The user defined initial path can be provided by the same way as for the restarting. Then,

one has to provide atomic coordinates for each image by the following keywords:

<NEB1.Atoms.SpeciesAndCoordinates

1 Si -0.12960866043083 0.13490502997627 -0.12924862991035 2.0 2.0

2 Si -0.40252421446808 5.19664433048606 4.91248322056082 2.0 2.0

…..

NEB1.Atoms.SpeciesAndCoordinates>

<NEB2.Atoms.SpeciesAndCoordinates

1 Si -0.08436294149342 -0.02173837971883 -0.08374099211565 2.0 2.0

2 Si -0.33677725120015 5.10216241168093 5.01087499461541 2.0 2.0

…………………

NEB2.Atoms.SpeciesAndCoordinates>

For all the images of which number is given by MD.NEB.Number.Images, the atomic

coordinates need to be provided.

Also, it is required for a keyword to be switched on as

scf.restart on

Monitoring the NEB calculation

In the NEB calculation, the standard output will display

only that for the image 1, and those for the other images

will not be displayed. However, there is no guarantee that

the SCF iteration converges for all the images. In order to

monitor the SCF convergence for all the images,

temporary files can be checked by users. In the NEB

calculation, an input file is generated for each image,

whose name is *.dat_#, where # runs from 0 to
MD.NEB.Number.Images+1, and ‘system.name’ is modified as the

original system.name_#. So, one can check the SCF convergence by

monitoring system.name.DFTSCF whether it converges or not.

Relevant routines

Only three routines are added to implement the NEB

functionality. They are neb.c, neb_run.c, and neb_check.c.

The main routine is neb.c. It may be easy to implement

related methods by employing the structure of neb.c.

openmx()

neb_check()

nec.c

Conventional

calculation

neb calc.?

yesno

Calculation of the total

energies and forces
neb_run.c

calculation of neb forces

and update geometry
nec.cUntil

convergence

Parallelization

Group 0

(proc=0,1,2)

Example

Group 1

(proc=3,4,5)

Group 2

(proc=6,7,8)

Group 3

(proc=9,10,11)

Group 4

(proc=11,12,13)

Group 5

(proc=12,13,14)

Group 6

(proc=15,16,17)

MPI communication groups are generated in nec(), and the calculation of each

image is performed with each group in neg_run().

Close look at code:

call neb_check() from openmx()

Check the NEB

calculation or not.

In openmx()

In neb_check()

If the NEB calculation,

return 1.

Close look at code:

Generation of MPI comm groups in neb()

If the total number of processes is larger than the number of

images, generate MPI comm groups.

Identifiers of generated MPI

comm world are stored.

Index of generated MPI comm

world are stored.

Close look at code:
Calculation of total energy and forces of each image in neb()

Input files for all the

images are generated.

Calculation of

total energy

and forces

Close look at code:
Calculation of NEB forces and update coordinates in neb()

Close look at code:
neb_run()

The basic structure of neb_run() is similar to that of openmx().

