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O(N) Krylov-subspace method for large-scale ab initio electronic structure calculations
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An efficient and robust O(N) method is presented for fully self-consistent large-scale ab initio electronic
structure calculations. Detailed short range and effective long range contributions to the electronic structure are
taken into account by solving an embedded cluster defined in a Krylov subspace, which provides rapid
convergent results for not only insulators but also metals. As illustrations of the capability of the method, we
present three large-scale calculations based on the density functional theory: (i) calculation of full wave
function of DNA, (ii) interaction between a carbon nanotube and metal surface, and (iii) geometry optimization
of a boron doped diamond, which clearly show that the method is a promising approach for realization of
large-scale ab initio calculations for a wide variety of materials including metals.
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I. INTRODUCTION

The development of O(N) or the linear scaling method is
a promising direction of extending applicability of ab initio
electronic structure calculations based on density functional
theory (DFT) to large-scale realistic systems.'~ In fact, over
the last decade, considerable efforts have been devoted to
establish efficient and robust O(N) methods,>*~23 and suc-
cessful applications within non-self-consistent-field (SCF)
tight binding (TB) scheme?*~2¢ and a number of benchmark
calculations within the fully SCF DFT have been
reported.> 1272 Nevertheless, within the fully SCF DFT
much improvement is still needed to reduce the error below
chemical accuracy (a few millihartree/atom at least), referred
to as millihartree accuracy hereafter, for a wide variety of
materials with modest computational cost. In addition, the
application to ab initio calculations tends to be practically
hampered by an intractable feature that an approximate so-
lution of eigenstates by the O(N) methods often induces in-
stabilities in the SCF calculation. In this paper to overcome
these difficulties we present an efficient and robust O(N)
method for a wide variety of materials including metals in
which ideas behind two O(N) methods, divide-conquer
(DC)* and recursion methods,'#!>?3 are unified in a single
framework.

The principles behind the O(N) methods which have been
proposed so far can be roughly classified into two categories:
variational principles®? and perturbative
principles,*>-12-1416-19 while the other O(N) or O(N?) meth-
ods that cannot be simply classified into these categories
exist.?>22 Three O(N) methods we discuss in this paper be-
long to the latter. In the former the local quantity of wave
functions or density matrix in real space is explicitly affected
by all the elements of the Hamiltonian for the whole system.
On the other hand, in the latter it is determined by a finite
range interaction with an implicit coupling with the whole
system via the Poisson equation. This feature may be related
to numerical robustness of both the classified methods,
which has not been well understood yet. Meanwhile, it is
known that the DC method provides rapid convergence for
covalent systems such as biological molecules with numeri-

1098-0121/2006/74(24)/245101(16)

245101-1

PACS number(s): 71.15.Mb

cal stability during the SCF calculation.* However, the appli-
cation of the DC method to metals is significantly restricted
by the requirement of the large size of a truncated cluster. On
the other hand, the recursion method based on Lanczos algo-
rithm and the Green’s function is one of the suitable methods
for metals,>!#15>23 although the SCF calculation with the re-
cursion method becomes unstable. The main idea behind the
recursion method is to employ a Krylov subspace!®!73% gen-
erated by the Lanczos algorithm in evaluating the Green’s
function.?? The dimension of the Krylov subspace, required
for the convergence with respect to the total energy in metals
by the recursion method, is generally much smaller than that
of the original vector space U, defined by the truncated
cluster,'* which is the reason why the recursion method can
be efficient for metals. Thus, we propose a method which
possesses the advantages of two methods and overcomes the
drawbacks. This paper is organized as follows: In Sec. II the
theory of the proposed method is presented with a compari-
son among three O(N) methods and with technical details for
the practical implementation. In Sec. III the convergence
properties of the total energy and selected physical quantities
are presented for insulators, semiconductors, metals, and mo-
lecular systems. In Sec. IV three applications of the method
are discussed to illustrate aspects in practical applications. In
Sec. V we summarize the theory, applicability, and limitation
of the O(N) method.

II. THEORY
A. General

Let us assume that the basis set consists of nonorthogonal
localized functions such as pseudoatomic orbitals (PAO)
(Ref. 31) and finite elements basis.>?> Throughout this paper
we use the PAO y as a basis function to expand one-particle
wave functions.?! The charge density n%(r) associated with
the spin component o is evaluated via the density matrix p
by
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n((r)(r) = 2 Xia(r)XjB(r)pl(‘g,)jﬁ’ = 2 (2 Xia(r)Xjﬁ(r)pl(‘g,)j,8>

ia,jB i \ajp

= 2 n\?(r), (1)

where y is a basis orbital, i a site index, and « an orbital
index for the basis function. The final relation of Eq. (1)
represents a basis for three O(N) methods that the charge
density n is given by the sum of the contributions n; from
each site. Indeed the three O(N) methods we discuss are
methods of calculating approximately the local charge den-
sity n;. The density matrix p is calculated using the one-
particle Green’s function by

- 1 - o ETH
Plajp==_1m f Gﬁa?j,e(E+zo+)f< o

)dE, (2)

where f(x)=1/[1+exp(x)] is the Fermi function and 0% is a
positive infinitesimal. Since the imaginary part of the
Green’s function gives the density matrix in an integrated
form, the evaluation of the density matrix can be replaced by
the evaluation of the Green’s function. The spin index o will
hereafter be dropped for simplicity of notation. It is noted
that only the charge density n and the density matrix p are
required in the conventional DFT. The contribution of the
kinetic term to the total energy is expressed as a function of
the density matrix, and the other contributions are written as
a functional of the charge density.33 Therefore, it would be
enough to discuss how the density matrix can be evaluated
using the Green’s function in an O(N) computational effort,
and we will focus on the evaluation of the Green’s function
in later discussion.

The proposed method can be regarded as a unified scheme
which bridges the DC and recursion methods, therefore, be-
fore discussing the proposed method, let us summarize two
linear scaling methods: the DC and recursion methods. Both
the methods provide different ways of evaluating the Green’s
function from a local Hamiltonian ) and overlap S ma-
trices constructed from the local environment for each site
i.4>14 For each site a truncated cluster is constructed by tak-
ing into account the local arrangement of basis functions as
depicted in Fig. 1(a), indicating that the truncated cluster can
largely overlap each other and can contain the same sites as
the neighboring sites. In this study we construct the truncated
clusters by using both the physical and logical truncation
schemes! which will be explained later. Basis functions be-
longing to the truncated cluster span a subspace U¢ in the
total vector space U spanned by a set of basis functions in
the whole system, i.e., U-C Up.

For each truncated cluster i, a local Hamiltonian H® and
overlap S matrices are constructed for the DC and recur-
sion methods in completely the same way. The simplest way
of finding an approximate Green’s function from the H) and
S¥ is to directly diagonalize the corresponding eigenvalue
problem,®

HO) = 05010, 3)

Using the eigenvalues and eigenstates of Eq. (3), the local
Green’s function is simply given by
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FIG. 1. (Color online) (a) Schematic view of truncated cluster
centered on sites i and j. (b) Schematic view of spatial division of a
truncated cluster into a core (green) and the remaining buffer (blue)
regions. The circles represent the center of localized basis functions
in real space.

(2)= 3, SwdaCnib, (4)
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where Z is a complex number and (i) is dropped for simplic-
ity of notation, and we will drop it for later discussion unless
unambiguity is lost. The evaluation of the Green’s function
by the direct diagonalization is the DC method proposed by
Yang.* The elements in the density matrix associated with
the site i can be found through Eq. (2) from the local Green’s
function, Eq. (4). It is important to notice that in the evalu-
ation of the Green’s function only diagonal and off-diagonal
elements associated with the central site i are calculated from
the eigenvalue problem [Eq. (3)] for the site i, and that all the
elements of the Green’s function required in the calculation
of Eq. (1) are constructed as the sum of parts of the Green’s
function. For a generalization of the central site see the Ap-
pendix. This patchwork of the Green’s function is the com-
mon strategy of the three O(N) methods we discuss, and is
based on a physical intuition that the local electronic struc-
ture of each site i can be approximately determined from the
local atomic arrangement. We will justify this patchwork by
discussing a relation between the local Green’s function and
moments of local density of states later on.

On the other hand, the recursion method>!*!1323 adopts a
different way of evaluating the Green’s function in which the
original vector space U defined by basis functions in the
truncated cluster is mapped to a Krylov subspace with a
smaller dimension rather than directly solving the eigenvalue
problem such as the DC method. In the recursion method'
generalized to nonorthogonal basis, the Krylov subspace Ug
generated by a two-sided Lanczos algorithm is given by
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UK={|W0)’A|W0)’A2|WO)’ sAq|W())}’ (5)

where A= (S®)"'"H® 4 the number of recursion levels in the
Lanczos transformation, and |Wy)=(|i1),]i2), ...,|iM,)) with
basis orbitals |ie) on the site i having M; basis functions. In
a later discussion we will not distinguish a notation repre-
senting the subspace and that for a set of vectors spanning
the subspace. By making full use of a result that the Hamil-
tonian matrix is transformed by the Lanczos algorithm into
the block tridiagonal matrix, the elements of the Green’s
function associated with the central site i can be evaluated by
using a multiple inverse and a recurrence relation instead of
diagonalizing the matrix.'* In general the dimension of Ug
needed for the convergence is much smaller than that of Ug,
which implies Ux CU-C Up. Thus, the computational effort
can be significantly reduced compared to the DC method.
Although the recursion method provides convergent results
for a wide variety of materials in a smaller dimension of Uy
within non-SCF TB schemes,”!#1523 we will show in Sec. III
that the recursion method tends to suffer from the numerical
instability when the method is combined with SCF calcula-
tions.

B. Unified method

As discussed above, although the DC method is a simple
and robust scheme, the direct diagonalization in this scheme
is often impractical for metallic systems, where the size of
the truncated cluster could be large to achieve the millihar-
tree accuracy. In contrast, the computational effort in the
recursion method can be reduced by mapping the original
vector space U defined by the truncated cluster to a smaller
subspace, while the numerical instability during the SCF cal-
culation is a serious problem. Thus, to overcome the draw-
backs we propose a unified method which bridges the DC
and recursion methods. It is worth mentioning that recently a
similar idea has been independently proposed by Takayama
et al. within a non-SCF orthogonal TB model.'®!” To see
why the recursion method can provide convergent results by
a smaller Krylov subspace Uy, taking account of (a—b)~!

=a‘1(1—b/a)‘l=§‘,[°f=0a,b,ﬁ1 for |b/a|<1, the Green’s function

given by Eq. (4) can be rewritten as

)

Giajp2)= >, Hic 6)

with a moment u” in a matrix form defined by
w? = cePct = cc’Hec'He - -+ ¢tHeeT = (STTHYS™,  (7)

where ¢ is a matrix of which column vectors consist of the
eigenvectors and ¢ a diagonal matrix consisting of the eigen-
values. To obtain the final equation (7), note that c'Sc
=cc'S=SccT=1. The moment representation of the Green’s
function by Eq. (6) clearly shows that the Green’s function
can be approximated by terminating the summation for the
moments at a finite order. Meanwhile, it is easily shown
using Eq. (7) that the Hamiltonian HX represented by the
Krylov subspace, Eq. (5), can be expressed by up to (2¢
+1) moments:
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He, = (Wol(ATY"HA" W) = (Wo|S(S™ H)™ " |W,)

= (Wol Sl VS| W), (8)

where the underline of H means a block element of the ma-
trix. Since the indices m and n run from O to ¢, one can see
that the Hamiltonian for S|W,) represented by the Krylov
subspace is constructed by up to (2¢+1) moments. This re-
lation represents that the Green’s function evaluated from H¥
contains up to (2¢g+1) moments in the summation of Eq.
(6).3 The lower order moments play an important role in the
description of the Green’s function,’ and the contribution de-
creases significantly as the order increases. Considering that
the contributions are included from the moments of the lower
order in the recursion method based on a Krylov subspace,
we see that this fact assures the rapid convergence in the
recursion method, while it is difficult to incorporate it into
the SCF calculation due to the numerical instability.

Therefore, by taking account of the rapid convergence in
the recursion method and the robustness of the DC method
with respect to numerical stability, we now develop a DC
method defined in a Krylov subspace. Considering that the
Krylov subspace!®3% can be generally defined by Eq. (5) for
the nonorthogonal basis set, first let us introduce a Krylov
subspace Uy for each site given by

Ug=WX\7!, ©)

where W={|W,),|W,),|W,),...,|W,)} and \* and X are ei-
genvalues and corresponding eigenvectors of an overlap ma-

trix WSW. The subspace W is generated by the following
algorithm:

set |W,), (10)
|Rn+l)=QH|Wn)’ (11)
n

(Wi = Rue) = 2 W) W,[SIR,),  (12)

m=0
(Bn+l)2 = (W;’1+1|‘§|W;;+1)7 (13)
()_\n+1)2 = Z+1(Bn+l)2Tn+l’ (14)
(Bn+l)_] = n+l()_\n+l)_1’ (15)
|Wn+l) = |W;¢+1)(Bn+l)_ls (16)

where the operator S means that the overlap integral between
basis functions is taken into account in the calculation of the
norm between vectors, and the orthogonality among vectors
under the consideration is called S orthogonality, while that
defined by the conventional norm of vectors is called I or-
thogonality throughout this paper. In the generation of a Kry-
lov subspace given by Egs. (10)-(16), we impose only the S
orthogonality between Krylov vectors without assuming any
specific form for the representation of the Hamiltonian ma-
trix, while a tridiagonal form of the Hamiltonian matrix is
imposed in the Lanczos algorithm.>'%?* In principle, al-
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though the procedure by Egs. (10)-(16) gives a set of
S-orthonormal Krylov vectors because of the introduction of
the Gram-Schmidt orthogonalization by Eq. (12), however,
the S orthonormality is not well assured due to round-off
error in the Gram-Schmidt process. Therefore, the Krylov
subspace Uy is given by an orthogonal transformation equa-
tion (9), which keeps the transformed vectors spanning the
same Krylov subspace. One may think that the Gram-
Schmidt orthogonalization equation (12) is now unnecessary
because the Krylov vectors are finally orthogonalized by the
transformation equation (9), however, if we skip the Gram-
Schmidt orthogonalization in the algorithm, a set of gener-
ated vectors by Eq. (11) tends to be linearly dependent on the
Kryrov vectors generated at the previous steps in the middle
of the procedure by Egs. (10)—(16). Thus, it would be impor-
tant to include the Gram-Schmidt orthogonalization for the
numerical stability.

In this algorithm, Eqgs. (10)—(16), Q might be the inverse
of a local overlap matrix S constructed from the same trun-
cated cluster as in the construction of the local Hamiltonian
H, where the cluster is constructed by the logical truncation
method as discussed above. In the case where the large size
of the truncated cluster is required to achieve the millihartree
accuracy, it can be a hard task to calculate the inverse of S.
Thus, Q can be substituted by an approximate inverse. Al-
though a lot of efficient methods of inverting the overlap
matrix have been proposed so far, we now propose a method
of calculating an approximate inverse based on a Krylov sub-
space where the idea is very similar to that considered in Ref.
34. In this method an approximate inverse Q can be evalu-
ated by

0=VS,'Vi, (17)

where Sy=V'SV, and V={|V,),|V)).|V,).,....|Vy)} is gen-
erated by the following algorithm

set |Vq), (18)

|Yn+1) = S|Vn)’ (19)

|VI;+1) = |Yn+1) - 2 |Vm)(vm|Yn+1)7 (20)
m=0

(Dyi1)* = (Vo Vi) (21)

(Z7n+1)2 =RZ+1(D/1+1)2R11+17 (22)

(Dn+1)_1 =Rn+1(z7n+1)_l’ (23)

|Vn+l):V}fl+l(Dn+1)_l' (24)

The algorithm, Egs. (18)—(24), generates a Krylov subspace
Uk, given by

Uy, = {[V0).SIVo).S7I V), ... .87 [Vo)}. (25)

The introduction of the Gram-Schmidt orthogonalization
equation (20) is due to the same reason as in the generation
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of the Krylov subspace Ug. Noting that S7'S
=VIsT(VH)TVisv=l, Sy=V'SV, and (Sy)~!
=V~1S~1(V")~!, we can easily obtain Eq. (17) as an approxi-
mate inverse. As in Eq. (8), the overlap matrix SXs repre-
sented by the Krylov subspace, Eq. (25), can be related to the
moment ug as follows:

SKs = (Vol(ST)"SS| V) = (VoIS | Vo) = (V| ™"V |V),
(26)

where g is a moment defined by eigenvalues and eigenvec-
tors of the local overlap matrix S for the truncated cluster.
Since m and n run from 0 to ¢’, the overlap matrix associated
with |V,) is constructed by up to (2¢’+1) moments, indicat-
ing that Q contains (2¢’+1) moments. Besides the method
based on a Krylov subspace, we also implemented two other
methods of calculating the inverse approximately: an incom-
plete Cholesky decomposition and a Neumann series
expansion37 with second, third, or a higher order expansion.
However, it turned out that the Krylov-subspace method is
more efficient than the two methods.

We have not discussed yet how we should choose the
initial sets of states |V,) and |W,) used in these algorithms for
the generation of Krylov subspaces. In this study the initial
sets of states |V,) and |W,) consist of block
I-orthonormalized vectors and its S-orthonormalized vectors.
However, it should be noted that the optimum choice of | V)
depends on the system under consideration. A possible way
of choosing |V,) is to use a set of basis functions on the
central site i, which is similar to that in the block bond order
potential method.'*!> Another choice is to use a set of basis
functions on the central site plus the neighboring sites. In
most of the calculations in this study we use the latter choice
for the numerical robustness, since the former tends not to
conserve the symmetry of charge distribution to be expected
in symmetric systems due to round-off error. The round-off
error in the generation of Krylov subspace is accumulated as
the iteration step in the procedure by Egs. (10)—(16) in-
creases, and the accumulation tends not to be negligible by
the increase of the number of iteration steps in the case of a
smaller dimension of |V,). In this study, for the latter case the
initial state |V) is constructed by basis functions belonging
to atoms within a sphere with a radius of 1.1 X ryy, where
rnn 18 the distance between the central atom and the nearest
atom.

For numerical stability, it is crucial to construct the Kry-
lov subspace Uy at the first SCF step, and to fix it during
subsequent steps. If the Krylov subspace is regenerated at
every SCF step, the SCF convergence becomes significantly
worse because of the fluctuation of the spanned space, which
is the reason for the instability inherent in the recursion
method coupled with the SCF calculation. If the dimension
of Ug is smaller than that of U, the generated Krylov sub-
space depends on the Hamiltonian H through its multiplica-
tion given by Eq. (11). The fluctuation of the spanned space
may couple with the self-consistent process of charge density
in an indeterminate way as shown in Sec. III.

We are now ready to make full use of the Krylov subspace
generated by the above procedures. By using the Krylov sub-
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space vectors generated by the algorithm equations
(10)—(16), one can transform the representation of Hamil-
tonian from the original basis set into the Krylov vectors. In
the transformation of the representation, we furthermore con-
sider a spatial division of the truncated cluster into a core and
the remaining buffer regions as shown in Fig. 1(b). The core
region in this study is defined by a cluster which is con-
structed by sites having nonzero overlap x;,X;z to the central
site i. Then, the original generalized eigenvalue problem
Hc,=¢,Sc, for the truncated cluster can be transformed to a
standard eigenvalue problem

H*b,=¢,b (27)

m
with

H¥ = U;HUK = uZHCuC + uZHCbub + uZHZbuC + uZHbub
=H*+Hf, (28)

where H., H;,, and H_, are Hamiltonian matrices, represented
by the original basis functions Y, for the core and buffer
regions, and between the core and buffer regions, respec-
tively. Because of the orthogonal transformation equation
(9), it is assured to be U}{SUK:I, and one can obtain the
standard eigenvalue problem instead of a generalized prob-
lem. Considering that the Krylov subspace Uy is decom-
posed to two contributions consisting of the core and buffer
regions, Uf=(u/,u}), it is straightforward to see that HX is
composed by a short range Hf = uZHCuC and the other long
range contributions Hf . Since the required buffer size to sat-
isfy the millihartree accuracy can be large in most cases for
metals, once the long range contributions HY is calculated at
the first SCF step, the matrix can be fixed during subsequent
steps while it is possible to update Hf after achieving the
self-consistency or to recalculate H,K at every SCF step.
Then, the standard eigenvalue problem is diagonalized with
an updated Hf and the fixed HlK during subsequent steps,
which means that the detailed short range contribution to the
electronic structure can be taken into account with an effec-
tive correction by the long range contribution Hf. As a re-
sult, the evaluation of the Green’s function is mapped to a
cluster problem analogous to the DC method,* but with the
effective smaller Hamiltonian HX, which is the meaning of
what we intend by the DC method defined in the Krylov
subspace. Noting that in the density matrix elements having
nonzero overlap x;,Xjp to the central site i can contribute to
the charge density equation (1), the components in the eigen-
vectors required to calculate corresponding density matrix
elements are easily evaluated by a back transformation c,,
=ucb,. It is also noted that the evaluation of the Green’s
function and the density matrix Eq. (2) is trivial in the same
way as for Eq. (4) in the DC method,* since we have the
eigenvalues g, and its corresponding eigenvectors c,,.

The Green’s functions are constructed from the eigen-
value {g,} and its corresponding eigenvectors {c,} as dis-
cussed above, therefore, it is apparent that the method cannot
give a finite DOS at the Fermi energy properly for metallic
systems, since the resultant density of states (DOS) is dis-
crete. However, in the evaluation of the density matrix, {e u}

and {c W»ac; ;g can be regarded as abscissa and weight in a
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quadrature® (but to my knowledge the statement has not
been rigorously proven within the nonorthogonal basis set).
Thus it is expected that the density matrix being an inte-
grated quantity can be accurately evaluated unless we focus
attention on the details of the density of states. For a proper
calculation of the DOS an alternative scheme will be dis-
cussed in Sec. IV.

C. Details on implementation

In this section technical details on the implementation of
the proposed method are given in an algorithm fashion in
order to comprehend the computational flow. The SCF cal-
culation can be performed by a sequence (1)-(2)-(3)-(4)-(5)-
(2)-(4)-(5)-(2)-(4)-(5)--++ in terms of the following proce-
dures.

(1) Truncation of system. A large system is divided into
small truncated clusters by the physical and logical trunca-
tion schemes.!> After picking neighboring sites up within a
sphere with a radius of r,, which is the physical truncation,
we furthermore reconstruct a truncated cluster defined by all
neighbors that can be reached by 7, hops in the cluster con-
sisting of the chosen sites, where the hopping is made when
the distance between sites is smaller than the sum of cutoff
radii of two localized basis functions which are placed in
each site, respectively. The second scheme is called the logi-
cal truncation, and is effective in reducing the energy jump in
MD simulations, since isolated sites having no overlap with
the other sites can be excluded in the truncated cluster. As a
result, the truncated clusters can largely overlap each other as
shown in Fig. 1(a).

(2) Construction of cluster Hamiltonian. For each trun-
cated cluster made by the procedure (1) the Hamiltonian and
overlap matrices are constructed by the same way as in the
conventional DFT calculation. It is worth mentioning that the
Hartree potential is calculated by considering not only the
charge density from the truncated cluster, but also all the
contributions of truncated clusters in the whole system,
which means that each truncated cluster is not isolated in a
vacuum, but embedded in the system without neglecting the
long-range Coulomb interaction. This treatment by the em-
bedded cluster would be crucial for computational accuracy.
The matrix elements associated with site i can be calculated
in a parallel computation without any communication, and
communications among processors are performed to con-
struct the cluster Hamiltonian and overlap matrices for each
truncated cluster.

(3) Generation of Krylov subspace. At only the first SCF
step, the initial state |V,)) is given by a set of basis functions
on the central site of each truncated cluster or a set of basis
functions on the central site plus the neighboring sites, the
initial state |W,) is the S-orthogonalized vectors of |V,). After
generating the Krylov subspace Uy using Egs. (18)—(24), W
is generated using Egs. (10)-(16), where it is recommended
for numerical efficiency to perform the multiplication asso-
ciated with QH and § in a matrix by vector fashion. Finally,
the orthogonal transformation equation (9) yields the Krylov
subspace Uy with S-orthogonal vectors. Then, we only have
to store Uy for subsequent steps. It is quite important to keep
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the subspace Uy generated at the first SCF step for numerical
robustness. The Krylov subspace Uy for each truncated clus-
ter is calculated separately on each processor without com-
munication.

(4) Construction of effective Hamiltonian. The short and-
long-range contributions to the effective Hamiltonian are cal-
culated by Eq. (28) on each processor without communica-
tion. When a large size of the buffer region shown in Fig.
1(b) is taken into account, the long-range contribution calcu-
lated at the first SCF step can be used at subsequent steps for
numerical efficiency.

(5) Self-consistency. The standard eigenvalue problem
with the effective Hamiltonian is diagonalized, and the back
transformation c,=u.b,, yields a set of components of eigen-
vectors required for the calculation of charge density. Then, a
common chemical potential for all the truncated clusters in
the total system is found by a bisection method so that the
total number of electrons in the total system can be con-
served. To efficiently find the common chemical potential let
us define a Green’s function in terms of Mulliken population
by

(i)
K
G(2)=2, GiajpD)Sigiar = > —%5 (29)

a,jp M Z- Eu

with
K = 20 CpiaCppSipia- (30)
ajB

Using the Green’s function in terms of Mulliken population
one can easily find the total number of electrons in the total
system with a chemical potential wu as follows:

Nop=23 {—lImJGi(EHOﬂf(E_“)dE}

kT

() _

=z 57) .

where the factor 2 is for spin multiplicity. Thus, the common
chemical potential to conserve the total number of electrons
can be found by employing Eq. (31) and a bisection method
in which the number of electrons in each truncated cluster
are communicated among processors, and it is a very small
amount of communication. Once the common chemical po-
tential is determined, the elements of the density matrix re-
quired for the calculation of the charge density equation (1)
are evaluated by Eq. (2) with the common chemical poten-
tial. Because of the employment of the common chemical
potential, note that electrons can flow from one truncated
cluster to other truncated clusters. After calculating the
charge density of the whole system by Eq. (1) and mixing the
charge density by an appropriate mixing scheme, the Hartree
potential is calculated by solving the Poisson equation using
a fast Fourier transformation (FFT) not for the truncated
cluster but for the whole system in which many communica-
tions from all the processors to all the other processors are
required.
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III. NUMERICAL RESULTS

A. Computational details

All the calculations in this study were performed by a
DFT code, OPENMX,**3 in which one-particle wave func-
tions are expressed by the linear combination of pseudo-
atomic basis functions (LCPAO) centered on atomic sites,>!
the norm-conserving pseudopotentials are used in a separable
form with multiple projectors to replace the deep core poten-
tial with a shallow potential,***! and a generalized gradient
approximation (GGA)*? to the exchange-correlation potential
is used. The basis functions used are pseudoatomic orbitals
generated by a confinement scheme,’! which are specified by
H4.5-5s2, B4.5-s2pl, C4.5-s2pl, N4.5-s2pl, 04.5-s2pl,
Li8.0-s2, Al6.0-s2p2, Si6.0-s2pldl, P6.0-s2pldl, Fe4.5
-52p2d1, and Mn5.5-52p2d1, where the abbreviation of basis
functions, such as H5.0-s1p1, represents H standing for the
atomic symbol, 5.0 the cutoff radius (Bohr) in the generation
by the confinement scheme, and s1p1 is the employment of
one primitive orbital for each of the s and p orbitals. The
pseudopotentials used are found in Ref. 31. Real space grid
techniques are used with an energy cutoff of 180 Ry as a
required cutoff energy in the numerical integrations and the
solution of the Poisson equation using FFT,*3 while the cut-
off energy is adjusted depending on the size of the unit cell
so that the difference in the cutoff energies used for the a, b,
and ¢ axes can be minimized. In addition, the projector ex-
pansion method is employed in the calculation of three-
center integrals for the deep neutral atom potentials.®> An
electronic temperature of 300 K is used to count the number
of electrons by the Fermi-Dirac distribution function for all
the systems we considered. In most cases for comparison the
k-space conventional diagonalization is also performed with
a large number of k points so that at least the accuracy of
107° hartree/atom can be assured, unless the number of k
points is explicitly specified.

B. Convergence properties

Accuracy and efficiency of the proposed method can be
controlled by two parameters: the size of the truncated clus-
ter and the dimension of the Krylov subspace Uy, and an
optimum choice of these parameters to achieve the millihar-
tree accuracy depends on the systems under consideration.
Thus, for a wide variety of materials convergence properties
of the total energy are shown as a function of the two param-
eters in Figs. 2—4 for bulks with a finite gap, metallic sys-
tems, and low-dimensional molecularlike systems, respec-
tively. For the geometrical structures we studied, the
experimental coordinates are used for carbon and silicon in
the diamond structure, manganese mono-oxide in the rock-
salt structure, bce lithium, fcc aluminum, aluminum lithium
alloy in the B32 structure, and bcc iron. For hexagonal ice
the coordinates were generated by a geometry optimization
with a CHARMM force field,** for deoxyribonucleic acid
(DNA) and dynorphin (Ref. 45), the coordinates were gen-
erated using the software TINKER,*® and for (10,0) carbon
nanotube (CNT) the coordinates were generated with a bond
length of 1.42 A. The geometrical structures of the other
systems will be given as they are discussed.
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FIG. 2. (Color online) Absolute error (hartree/atom) in the total
energy with respect to the conventional diagonalization scheme for
(a) carbon in the diamond structure, (b) silicon in the diamond
structure, (c) manganese mono-oxide in the rocksalt structure, and
(d) hexagonal ice for the different size of the truncated cluster as a
function of the dimension of the Krylov subspace Ug. The number
represents the average number of atoms in each truncated cluster of
which core and buffer regions consist of the number of atoms given
by the first and second numbers in the parentheses, respectively.
The dotted horizontal line shows the millihartree accuracy for com-
parison. The updated Hf means that the long-range contribution Hf
in Eq. (28) is recalculated at every SCF step.

For bulks with a finite gap, we see that a truncated cluster
consisting of 100-150 atoms reproduces the total energy cal-
culated by the conventional k-space scheme within the mil-
lihartree accuracy. For carbon and silicon in the diamond
structure, the total energy converges rapidly as a function of
the dimension of the Krylov subspace Ug, and it suggests
that about 40% of the total number of basis functions in the
truncated cluster is enough for the convergence, where the
largest dimension of the Krylov subspace for each size of
truncated cluster in figures corresponds to the number of ba-
sis functions in the truncated cluster. In all the calculations
by the proposed method, the dimension of Krylov subspace
UKs for the overlap matrix is taken as 4 times that of Uy,
since it turned out that an excess of approximation of S~!
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FIG. 3. (Color online) Absolute error (hartree/atom) in the total
energy with respect to the conventional diagonalization scheme for
(a) lithium in the bce structure, (b) aluminum in the fcc structure,
(c) aluminum lithium alloy in the B32 structure, and (d) iron in the
bee structure for the different size of the truncated cluster as a
function of the dimension of the Krylov subspace Ug. For the num-
bers, the dotted horizontal line, and updated Hf, see the caption of
Fig. 2.

leads a slow convergence of the total energy as a function of
the dimension of the Krylov subspace Ug. To see the error
introduced by the fixed long-range contribution HX, a calcu-
lation using the updated Hf is also shown, indicating that for
carbon and silicon the absolute error by the fixed Hy is less
than 107> hartree/atom. Even for ionic bulk systems such as
MnO bulk and ice, the absolute error in the total energy is
less than 1073 hartree/atom at about 40% of the total number
of basis functions in the truncated cluster. On the other hand,
the absolute error by the fixed Hf is larger than that in the
case of carbon and silicon. This is due to the large variation
in the charge distribution during the SCF process, which im-
plies that for ionic systems it is better to update Hf at every
SCF step.

For simple metals such as bce lithium and fcc aluminum,
the total energy converges very rapidly as a function of the
dimension of the Krylov subspace. However, a relatively
large size of the truncated cluster is required to achieve the

245101-7



TAISUKE OZAKI

—e— 37 (37,0)

—+— 184 (37,147)
——184 (37,147)+updated H/

10°F (a)DNA (CG)

0 200 400 600 800

(b) Small peptide (dynorphin A)

——aA

10°F  —e— 31(31,0)

107k —— 91(31,60) ]
o —178(31,147)

10 | ——178(31,147)+updated H/‘

10" : : : : :

0 200 400 600

(c) (10,0) carbon nanotube

—e— 27 (27,0)

—— 91 (27,64)

—+—153 (27,126)

—— 153 (27,126)+updated H¢

Absolute Error in Total Energy (hartree/atom)

0 200 40 600 800
Dimension of Krylov subspace Ug

FIG. 4. (Color online) Absolute error (hartree/atom) in the total
energy with respect to the conventional diagonalization scheme for
(a) DNA with a periodic double helix structure (650 atoms/unit)
consisting of cytosines and guanines, (b) a dynorphin A which is a
small peptide consisting of 312 atoms, and (c) a zigzag (10,0) car-
bon nanotube for the different size of the truncated cluster as a
function of the dimension of the Krylov subspace Ug. For the num-
bers, the dotted horizontal line, and updated Hf, see the caption of
Fig. 2.

millihartree accuracy. Especially for bee lithium, even the
largest size of the truncated cluster consisting of 537 atoms
does not satisfy the millihartree accuracy, which suggests
that the DC method can be very time consuming, as shown
later. The total energy for B32 aluminum lithium binary alloy
converges at a relatively smaller dimension of the Krylov
subspace, while the size of the truncated cluster required for
the millihartree accuracy exceeds 250 atoms, which is larger
than that for the gap systems. For the bcc iron the total en-
ergy shows a little fluctuation as a function of the dimension
of the Krylov subspace, while the millihartree accuracy is
reachable using a truncated cluster consisting of 254 atoms.
The fluctuation of total energy originates from the density of
states in bec iron, since the density of states for the majority
spin possesses a rather sharp peak assigned to the localized d
orbitals near the Fermi energy, and this position relative to
the Fermi energy can largely affect the total energy and the
magnetic moment. Although no information on whether the
system is insulating or metallic is required for the construc-
tion of the Green’s function equation (4), many eigenvalues
will appear near the Fermi energy in metallic systems. This
feature makes the convergence difficult, since the density
matrix calculated by Eq. (2) is sensitive to the change in the
eigenvalues near the Fermi energy, and bcc iron is the case.
The comparison between the fixed and updated Hf shows
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that the absolute error by the fixed Hf would be negligible
for metallic systems. An important result in the calculations
for metallic systems is that a large size of truncated cluster is
required to achieve the millihartree accuracy, which suggests
that mapping to a smaller Krylov subspace is crucial for the
efficient calculation rather than performing a direct diagonal-
ization by the DC method.

For covalent and molecularlike systems such as DNA, a
small peptide, and a carbon nanotube, the absolute error in
the total energy drops to below the millihartree accuracy at a
smaller size of the truncated cluster compared to those for
bulks with a finite gap and metallic systems. However, we
see that for DNA and the small peptide being ionic and non-
periodic, the total energy converges slowly as a function of
the dimension of the Krylov subspace compared to that in
homogeneous systems such as carbon, silicon in the diamond
structure, bee lithium, and fcc aluminum, which indicates
that higher order moments in Eq. (6) contributes substan-
tially to the precise description of the complicated density of
states. If a truncated cluster consisting of about 180 atoms is
used for molecular systems, the absolute error in the total
energy can be below 107> hartree/atom. In this case the long-
range contribution Hf should be updated at every SCF step,
since the absolute error by the fixed H{( is comparable to the
accuracy of 10~ hartree/atom.

Figure 5 shows convergence properties of selected physi-
cal quantities. For MnO bulk the proposed method repro-
duces well the local magnetic moment calculated by the con-
ventional k-space scheme. On the other hand, for bcc iron
even the largest size of the truncated cluster does not fully
converge to that by the k-space scheme, which is attributed
to a rather sharp peak near the Fermi energy in the density of
states for the majority spin, suggesting that a larger size of
truncated cluster is needed for the fully convergent result.
The x component of the largest force on the atom in DNA
and the dipole moment of the small peptide calculated by the
k-space scheme are reproduced well by even a smaller size
of the truncated cluster, while the complete convergent re-
sults are obtained by updating the long-range contribution
Hf.

From these convergence properties of the total energy and
physical quantities, several trends can be summarized as fol-
lows: (1) The size of truncated cluster required for the mil-
lihartree accuracy increases in order of the molecular sys-
tems of which chemical bonds are nearly one dimensional,
bulks with a finite gap, and metallic systems, and rough es-
timates for the size of the truncated cluster are about 50, 150,
and 300 atoms, respectively. (2) In homogeneous systems
consisting of a single element the rapid convergence can be
obtained at a smaller dimension of the Krylov subspace Uy,
while the dimension required for the millihartree accuracy
increases as structural randomness and ionicity increase. (3)
The absolute error in the total energy by the fixed H{( is
about 1075 hartree/atom in most cases, and the magnitude
seems to increase slightly as ionicity increases.

C. Comparison of O(N) methods

In Fig. 6 the absolute error in the total energy and the
computational time calculated by two O(N) methods, the
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FIG. 5. (Color online) Convergence properties of selected physi-
cal quantities: (a) local magnetic moment of the manganese site in
manganese mono-oxide of the rocksalt structure, (b) local magnetic
moment in iron of the bce structure, (¢) x component of the largest
force on atom in the DNA with a periodic double helix structure,
and (d) absolute dipole moment of a small peptide (dynorphin A)
for the different size of the truncated cluster as a function of the
dimension of the Krylov subspace Ug. The dotted horizontal line
shows the result calculated by a conventional diagonalization
scheme. For the numbers and updated Hf, see the caption of Fig. 2.

proposed and DC methods, are shown as a function of the
number of atoms in each truncated cluster for bec lithium
bulk. It is found that two methods are equivalent with regard
to the accuracy. However, we see that the computational time
of the proposed method is remarkably reduced compared to
that of the DC method. In the proposed method the dimen-
sion of the Krylov subspace Uy and that of the subspace UKs
for the approximate inverse of the overlap matrix are 10%
and 40% of the total number of basis functions in the trun-
cated cluster, respectively. In spite of the considerable reduc-
tion of the spanned space, the method gives the same result
as that of the DC method, which clearly shows the rapid
convergence of the proposed method based on the Krylov
subspace. Considering the general trends in the convergence
properties, in comparison with the DC method, we see that
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FIG. 6. (Color online) (a) Absolute error, with respect to a con-
ventional diagonalization scheme, in the total energy (hartree/atom)
for bee lithium bulk as a function of atoms in each truncated cluster
calculated by two linear scaling methods, (b) computational time (s)
for the diagonalization part per MD step. The number of atoms in
the core region is 113. The dimension of subspaces Ug and UKs are
taken as 10% and 40% of the total number of basis functions in the
truncated cluster, respectively. The calculations were performed us-
ing one processor of the Opteron machine.

the proposed method is more efficient, especially for metallic
systems.

To compare the numerical stability, the convergent history
of the residual norm in the SCF calculation is shown in Fig.
7 for the conventional k-space diagonalization and four lin-
ear scaling methods for fcc aluminum. The residual norm of
charge density by the conventional k-space diagonalization,
proposed, and DC methods quickly decreases, while the con-
vergent result is hardly obtained in the proposed method with
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FIG. 7. (Color online) The residual norm of charge density as a
function of SCF steps calculated by the conventional k-space diago-
nalization, the proposed, its variant with the regeneration of the
Krylov subspace, DC, and recursion methods for fcc aluminum
bulk. In the proposed method, the core and buffer regions contain
55 and 242 atoms, respectively. The dimension of subspaces Uy and
UKs are taken as 22% and 88% of the total number of basis func-
tions in the truncated cluster, respectively. After applying a simple
mixing method until 11 SCF steps, a residual minimization method-
direct inversion in the iterative subspace (RMM-DIIS) is used for
later SCF steps.
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FIG. 8. (Color online) The elapsed time for the diagonalization
part per MD step calculated by the conventional k-space diagonal-
ization, the proposed, and the DC methods using (a) 8 and (b) 32
processors on an Opteron PC cluster for diamond carbon as a func-
tion of the number of atoms in the supercell. For the conventional
scheme, only the I' point was used. For the proposed and DC meth-
ods, the number of atoms in the truncated cluster is 159, and in the
proposed method the dimension of subspaces Ug and U K are taken
as 50% and 100% of the total number of basis functions in the
truncated cluster, respectively.

the regeneration of the Krylov subspace and the recursion
method. The comparison between the proposed method and
its variant with the regeneration of the Krylov subspace sug-
gests a reason why the recursion method tends to suffer from
the numerical instability. The regeneration of the Krylov sub-
space makes the spanned subspace fluctuate, which means
that an eigenvalue problem defined by a different subspace is
solved at every SCF step. This fluctuation of the spanned
space causes the difficulty in obtaining the SCF convergence
for the recursion method. On the other hand, in the proposed

FIG. 9. (Color) Isosurface maps of (a) the highest occupied
(HO) and (b) the lowest unoccupied (LU) state, at the I" point, of a
DNA with a periodic double helix structure (650 atoms/unit) con-
sisting of cytosines and guanines, calculated by the proposed
method plus one-shot full diagonalization. The red and blue colors
represent the isosurface with plus and minus values, respectively,
where an isovalue of 0.007 electron/bohr? is used.
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method without the regeneration of the Krylov subspace the
difficulty is avoided since the spanned space is fixed during
the SCF calculation.

For diamond carbon the crossing point between the pro-
posed and conventional k-space diagonalization methods
with respect to the computational time is about 500 and 250
atoms using 8 and 32 processors, respectively, as shown in
Fig. 8. The method can be easily parallelized on a distributed
memory parallel machine, since the calculation of each trun-
cated cluster is performed almost independently with a small
communication for the calculation of the total number of
electrons, suggesting that the parallel efficiency of this
method is superior to that of the k-space diagonalization.
Therefore, the crossing point is dependent on the number of
processors used, and decreases as the number of processors
increases, as shown in Fig. 8. Since 50% of the total number
of basis functions in the truncated cluster is used for the
dimension of Krylov subspace, the computational speed
should be 2°=8 times faster than the DC method as far as the
computational part for diagonalization, while the actual
speed up ratio is 5.8 times in the case of the super cell con-
taining 1000 atoms calculated using 32 processors.

IV. APPLICATIONS

To illustrate practical aspects in the applications of the
proposed O(N) method, we present three applications of the
O(N) methods: (A) calculation of full wave functions of
DNA, (B) interaction between a finite carbon nanotube and
aluminum surface, and (C) geometry optimization of boron
doped diamond.

A. Calculation of full wave functions of DNA

Since the proposed method is based on the evaluation of a
local Green’s function rather than wave functions, one can-
not obtain full one-particle wave functions of large-scale sys-
tems from the O(N) calculation directly. However, the full
wave functions can often be useful for gaining an insight into
the system and obtaining information on the phase factor of
wave functions. An alternative scheme of obtaining the wave
functions is to diagonalize once the whole system by a con-
ventional diagonalization scheme after obtaining the self-
consistent charge distribution using the O(N) method. For
the one-shot diagonalization it is a simple but key idea to
make use of the self-consistent charge distribution obtained
by the O(N) method. Figure 9 shows the full wave functions
calculated by the alternative scheme which correspond to the
highest occupied (HO) state and the lowest unoccupied (LU)
state, at the I" point, of the same DNA as discussed in the
previous section. For this calculation the cutoff radius to con-
struct a physical truncated cluster is 10.0 A, and the number
of hopping is three for the construction of a logically trun-
cated cluster, giving 183 as the average number of atoms in
each truncated cluster. The dimension of the Krylov sub-
space Ug is 400, and the inverse of overlap matrix is exactly
calculated by the Cholesky decomposition instead of the
Krylov subspace method. The long-range contribution Hf is
updated at every SCF step. Under the calculation condition
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FIG. 10. (Color online) Density of states of the same DNA as in
Fig. 9, calculated by the conventional k-space diagonalization with
only the I' point and the proposed method plus one-shot full diago-
nalization. The discrete spectrum is smeared out using a Gaussian
broadening method with a width of 0.15 eV.

the absolute error, with respect to a conventional diagonal-
ization scheme, in the total energy is 0.000 064 hartree/atom.
We see that the HO state consists of guanines and that the
LU wave function extends on only cytosines in which two
parallel guanines (cytosines) form a bonding state in the HO
(LU) state. No significant contribution from the backbone
consisting of pentoses connected with phosphodiester link-
age is found for both the states. The feature originates from
the HO state, located at a relatively higher energy, of guanine
molecules and the low lying LU state of cytosine
molecules.*’*® A comparison on the density of states (DOS)
between the alternative scheme and a conventional diagonal-
ization method in which the calculation was performed self-
consistently using the conventional diagonalization method
from the beginning is shown in Fig. 10. The alternative
scheme reproduces well the DOS calculated by the conven-
tional scheme for a wide range of energy, supporting the
proposed O(N) method as being accurate enough in assuring
the validity of the alternative scheme of calculating the full
wave functions.

B. Interaction between a carbon nanotube and metal surface

A significant aspect of the proposed method is that metal-
lic systems can be treated on the same footing as systems
with a finite gap. To illustrate the capability, we show a cal-
culation on the interaction between a finite-sized carbon
nanotube (CNT) and aluminum surface. A (10,0) zigzag car-
bon nanotube we considered consisting of 339 carbon atoms
with a finite length of 35 A possesses dangling bonds intro-
duced by the chopping at both edges, which are expected to
exhibit local magnetic moments. No hydrogen passivation is
made at both the edges. In addition, a defect, generated by
removing a carbon atom, is introduced at the central region
with respect to the long axis and the counter side of that of
CNT facing the aluminum surface. Carbon atoms around this
defect may also exhibit a local magnetic moment due to the
dangling bonds. The structure of CNT is constructed by as-
suming that all the bond lengths between two carbon atoms
are 1.42 A. The aluminum surface we considered consists of
12 X4 X 4 cubic cells with a lattice constant 4.05 A, each of
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which contains four aluminum atoms, thus it contains a total
of 768 aluminum atoms. The CNT is placed along [100] axis
on the (001) surface so that some of carbon atoms facing the
surface can be on top of the aluminum atoms consisting of
the (001) surface with an interatomic distance of 2.0 A be-
tween the carbon and aluminum atoms. For both the struc-
tures of the CNT and the aluminum surface no optimization
is performed. The total composite system is treated as a slab
model of which the unit cell volume is 48.6X 16 X33 A3,
For the proposed method the cutoff radius to construct a
physical truncated cluster is 11.0 A, and the number of hop-
ping is three for the construction of a logically truncated
cluster. The dimension of the Krylov subspace Ug is 800,
and the inverse of an overlap matrix is exactly calculated by
the Cholesky decomposition instead of the Krylov subspace
method. The long-range contribution Hf is updated at every
SCF step. Under the calculation condition the absolute error,
with respect to a conventional diagonalization scheme, in the
total energy is 0.00443 and 0.00014 hartree/atom for fcc alu-
minum and a periodic (10,0) carbon nanotube without the
edges, respectively. For a comparison between the proposed
and the conventional methods we also performed a conven-
tional k-space calculation with only the I" point for the same
composite system. The elapsed time for the diagonalization
part is about 19 and 185 minutes per SCF step for the pro-
posed method and the conventional diagonalization, respec-
tively, using 45 Opteron processors.

Figure 11(a) shows an isosurface map of spin charge den-
sity and a profile of charge density along a line denoted by an
arrow in the composite system. A comparison between the
proposed and the conventional k-space methods in the profile
of charge density shows that the proposed method very ac-
curately reproduces the spatial charge distribution in the vi-
cinity of not only the CNT, but also the metallic slab. Large
magnetic moments can be found around the edges of the
CNT and the neighboring carbon atoms to the defect. Al-
though the magnetic moment around the edges is mainly
attributed to the dangling bonds corresponding to lone pair o
electrons in the most outside atoms, the relatively inner at-
oms without the dangling bond also exhibit considerable
magnetic moments in which the local spins are ferromagneti-
cally ordered along the circumference and antiferromagneti-
cally ordered between two circumferences. This feature is
consistent with a result by the other DFT calculation,*
showing the spin polarization of 7 electrons near the zigzag
edge in a finite sized zigzag CNT with hydrogen passivation.
The magnetic moments of the most outside atoms labeled by
C4-Cs4 and the next inner atoms labeled by C,z-Cgp are
listed in Table I, where C;, and C,; are the most distant
carbon atoms in the circumferences from the aluminum sur-
face, Cs, and Cgp are the closest ones, and the other ones are
in between the former and the latter. The magnetic moments
of the most outside atoms and the next inner atoms are about
1.2 and 0.13 (up), respectively, while they vary depending
on the relative position to the aluminum surface. The mag-
netic moment of neighboring atoms to the defect is much
smaller than that of the most outside atoms in spite of the
existence of lone pair o electrons. In addition, the same trend
as in the edge regions is found in the magnetic ordering
between two circumferences, i.e., two local spins of C;y and
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FIG. 11. (Color) (a) Isosurface map of spin charge density for a
(10,0) finite sized zigzag carbon nanotube on aluminum surface and
a profile of charge density along a line denoted by an arrow which
points the center of the plane perpendicular to the paper. Isosurface
maps of (b) difference charge density and (c) difference spin den-
sity, where the difference charge (spin) density is defined as the
difference between the composite system and the sum of the iso-
lated CNT and the slab with respect to the charge (spin) density.
The small gray circles denote aluminum atoms. The red and blue
colors represent the isosurface with plus and minus values, respec-
tively, where an isovalue of 0.0018 electron/bohr’ is used for all
the cases.

C,y siting in the same circumference are ferromagnetically
ordered and antiferromagnetic ordering is observed between
atoms C;y and Cjy or C,y and Cyy in two circumferences.
The decrease in the magnetic moment of the neighboring
atoms to the defect may be attributed to the decrease in the
number of neighboring atoms with a dangling bond in the
same circumference, which may contribute to the enhance-
ment of the ferromagnetic ordering. However, further study
will be needed for a conclusive understanding on the magni-
tude of magnetic moments. A comparison between the pro-
posed and the conventional k-space methods in the Mulliken
charge and spin moment listed in Table I clearly shows the
accuracy of the proposed method. The Mulliken charge is
very accurately reproduced with an absolute error of 0.005 at
most, while the error with respect to the conventional
k-space result in the spin moment tends to be larger than that
for the Mulliken charge.
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TABLE 1. Mulliken charge and spin moment (up) of selected
atoms in the CNT on the aluminum surface, calculated by the pro-
posed O(N) method and a conventional k-space diagonalization. For
the labeling of carbon sites see the text.

Charge Spin moment

Carbon site O(N)  Conventional O(N) Conventional
Cia 4.032 4.029 1.264 1.280
Coy 4.028 4.033 1.259 1.224
Csy 4.036 4.038 1.178 1.168
Cyu 4.047 4.051 1.115 1.121
Csy 4.147 4.142 0.367 0.512
Ciz 4.005 4.005 —-0.148 -0.149
Cop 4.004 4.004 —-0.146 -0.144
Csp 4.003 4.003 -0.135 -0.133
Cyp 4.008 4.007 -0.121 -0.122
Csp 4.005 4.005 -0.091 -0.105
Cen 4.145 4.144 -0.069 -0.081
Cyy 4.039 4.036 0.656 0.659
Cyy 4.040 4.036 0.645 0.657
Csy 3.997 3.995 —-0.364 -0.373

Isosurface maps of the difference charge density and dif-
ference spin density are shown in Figs. 11(b) and 11(c), re-
spectively, where the difference charge (spin) density is de-
fined as the difference between the composite system and the
sum of the isolated CNT and the slab with respect to the
charge (spin) density. We see that electrons in the region just
above the aluminum surface transfer to the region around the
bottom of the CNT corresponding to the side facing the alu-
minum surface, the most outside atoms, and the peripheral
atoms to the defect. The charge transfer between the region
just above the aluminum surface and the region around the
bottom of the CNT can be regarded as a typical ohmic con-
tact. On the other hand, the charge transfer into atoms with
the dangling bond can be considered as a charge doping to
impurity states lying between the valence and conduction
states, while the magnitude of charge transfer decreases rap-
idly as the distance between the carbon and the surface in-
creases. Another interesting finding is a Friedel oscillation in
the difference charge density, i.e., the increase and decrease
of charge density appear alternatively along the depth direc-
tion in the aluminum slab, which suggests that the composite
system cannot be modeled by a thin slab. Also we see that
the charge doping to dangling bonds depresses the magnetic
moment as shown in Fig. 11(c), indicating that the states for
the minority spin are located just above those of the majority
spin.

Table II shows the total energies of the isolated CNT, the
aluminum slab, and the composite system calculated by the
proposed O(N) method and the conventional diagonalization
scheme. For the isolated CNT the absolute error with respect
to the conventional diagonalization in the total energy is
about 0.02 hartree (0.000 06 hartree/atom), while that for the
aluminum slab is 0.000 86 hartree/atom which is 14 times
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TABLE II. The total energies (hartree) of the isolated CNT, the aluminum slab, and the composite system
calculated by the proposed O(N) method and a conventional diagonalization scheme. AE stands for the
difference between the O(N) method and the conventional scheme. The CNT+Al slab means a simple

summation in the total energies.

O(N) Conventional AE
CNT —1941.39378 —1941.41657 0.02279
Al slab -37136.19912 -37136.86054 0.66142
CNT+Al slab -39077.59289 -39078.27711 0.68421
CNT on Al slab -39077.29141 -39078.07384 0.78243
(CNT on Al slab)-(CNT+Al slab) 0.30148 0.20327 0.09822

larger than the former. The interaction energy between the
CNT and the aluminum slab is calculated as 0.301 and
0.203 hartree by the proposed method and the conventional
diagonalization, respectively. Although there is a cancellation
of the error in the calculation of the interaction energy, the
absolute error in the interaction energy is 0.098 hartree
(2.7 eV), and it is not negligible, which suggests that a fur-
ther severe calculation condition is needed for a more accu-
rate calculation of this composite system. Also the positive
interaction energy implies the importance of the geometry
optimization to treat the interaction of the composite system
properly. The further study and details will be discussed else-
where.

C. Geometry optimization of boron doped diamond

The force on the atom calculated by the proposed O(N)
method is not derived from a variational principle, but evalu-
ated by employing an expression based on the Hellman-
Feynman theorem with a Pulay correction which can be
variationally derived only if the eigenvalue problem is ex-
actly solved. Thus, the force is not consistent with the total
energy within the proposed O(N) method unless a infinitely
large truncated cluster is used, which can be a disadvantage
in the method. However, if the calculated forces are accurate
enough so that the geometry optimization can be converged
within a criterion of 10™* hartree/bohr, such a geometry op-
timization may be applicable to a wide variety of problems
in a practical sense. Along this line a geometry optimization
by the proposed O(N) method is demonstrated for a boron
doped diamond of which a supercell contains 62 carbon at-
oms and two boron atoms as nearest neighbors.>® The lattice
constant of 3.567 A is used, and the unit cell is fixed during
the relaxation. Figure 12 shows the absolute maximum force
on the atom in the geometry optimization as a function of the
optimization steps, calculated by a conventional k-space di-
agonalization and the proposed O(N) method with four cal-
culation conditions in which the number of atoms in each
truncated cluster is 159, 275, 381, and 525, and the dimen-
sion of the Krylov subspace is 425, 800, 1100, and 1600 for
Krylovl, Krylov2, Krylov3, and Krylov4, respectively, and
for all the cases the long-range contribution HIK is updated at
every SCF step, and the inverse of the overlap matrix is
exactly calculated by the Cholesky decomposition. It is
found that the absolute maximum force by the proposed

O(N) method fluctuates after converging at a certain level
ranging from 1075 to 1073 hartree/atom, which implies the
error in the force calculated by the proposed O(N) method,
while in the conventional scheme it converges rapidly. The
error in the force decreases as the number of atoms in the
truncated cluster and the dimension of the Krylov subspace
increase, and the criterion of 10~* hartree/bohr is satisfied in
the most severe condition we studied. As shown in Table III
selected bond lengths, bond angles, and the relaxation energy
obtained by the proposed method converge to those by the
conventional k-space scheme as the calculation condition be-
comes severe, and the most severe condition Krylov4 almost
reproduces the k-space results. Thus, for practical purposes it
is possible to perform the geometry optimization using the
proposed O(N) method with careful attention to the accuracy.

V. CONCLUSIONS

To conclude, we have developed an efficient and robust
O(N) method based on a Krylov subspace for fully self-
consistent large-scale ab initio electronic structure calcula-
tions of a wide variety of materials including metals. Based
on the Krylov subspace an embedded cluster problem is
solved with an effective Hamiltonian consisting of the de-
tailed short-range and the effective long-range contributions.

—e— k-space

e Krylov1 E
—— Krylov2
—+— Krylov3
v Krylov4

Maximum force on atom (hartree/bohr)
o
o

i - - /«.*ur\/‘:
10 RV Vi ., GV Yo vy,"'\'~
107k 1

—6 L L 1 1
10 10 20 30 40

Geometry optimization steps

FIG. 12. (Color online) The absolute maximum force on the
atom in the boron doped diamond as a function of the geometry
optimization steps. For the calculation conditions of the proposed
O(N) method see text. After applying a steepest descent (SD)
method until 14 optimization steps, the RMM-DIIS for geometry
optimization is used for later steps.
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TABLE III. Selected bond lengths (A), bond angles (deg), and the relaxation energy (hartree) of boron
doped diamond, calculated by the conventional k-space diagonalization with k points of 7 X7 X7 and the
proposed O(N) method with four calculation conditions. For calculation conditions, see text. C; and C, stand
for the nearest-neighbor atom and one of the next-nearest-neighbor atoms, respectively. The relaxation energy
is defined by the energy difference between the unrelaxed and relaxed structures, where the unrelaxed
structure is a structure obtained by substitution of two boron atoms to the diamond super lattice. The other
theoretical results (Ref. 50) for r(B-B) and 2 (BBC,) are 1.94 A and 101°, respectively.

Krylov1 Krylov2 Krylov3 Krylov4 k space
r(B-B) 1.975 1.977 1.983 1.988 1.990
r(B-C)) 1.544 1.544 1.543 1.544 1.543
r(C;-Cy) 1.567 1.568 1.568 1.568 1.568
/(BBC,) 100.60 100.57 100.52 100.40 100.37
/(C,BC)) 116.64 116.72 116.74 116.81 116.83
AE 0.0644 0.0625 0.0576 0.0615 0.0626
The charge flow between embedded clusters is taken into ACKNOWLEDGMENTS

account by introducing a common chemical potential, and
also the long-range Coulomb interaction is properly included
by solving the Poisson equation for the whole system. The
method can be regarded as a unified approach connecting the
DC and recursion methods, and enables us to obtain conver-
gent results with the millihartree accuracy for a wide variety
of materials. The almost independent calculation for each
truncated cluster assures easiness of the parallel implemen-
tation and the high parallel efficiency.

The accuracy and efficiency of the method are mainly
controlled by two parameters, the size of the truncated clus-
ter and the dimension of the Krylov subspace, and the opti-
mum choice depends on the system under consideration. A
systematic study for the convergence properties of the total
energy and physical quantities provides a practical guidelines
for adjusting the accuracy and efficiency: (1) the millihartree
accuracy can be achieved by the truncated cluster including
about 50, 150, and 300 atoms for molecular systems, bulks
with a finite gap, and metallic systems, respectively, which
can be a minimum size of truncated cluster. (2) In most cases
the convergent result for a given truncated cluster can be
obtained by less than 50% of the total number of basis func-
tions in the truncated cluster for the dimension of the Krylov
subspace, which means that the proposed O(N) method is
faster than the DC method, while the dimension required for
the millihartree accuracy increases as structural randomness
and ionicity increase.

The applications of the O(N) method to three examples,
(A) calculation of full wave functions of DNA, (B) interac-
tion between a carbon nanotube and metal surface, and (C)
geometry optimization of boron doped diamond, show that
the O(N) method can be applicable even for a composite
system including metallic systems with considerable accu-
racy. However, it should be noted that the required accuracy
depends on the physical quantity under consideration, and
that a careful consideration to the convergence property of
the physical quantity is indispensable before performing
large-scale calculations. With careful consideration it can be
concluded that the proposed O(N) method is a quite promis-
ing approach for realization of large-scale ab initio electronic
structure calculations for a wide variety of materials.
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tinuous encouragement. The author was partly supported by
CREST-JST and NAREGI Nanoscience Project, the Ministry
of Education, Science, Sports and Culture, Japan. Part of the
computation in this work was done using the computational
facilities of the Japan Advanced Institute of Science and
Technology (JAIST).

APPENDIX

We show here that it is possible to minimize the compu-
tational time in the DC method by optimizing the size of the
central region where the associated Green’s function is
evaluated. The argument, with a little modification, holds
even for the Krylov subspace method proposed in this paper.
In the original DC method* only the Green’s functions asso-
ciated with the single central site are evaluated using Eq. (4).
However, instead of the single site one can adopt the clus-
tered sites, including multiple sites, as the central region
where the associated Green’s function are evaluated. In this
generalization to the central region, there is an optimum size
of the central region to minimize the computational time as
shown by the following simple consideration: In the conven-
tional diagonalization the computational time 73 is given by

Tya=yN°, (A1)

where 7y is a prefactor, and N the number of sites in the
whole system; it is assumed that all the sites contain a single
basis function and that only the I" point is taken into account.
On the other hand, the computational time Tgpc of the gen-
eralized DC (GDC) method can be estimated for a uniform
system by

N
Tepe= Yne+ng)® X —, (A2)

ne
where n. is the number of the sites in the central region
where the associated Green’s functions are evaluated and np
is the number of remaining sites in the buffer region. It it
noted that the central and buffer regions used here are differ-
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ent from those depicted by Fig. 1. Since the total number of
sites ny in the truncated cluster is the sum of n. and ny and
the number of the truncated cluster is N/n, provided that the
Green’s function associated with the central region is evalu-
ated in the calculation of each truncated cluster, the compu-
tational time should scale as the third power of n; and be
proportional to the number of truncated clusters N/nc. Then,
considering dTgpc/dnc=0, an optimum number of the cen-
tral sites is given by

1
n(Copt) =25 (A3)

Thus, we find a simple relation that the computational time
can be minimized when 7. is one-half of np. Substltutmg Eq.
(A3) into Eq. (A2) and noting n . (opt) _ | =3ny and n((’pt)— Snp, we
have

TSR =3yn2N. (Ad)

Compared to the original DC method we see that the order of
ny in the prefactor is reduced from three to two. Equating

PHYSICAL REVIEW B 74, 245101 (2006)

Tg’g% with Tys the crossing point N Cfg; between the GDC
method and the conventional diagonalization with respect to

the computational time is written as

N©PY — v3n

Cross (AS)
It is found that the crossing point is proportional to the num-
ber of sites in the truncated cluster, while that for the original
DC method scales as nT It is noted that the above discus-
sion holds for a system with any dimensionality and that the
same conclusion can also be obtained by chain, square, and
cubic tight binding lattice models with a little approximation.
However, how the whole system can be divided into a set of
central regions depends on the dimensionality of the system.
Although for one-dimensional systems it is rather straightfor-
ward to make the spatial division, it brings another difficult
problem for higher dimensional systems with inhomoge-
neous atomic arrangement. A study toward this direction will
be in a future work.
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