
User’s manual of OpenMX Ver. 3.9

E

P

N

O

Contributors

T. Ozaki (Univ. of Tokyo)

H. Kino (NIMS)

J. Yu (SNU)

M.J. Han (KAIST)

M. Ohfuchi (Fujitsu Labs.)

F. Ishii (Kanazawa Univ.)

K. Sawada (Kanazawa Univ.)

Y. Kubota (Kanazawa Univ.)

Y.P. Mizuta (Osaka Univ.)

H. Kotaka (Kyoto Univ.)

N. Yamaguchi (Kanazawa Univ.)

H. Sawahata (Kanazawa Univ.)

T.B. Prayitno (Univ. Negeri Jakarta)

T. Ohwaki (NISSAN ARC)

T.V.T Duy (AISIN SEIKI)

M. Miyata (JAIST)

G. Jiang (Wuhan Univ. of Sci.&Tech.)

P.-H. Chang (George Mason Univ.)

A. Terasawa (Tokyo Tech)

Y. Gohda (Tokyo Tech)

H. Weng (CAS)

Y. Shiihara (Toyota Tech. Inst.)

M. Toyoda (Tokyo Tech.)

Y. Okuno (FUJIFILM)

R. Perez (UAM)

P.P. Bell (UAM)

M. Ellner (UAM)

Yang Xiao (NUAA)

A.M. Ito (NIFS)

M. Otani (AIST)

M. Kawamura (Univ. of Tokyo)

K. Yoshimi (Univ. of Tokyo)

C.-C. Lee (Tamkang Univ.)

Y.-T. Lee (Academia Sinica)

M. Fukuda (Univ. of Tokyo)

S. Ryee (KAIST)

K. Terakura (AIST)

December 9, 2022

Contents

1 About OpenMX 8

2 Related papers 11

3 Installation 13

3.1 Including libraries . 13

3.2 Serial version . 13

3.3 MPI version . 13

3.4 MPI/OpenMP version . 14

3.5 FFTW3 . 14

3.6 Other options . 15

3.6.1 -Dnosse . 15

3.6.2 -Dkcomp . 15

3.7 Platforms . 15

3.8 Tips for installation . 15

3.9 Options for make . 17

4 Test calculation 18

5 Automatic running test 24

6 Automatic running test with large-scale systems 27

7 Input file 29

7.1 An example: methane molecule . 29

7.2 Keywords . 30

8 Output files 46

9 Functional 49

10 Basis sets 50

10.1 General . 50

10.2 Primitive basis functions . 50

10.3 Optimized basis functions provided by the database Ver. 2019 51

10.4 Optimization of PAO by yourself . 53

10.5 Empty atom scheme . 53

10.6 Specification of a directory storing PAO and VPS files 54

11 Pseudopotentials 57

11.1 Conventional pseudopotentials . 57

11.2 Open core pseudopotentials . 58

11.3 Pseudopotentials for core level excitations . 59

1

12 Cutoff energy: grid fineness for numerical integrations 60

12.1 Convergence . 60

12.2 A tip for calculating the energy curve for bulks . 61

12.3 Fixing the relative position of regular grid . 61

13 SCF convergence 63

13.1 General . 63

13.2 Automatic determination of Kerker’s factor . 66

13.3 On-the-fly control of SCF mixing parameters . 66

14 Restarting 67

14.1 General . 67

14.2 Extrapolation scheme during MD and geometry optimization 68

14.3 Input file for the restart calculation . 68

15 Geometry optimization 69

15.1 Steepest decent optimization . 69

15.2 EF, BFGS, RF, and DIIS optimizations . 70

15.3 Initial Hessian for the RF and EF optimizers . 71

15.4 Constrained relaxation . 72

15.5 Restart of geometry optimization . 73

16 Variable cell optimization 74

16.1 General . 74

16.2 Stress tensor . 76

16.3 Constraint for cell vectors . 77

16.4 Optimization of enthalpy . 77

17 Molecular dynamics 79

17.1 NVE molecular dynamics (NVE) . 79

17.2 NVT molecular dynamics by a velocity scaling (NVT VS) 79

17.3 NVT molecular dynamics by the Nose-Hoover method (NVT NH) 80

17.4 Multi-heat bath molecular dynamics (NVT VS) . 82

17.5 Constraint molecular dynamics . 82

17.6 Initial velocity . 82

17.7 User definition of atomic mass . 83

17.8 Converting the file format: md2axsf . 83

18 Visualization 84

19 Band dispersion 85

20 Density of states 88

20.1 Conventional scheme . 88

20.2 For calculations with lots of k-points . 90

21 Orbitally decomposed total energy 92

2

22 Orbital optimization 94

23 Order(N) method 99

23.1 Divide-conquer method . 99

23.2 Divide-conquer method with localized natural orbitals (DC-LNO) method 102

23.3 Krylov subspace method . 106

23.4 User definition of FNAN+SNAN . 109

24 MPI parallelization 110

24.1 O(N) calculation . 110

24.2 Cluster calculation . 110

24.3 Band calculation . 110

24.4 Fully three dimensional parallelization . 112

24.5 Maximum number of processors . 112

25 MPI/OpenMP hybrid parallelization 113

26 Large-scale calculations 114

26.1 Conventional scheme . 114

26.2 Combination of the O(N) and conventional schemes 114

27 Electric field 117

28 Charge doping 118

29 Virtual atom with fractional nuclear charge 119

30 LCAO coefficients 120

31 Molecular orbitals 121

32 Charge analysis 123

32.1 Mulliken charge . 123

32.2 Voronoi charge . 124

32.3 Electro-static potential fitting . 124

33 Natural population analysis 127

34 Non-collinear DFT 129

35 Relativistic effects 131

35.1 Fully relativistic . 131

35.2 Controling of spin-orbit coupling strength . 132

35.3 Scalar relativistic treatment . 132

36 Orbital magnetic moment 134

3

37 DFT+U methods 136

37.1 Standard setting . 136

37.1.1 Choice of DFT+U scheme; simplified or general 136

37.1.2 Choice of the double-counting . 137

37.1.3 Orbital polarization . 140

37.2 Additional functionalities . 141

37.2.1 Varying the ratio of two Slater integrals (F 4/F 2) 141

37.2.2 Estimation of J and F 4/F 2 from input parameter U 141

38 Constraint DFT for non-collinear spin orientation 143

39 Second variational method: Magnetic Anisotropy Energy (MAE) 145

40 Zeeman terms 147

40.1 Zeeman term for spin magnetic moment . 147

40.2 Zeeman term for orbital magnetic moment . 147

41 Macroscopic polarization by Berry’s phase 149

42 Exchange coupling parameter 153

42.1 General . 153

42.2 Compilation of jx . 154

42.3 OpenMX calculation to generate jx input . 154

42.4 Preparation of config file for jx . 155

42.5 Execution of jx and MPI parallelization . 156

42.6 Examples . 157

43 Electric transport calculations 161

43.1 General . 161

43.2 Step 1: The calculations for leads . 164

43.3 Step 2: The NEGF calculation . 164

43.4 Step 3: The transmission, current (density), and eigenchannel 169

43.4.1 Transmission, total current, and conductance 170

43.4.2 Real-space charge/spin current density . 173

43.4.3 Eigenchannel analysis . 175

43.5 Running again the step 3 only . 177

43.6 Periodic system under zero bias . 179

43.7 Interpolation of the effect by the bias voltage . 179

43.8 Parallelization of NEGF . 180

43.9 NEGF method for the non-collinear DFT . 181

43.10Examples . 182

43.11Automatic running test of NEGF . 183

4

44 Maximally Localized Wannier Function 184

44.1 General . 184

44.2 Analysis . 189

44.3 Monitoring optimization of spread function . 190

44.4 Examples for generating MLWFs . 193

44.5 Output files . 194

44.6 Automatic running test of MLWF . 197

45 Interface with Wannier90 198

46 Numerically exact low-order scaling method for diagonalization 201

47 Effective screening medium method 203

47.1 General . 203

47.2 Example of test calculation . 205

48 Calculations of work functions 207

49 Nudged elastic band (NEB) method 210

49.1 General . 210

49.2 How to perform . 210

49.3 Examples and keywords . 211

49.4 Restarting the NEB calculation . 214

49.5 User defined initial path . 215

49.6 Monitoring the NEB calculation . 216

49.7 Parallel calculation . 216

49.8 Other tips . 216

50 STM image by the Tersoff-Hamann scheme 218

51 DFT-D2 and DFT-D3 for vdW interaction 219

51.1 DFT-D2 method . 219

51.2 DFT-D3 method . 219

52 Unfolding method for band structures 222

52.1 Analysis of band structures . 222

52.2 Unfolding of band structures . 226

52.3 The origin of the reference unit cell . 230

52.4 Intensity map of unfolded spectral weight . 231

52.5 In case of non-collinear DFT calculations . 233

52.6 Examples . 233

53 Analysis of spin texture in the k-space 235

53.1 General . 235

53.2 FermiLoop: Calculation on a constant-energy level . 237

53.3 GridCalc: Calculation on a k-point grid . 243

53.4 BandDispersion: Calculation on the band dispersion relation 249

5

53.5 MulPOnly: Calculation on user-specified k-points . 254

53.6 MulPCalc: k-space spin density matrix resolved to each atom 259

53.7 MPI parallelization of kSpin . 262

54 Spin spiral calculations 265

55 Computing Chern number and Berry curvature by the Fukui-Hatsugai-Suzuki

method 267

55.1 General . 267

55.2 Example . 267

56 Computing Z2 invariant by the Fukui-Hatsugai method 271

56.1 General . 271

56.2 Example . 272

56.3 Input files . 275

57 Absolute binding energies of core levels: XPS core level energies 277

57.1 General . 277

57.2 Gaseous systems . 278

57.3 Bulk systems . 281

57.4 Examples . 284

58 Ionization potential and electron affinity of gaseous systems 286

59 Optical conductivity and dielectric function 288

59.1 General . 288

59.2 Si case . 288

59.3 Relevant keywords . 289

59.4 Benchmark calculations . 291

59.5 Codes . 292

59.6 Examples . 294

59.7 Automatic running test . 296

60 Interface with BoltzTraP 297

61 Calculation of Energy vs. lattice constant 301

61.1 Energy vs. lattice constant . 301

61.2 Delta factor . 301

62 Fermi surface 302

63 Analysis of difference in two Gaussian cube files 304

64 Analysis of difference in two geometrical structures 305

65 Analysis of difference charge density induced by the interaction 307

66 Automatic determination of the cell size 309

6

67 Interface for developers 310

68 Calling OpenMX as library or computational engine 312

69 Automatic force tester 316

70 Automatic memory leak tester 317

71 Analysis of memory usage 319

72 Output of large-sized files in binary mode 320

73 Converting of Gaussian cube format to periodic XSF format 321

74 Examples of the input files 322

75 Known problems 324

76 OpenMX Forum 325

77 Other sources of information about OpenMX 326

78 Linkage to other tools 327

79 Others 330

7

1 About OpenMX

OpenMX (Open source package for Material eXplorer) is a software package for nano-scale material

simulations based on density functional theories (DFT) [1], norm-conserving pseudopotentials [32, 33,

34, 35, 36], and pseudo-atomic localized basis functions [41]. The methods and algorithms used in

OpenMX and their implementation are carefully designed for the realization of large-scale ab initio

electronic structure calculations on parallel computers based on the MPI or MPI/OpenMP hybrid

parallelism. The efficient implementation of DFT enables us to investigate electronic, magnetic, and

geometrical structures of a wide variety of materials such as bulk materials, surfaces, interfaces, liquids,

and low-dimensional materials. Systems consisting of 1000 atoms can be treated using the conventional

diagonalization method if several hundreds cores on a parallel computer are used. Even ab initio

electronic structure calculations for systems consisting of more than 10000 atoms are possible with

the O(N) methods implemented in OpenMX if several thousands CPU cores on a parallel computer are

available. Since optimized pseudopotentials and basis functions, which are well tested, are provided

for many elements, users may be able to quickly start own calculations without preparing those

data by themselves. Considerable functionalities have been implemented for calculations of physical

properties such as magnetic, dielectric, and electric transport properties. Thus, it is expected that

OpenMX can be a useful and powerful theoretical tool for nano-scale material sciences, leading to

better and deeper understanding of complicated and useful materials based on quantum mechanics.

The development of OpenMX has been initiated by the Ozaki group in 2000, and from then onward

many developers listed in the top page of the manual have contributed for further development of

the open source package. The distribution of the program package and the source codes follow the

practice of the GNU General Public License version 3 (GPLv3) [102], and they are downloadable from

http://www.openmx-square.org/

Features and capabilities of OpenMX Ver. 3.9 are listed below:

• total energy and forces by cluster, band, O(N), and low-order scaling methods

• local density approximation (LDA, LSDA) [2, 3, 4] and generalized gradient approximation

(GGA) [5] to the exchange-correlation potential

• DFT+U methods [20]

• norm-conserving pseudopotentials [2, 33, 34, 36]

• variationally optimized pseudo-atomic basis functions [41]

• fully and scalar relativistic treatment within pseudopotential scheme [12, 32, 16]

• non-collinear DFT [8, 9, 10, 11]

• constraint DFT for non-collinear spin and orbital orientation [13]

• macroscopic polarization by Berry’s phase [15]

• O(N) divide-conquer (DC) method [50]

• O(N) divide-conquer with localized natural orbitals (DC-LNO) method [51]

8

http://www.openmx-square.org/

• O(N) Krylov subspace method [43]

• parallel eigensolver by ELPA [39]

• simple, RMM-DIIS [58], GR-Pulay [57], Kerker [59], RMM-DIIS with Kerker’s metric [58], and

RMM-DIIS for Hamiltonian matrix [58] charge mixing schemes

• exchange coupling parameter [17, 18]

• effective screening medium (ESM) method [125, 128]

• scanning tunneling microscope (STM) simulation [71]

• DFT-D2 and DFT-D3 method for vdW interaction [135, 136, 137]

• unfolding method for band structures [142]

• nudged elastic band (NEB) method [72]

• calculations of absolute binding energies of core levels in bulks [88]

• optical conductivity and dielectric function [98]

• charge doping

• uniform electric field

• orbitally decomposed total energy

• fully and constrained geometry optimization

• fully and constrained variable cell optimization

• electric transport calculations by a non-equilibrium Green’s function (NEGF) method [73]

• construction of maximally localized Wannier functions

• NVE ensemble molecular dynamics

• NVT ensemble molecular dynamics by a velocity scaling [30] and the Nose-Hoover methods [31]

• Mulliken, Voronoi, and ESP fitting analysis of charge and spin densities

• natural population analysis [7]

• analysis of wave functions and electron (spin) densities

• dispersion analysis by the band calculation

• density of states (DOS) and projected DOS

• flexible data format for the input

• interface with BoltzTrap [100, 101]

• interface with Wannier90 [145]

9

• interface with XCrySDen for visualizing data such as charge density [105]

• completely dynamic memory allocation

• parallel execution by Message Passing Interface (MPI)

• parallel execution by OpenMP

• useful user interface for developers

The collinear and non-collinear (NC) DFT methods are implemented including scalar and fully

relativistic pseudopotentials, respectively. The constraint NC-DFT is also supported to control spin

and orbital magnetic moments. These methods will be useful to investigate complicated NC magnetic

structures and the effect of spin-orbit coupling. The diagonalization of the conventional calculations

is performed by a ELPA based parallel eigensolver [39] and ScaLAPACK which scales up to several

thousands cores. The feature may allow us to investigate systems consisting of 1000 atoms using

the conventional diagonalization. Not only the conventional diagonalization scheme is provided for

clusters, molecules, slab, and solids, but also linear scaling and a low-order scaling methods are

supported as eigenvalue solver. With a proper choice for the eigenvalue solvers, systems consisting

of more than 10000 atoms can be treated with careful consideration to balance between accuracy

and efficiency. The variable cell optimization and band unfolding method are available. As new

important features of OpenMX Ver. 3.9, it is worth mentioning that we release a novel O(N) method

based on divide-conqure approach and localized natural orbitals, and calculations of absolute binding

energies of core levels in bulks, which can be directly compared to binding energies observed in X-

ray photoemission spectroscopy (XPS). We are continuously working toward development. Motivated

contributors who want to develop the open source codes are always welcome.

10

2 Related papers

OpenMX is distributed under the terms of the GNU General Public License Version 3 (GPLv3) [102].

However, we would like to appreciate your citation of the following papers when you publish a paper

using the corresponding functionality in OpenMX, which would be an implicit cooperation for the

future development of OpenMX.

• General

T. Ozaki, Phys. Rev. B. 67, 155108, (2003); T. Ozaki and H. Kino, Phys. Rev. B 69, 195113

(2004); T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005); K. Lejaeghere et al., Science

351, aad3000 (2016).

• Large-scale parallel calculation

T.V.T. Duy and T. Ozaki, Comput. Phys. Commun. 185, 777 (2014); T.V.T. Duy and T.

Ozaki, Comput. Phys. Commun. 185, 153 (2014).

• O(N) DC-LNO method

T. Ozaki, M. Fukuda, G. Jiang, Phys. Rev. B 98, 245137 (2018).

• O(N) Krylov subspace method

T. Ozaki, Phys. Rev. B 74, 245101 (2006).

• Numerically exact low-order scaling method

T. Ozaki, Phys. Rev. B 82, 075131 (2010).

• The DFT+U methods

M.J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 74, 045110 (2006); S. Ryee and M.J. Han, J.

Phys:Condens. Matter 30, 275802 (2018). S. Ryee and M.J. Han, Scientific Reports 8, 9559

(2018).

• Exchange coupling parameter

M.J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 70, 184421 (2004); A Terasawa, M Matsumoto,

T Ozaki, and Y Gohda, J. Phys. Soc. Jpn. 88, 114706 (2019).

• NEGF method

T. Ozaki, K. Nishio, and H. Kino, Phys. Rev. 81, 035116 (2010); T. Ozaki, Phys. Rev. B 75,

035123 (2007).

• Effective screening medium method

T. Ohwaki, M. Otani, T. Ikeshoji, and T. Ozaki, J. Chem. Phys. 136, 134101 (2012).

• Generation of Wannier functions

H. Weng, T. Ozaki, and K. Terakura, Phys. Rev. B 79, 235118 (2009).

• Generation of natural atomic orbitals

T. Ohwaki, M. Otani, and T. Ozaki, J. Chem. Phys. 140, 244105 (2014).

11

• Band unfolding method

C.-C. Lee, Y. Yamada-Takamura, and T. Ozaki, J. Phys.: Condens. Matter 25, 345501 (2013).

• XPS binding energies

T. Ozaki and C.-C. Lee, Phys. Rev. Lett. 118, 026401 (2017).

• BoltzTraP calculations

M. Miyata, T. Ozaki, T. Takeuchi, S. Nishino, M. Inukai, and M. Koyano, Journal of Electronic

Materials 47, 3254 (2017).

• FermiSurfer

M. Kawamura, Comp. Phys. Comm. 239, 197 (2019).

• Analysis of spin texture in the k-space

H. Kotaka, F. Ishii, and M. Saito, Jpn. J. Appl. Phys. 52, 035204 (2013).; N. Yamaguchi and

F. Ishii, Appl. Phys. Express 10, 123003 (2017).

• Spin spiral calculations

T.B. Prayitno and F. Ishii, J. Phys. Soc. Jpn. 87, 114709 (2018); T.B. Prayitno and F. Ishii,

J. Phys. Soc. Jpn. 88, 054701 (2019).

• Z2, Chern number, and Berry curvature

H. Sawahata, N. Yamaguchi, H. Kotaka, and F. Ishii, Jpn. J. Appl. Phys. 57, 030309 (2018).

• OpenMX Viewer

Y.-T Lee and T. Ozaki, Journal of Molecular Graphics and Modelling 89, 192 (2019).

12

3 Installation

3.1 Including libraries

OpenMX can be installed under linux environment where three library packages are available as listed

below:

• ScaLAPACK (and BLACS) (http://www.netlib.org/)

• FFTW (http://www.fftw.org/)

• MPI library such as MPICH2 and OpenMPI

If these library packages are not installed on your machine, you are required to install them before

the installation of OpenMX. Note that a MPI library such as MPICH2 and OpenMPI has to be

available for the installation of OpenMX Ver. 3.9. Without a MPI library, OpenMX Ver. 3.9 cannot

be installed. Also, OpenMX Ver. 3.9 requires ScaLAPACK and BLACS, and the compilation of

OpenMX Ver. 3.9 with LAPACK and BLAS is not supported. As an alternative, the Intel Math

Kernel Library (MKL) can also be utilized instead of the naive ScaLAPACK and BLACS. If these

libraries packages are available on your machine, you can proceed the following procedure for the

installation. Then, after downloading ’openmx3.9.tar.gz’, decompress it as follows:

% tar zxvf openmx3.9.tar.gz

When it is completed, you can find three directories ’source’, ’work’, ’DFT DATA19’ under the di-

rectory ’openmx3.9’. The directories ’source’, ’work’, and ’DFT DATA19’ contain source files, input

files, and data files for optimized pseudo-atomic basis functions and pseudopotentials of Ver. 2019,

respectively.

3.2 Serial version

The installation of the serial version is not supported for OpenMX Ver. 3.9.

3.3 MPI version

To proceed the installation of the MPI version, move to the directory ’source’, and modify ’makefile’

in ’source’ to specify the compiler and libraries by CC, FC, and LIB. The default specification of

CC, FC, and LIB in ’makefile’ is as follows:

MKLROOT = /opt/intel/mkl

CC = mpicc -O3 -xHOST -ip -no-prec-div -qopenmp -I/opt/intel/mkl/include/fftw

FC = mpif90 -O3 -xHOST -ip -no-prec-div -qopenmp

LIB= -L${MKLROOT}/lib/intel64 -lmkl_scalapack_lp64 -lmkl_intel_lp64 \

-lmkl_intel_thread -lmkl_core -lmkl_blacs_open mpi_lp64 \

-lmpi_usempif08 -lmpi_usempi_ignore_tkr \

-lmpi_mpifh -liomp5 -lpthread -lm -ldl

13

CC and FC are the specification for C and FORTRAN compilers, respectively, and LIB is the

specification for libraries which are linked. Although the specification of FC is not required up to

and including Ver. 3.6, FC must be specified in Ver. 3.9 due to the introduction of the ELPA based

parallel eigensolver [39]. The option ’-Dnoomp’ should be added under environment that OpenMP is

not available. You need to set the CC, FC and LIB appropriately on your computer environment

so that the compilation and linking can be properly performed and the executable file can be well

optimized, while the specification largely depends on your computer environment. After specifying

CC, FC and LIB appropriately, then install as follows:

% make install

When the compilation is completed normally, then you can find the executable file ’openmx’ in the

directory ’work’. To make the execution of OpenMX efficient, you can change a compiler and compile

options appropriate for your computer environment, which can generate an optimized executable file.

Several examples for CC, FC and LIB can be found in ’makefile’ in the directory ’source’ for your

convenience.

3.4 MPI/OpenMP version

To generate the MPI/OpenMP hybrid version, all you have to do is to include a compiler option

for OpenMP parallelization for CC and FC in ’makefile’ in the directory ’source’. To proceed the

installation of the MPI/OpenMP version, move to the directory ’source’, and specify CC, FC and

LIB in ’makefile’, for example, as follows:

For icc

CC = mpicc -O3 -xHOST -ip -no-prec-div -qopenmp -I/opt/intel/mkl/include/fftw

FC = mpif90 -O3 -xHOST -ip -no-prec-div -qopenmp

Note that the compiler option for OpenMP depends on compiler, while the option corresponds to

’-qopenmp’ for the Intel compiler, After specifying CC, FC, and LIB appropriately, then install as

follows:

% make install

When the compilation is completed normally, then you can find the executable file ’openmx’ in the

directory ’work’. To make the execution of OpenMX efficient, you can change a compiler and compile

options appropriate for your computer environment, which can generate an optimized executable file.

3.5 FFTW3

OpenMX Ver. 3.9 supports only FFTW3, while older versions up to Ver. 3.6 also support FFTW2 as

well as FFTW3. Then, you may link FFTW3 in your makefile as follows:

LIB = -lfftw3

We wonder that many users will use the built-in libarary of FFTW3 in the Intel MKL.

14

3.6 Other options

3.6.1 -Dnosse

Since the routine (Krylov.c) for the O(N) Krylov subspace method has been optimized using Streaming

SIMD Extensions (SSE), the code will be compiled including SSE on default compilation. If your

processors do not support SSE, then include ’-Dnosse’ as compilation option for CC.

3.6.2 -Dkcomp

For SPARC processors developed by FUJITSU Ltd., include -Dkcomp as compilation option for CC

and FC.

3.7 Platforms

So far, we have confirmed that OpenMX Ver. 3.9 runs normally on the following machines:

• Intel Xeon based clusters

• AMD EPYC based clusters

• CRAY-XC40

• Fujitsu FX100

3.8 Tips for installation

Most problems in the installation of OpenMX are caused by the linking of ScaLAPACK and BLACS

or its alternative. We would recommend users to link MKL in most cases. Examples on how to link

them can be found in ’makefile’ in the directory ’source’.

Also, we provide a couple of tips for the installation on popular platforms below. OpenMX requires

C and FORTRAN compilers, ScaLAPACK and BLACS libraries, and FFTW3 library. In addition,

as the C compiler is used for linking, the corresponding FORTRAN library of the compiler should be

explicitly specified. Here we provide some sample settings for installation on platforms with several

popular compilers and ScaLAPACK and BLACS libraries under an assumption that the FFT library

is installed in /usr/local/fftw3/.

• Intel C and FORTRAN compilers (icc, ifort) and the MKL library for ScaLAPACK and BLACS

MKLROOT = /opt/intel/mkl

CC = mpicc -O3 -xHOST -ip -no-prec-div -qopenmp -I/usr/local/fftw3/include

FC = mpif90 -O3 -xHOST -ip -no-prec-div -qopenmp

LIB= -L/usr/local/fftw3/lib -lfftw3 \
-L$MKLROOT/lib/intel64 -lmkl scalapack lp64 -lmkl intel lp64 \
-lmkl intel thread -lmkl core -lmkl blacs open mpi lp64 \
-lmpi usempif08 -lmpi usempi ignore tkr \
-lmpi mpifh -liomp5 -lpthread -lm -ldl

15

• GNU C and FORTRAN compilers (gcc, g++, gfortran) and the MKL library for ScaLAPACK

and BLACS

MKLROOT=/opt/intel/mkl

CC = mpicc -O3 -ffast-math -fopenmp -I/usr/local/fftw3/include -I/$MKLROOT/include

FC = mpif90 -O3 -ffast-math -fopenmp -I/$MKLROOT/include

LIB= -L/usr/local/fftw3/lib -lfftw3 \
-L$MKLROOT/lib/intel64 -lmkl scalapack lp64 -lmkl intel lp64 \
-lmkl intel thread -lmkl core -lmkl blacs open mpi lp64 \
-lmpi usempif08 -lmpi usempi ignore tkr \
-lmpi mpifh -liomp5 -lpthread -lm -ldl

• GNU C and FORTRAN compilers (gcc, g++, gfortran) and ScaLAPACK and BLACS

CC = mpicc -O3 -ffast-math -fopenmp -Dkcomp -I/usr/local/include -I/home/ytl/openmpi-

3.0.1/ompi/include

FC = mpif90 -O3 -ffast-math -fopenmp -Dkcomp -I/home/ytl/openmpi-3.0.1/ompi/include

LIB= -L/usr/local/lib -lfftw3 -L/home/ytl/openmpi-3.0.1/ompi -lmpi -lmpi mpifh \
-L/home/ytl/Packages/lapack-3.7.0 -llapack -lrefblas -lgfortran

• FUJITSU compilers on FX100 machines

CC = mpifccpx -Kfast -Dnosse -Dkcomp

FC = mpifrtpx -Kfast -Dkcomp

LIB = -lfftw3 -SCALAPACK -SSL2BLAMP

Other combinations of the compiler and ScaLAPACK and BLACS libraries can be done in the same

fashion. The following commands can be used to show information about the compiler (Intel, PGI,

GNU, etc.) used by MPI.

%mpicc -compile-info (with MPICH)

%mpicc -help (with OpenMPI)

In some cases, the location of the FORTRAN library is unknown to the C compiler, resulting in the

following link errors:

/usr/bin/ld: cannot find -lifcore

with the Intel compiler,

/usr/bin/ld: cannot find -lpgf90

with the PGI compiler, or

-lpgf90_rpm1, -lpgf902, -lpgf90rtl, -lpgftnrtl

as the ”-pgf90libs” flag is just a shortcut for them,

/usr/bin/ld: cannot find -lgfortran

16

with the GNU compiler.

To solve this link-time problem, the location of the FORTRAN library must be explicitly spec-

ified as follows. First, the location of the FORTRAN compiler can be identified with the following

commands.

%which ifort (with the Intel compiler)

/opt/intel/fce/10.0.026/bin/ifort

%which pgf90 (with the PGI compiler)

/opt/pgi/linux86-64/7.0/bin/pgf90

%which gfortran (with the GNU compiler)

/usr/bin/gfortran

Then, the location of the FORTRAN library usually resides in /lib of the parent folder of /bin, and

must be specified in LIB such as

LIB= ... -L/opt/intel/fce/10.0.026/lib -lifcore (with the Intel compiler)

LIB= ... -L/opt/pgi/linux86-64/7.0/lib -pgf90libs (with the PGI compiler)

LIB= ... -L/usr/lib -lgfortran (with the GNU compiler)

As for the Intel Math Kernel Library, you may use the folowing website: Intel Math Kernel Library

Link Line Advisor

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

which gives us a suggestion for linking of libraries and compiler options.

3.9 Options for make

All the object and executable files can be cleaned as follows:

% make clean

All the executable files including post-processing codes can be compiled as follows:

% make all

17

4 Test calculation

If the installation is completed normally, please move to the directory ’work’ and perform the program

’openmx’ using an input file ’Methane.dat’ which can be found in the directory ’work’ as follows:

% mpirun -np 1 openmx Methane.dat > met.std &

Or if you use the MPI/OpenMP version:

% mpirun -np 1 openmx Methane.dat -nt 1 > met.std &

The test input file ’Methane.dat’ is for performing the SCF calculation of a methane molecule with

a fixed structure (No MD). The calculation is performed in only about 5 seconds by using a single

core on a 2.6 GHz Xeon machine, although it is dependent on a computer. When the calculation is

completed normally, 11 files and one directory

met.std standard output of the SCF calculation

met.out input file and standard output

met.xyz final geometrical structure

met.ene values computed at every MD step

met.md geometrical structures at every MD step

met.md2 geometrical structure of the final MD step

met.cif cif file of the initial structure for Material Studio

met.tden.cube total electron density in the Gaussian cube format

met.v0.cube Kohn-Sham potential in the Gaussian cube format

met.vhart.cube Hartree potential in the Gaussian cube format

met.dden.cube difference electron density measured from atomic density

met_rst/ directory storing restart files

are output to the directory ’work’. The output data to a standard output is stored to the file ’met.std’

which is helpful to know the computational flow of the SCF procedure. The file ’met.out’ includes

computed results such as the total energy, forces, the Kohn-Sham eigenvalues, Mulliken charges, the

convergence history for the SCF calculation, and analyzed computational time. A part of the file

’met.out’ is shown below. It is found that the eigenvalues energy converges by 14 iterations within

1.0e-10 Hartree.

SCF history at MD= 1

SCF= 1 NormRD= 1.000000000000 Uele= -3.523169099731

SCF= 2 NormRD= 0.181517404404 Uele= -3.686855123738

SCF= 3 NormRD= 0.449067381009 Uele= -4.193062144919

SCF= 4 NormRD= 0.541215648203 Uele= -4.381387140154

SCF= 5 NormRD= 0.509921689399 Uele= -4.352426233337

18

SCF= 6 NormRD= 0.004026023243 Uele= -3.886371199720

SCF= 7 NormRD= 0.000838640096 Uele= -3.889312346884

SCF= 8 NormRD= 0.000420666755 Uele= -3.889396659132

SCF= 9 NormRD= 0.000241013350 Uele= -3.889362708861

SCF= 10 NormRD= 0.000573725679 Uele= -3.889427222948

SCF= 11 NormRD= 0.000000150516 Uele= -3.889316043314

SCF= 12 NormRD= 0.000000001917 Uele= -3.889316014533

SCF= 13 NormRD= 0.000000000005 Uele= -3.889316014156

SCF= 14 NormRD= 0.000000000001 Uele= -3.889316014146

Also, the total energy, chemical potential, Kohn-Sham eigenvalues, the Mulliken charges, dipole mo-

ment, forces, fractional coordinate, and analysis of computational time are output in ’met.out’ as

follows:

Total energy (Hartree) at MD = 1

Uele. -3.889316014146

Ukin. 5.533759381370

UH0. -14.855519969177

UH1. 0.041396138425

Una. -5.040606545149

Unl. -0.134650846490

Uxc0. -1.564720263874

Uxc1. -1.564720263874

Ucore. 9.551521413583

Uhub. 0.000000000000

Ucs. 0.000000000000

Uzs. 0.000000000000

Uzo. 0.000000000000

Uef. 0.000000000000

UvdW 0.000000000000

Uch 0.000000000000

Utot. -8.033540955187

Note:

Utot = Ukin+UH0+UH1+Una+Unl+Uxc0+Uxc1+Ucore+Uhub+Ucs+Uzs+Uzo+Uef+UvdW

Uene: band energy

Ukin: kinetic energy

UH0: electric part of screened Coulomb energy

19

UH1: difference electron-electron Coulomb energy

Una: neutral atom potential energy

Unl: non-local potential energy

Uxc0: exchange-correlation energy for alpha spin

Uxc1: exchange-correlation energy for beta spin

Ucore: core-core Coulomb energy

Uhub: DFT+U energy

Ucs: constraint energy for spin orientation

Uzs: Zeeman term for spin magnetic moment

Uzo: Zeeman term for orbital magnetic moment

Uef: electric energy by electric field

UvdW: semi-empirical vdW energy

(see also PRB 72, 045121(2005) for the energy contributions)

Chemical potential (Hartree) 0.000000000000

Eigenvalues (Hartree) for SCF KS-eq.

Chemical Potential (Hartree) = 0.00000000000000

Number of States = 8.00000000000000

HOMO = 4

Eigenvalues

Up-spin Down-spin

1 -0.69897506408475 -0.69897506408475

2 -0.41523055776668 -0.41523055776668

3 -0.41523055768741 -0.41523055768741

4 -0.41522182758055 -0.41522182758055

5 0.21221759603691 0.21221759603691

6 0.21221759685634 0.21221759685634

7 0.21230533059490 0.21230533059490

8 0.24741918440773 0.24741918440773

Mulliken populations

20

Total spin moment (muB) 0.000000000

Up spin Down spin Sum Diff

1 C 2.509748760 2.509748760 5.019497520 0.000000000

2 H 0.372562810 0.372562810 0.745125620 0.000000000

3 H 0.372562810 0.372562810 0.745125620 0.000000000

4 H 0.372562810 0.372562810 0.745125620 0.000000000

5 H 0.372562810 0.372562810 0.745125620 0.000000000

Sum of MulP: up = 4.00000 down = 4.00000

total= 8.00000 ideal(neutral)= 8.00000

Decomposed Mulliken populations

1 C Up spin Down spin Sum Diff

multiple

s 0 0.681737894 0.681737894 1.363475787 0.000000000

sum over m 0.681737894 0.681737894 1.363475787 0.000000000

sum over m+mul 0.681737894 0.681737894 1.363475787 0.000000000

px 0 0.609352701 0.609352701 1.218705403 0.000000000

py 0 0.609305463 0.609305463 1.218610926 0.000000000

pz 0 0.609352702 0.609352702 1.218705404 0.000000000

sum over m 1.828010866 1.828010866 3.656021733 0.000000000

sum over m+mul 1.828010866 1.828010866 3.656021733 0.000000000

2 H Up spin Down spin Sum Diff

multiple

s 0 0.372562810 0.372562810 0.745125620 0.000000000

sum over m 0.372562810 0.372562810 0.745125620 0.000000000

sum over m+mul 0.372562810 0.372562810 0.745125620 0.000000000

3 H Up spin Down spin Sum Diff

multiple

s 0 0.372562810 0.372562810 0.745125620 0.000000000

sum over m 0.372562810 0.372562810 0.745125620 0.000000000

sum over m+mul 0.372562810 0.372562810 0.745125620 0.000000000

4 H Up spin Down spin Sum Diff

multiple

s 0 0.372562810 0.372562810 0.745125620 0.000000000

sum over m 0.372562810 0.372562810 0.745125620 0.000000000

sum over m+mul 0.372562810 0.372562810 0.745125620 0.000000000

5 H Up spin Down spin Sum Diff

21

multiple

s 0 0.372562810 0.372562810 0.745125620 0.000000000

sum over m 0.372562810 0.372562810 0.745125620 0.000000000

sum over m+mul 0.372562810 0.372562810 0.745125620 0.000000000

Dipole moment (Debye)

Absolute D 0.00000000

Dx Dy Dz

Total 0.00000000 0.00000000 0.00000000

Core 0.00000000 0.00000000 0.00000000

Electron 0.00000000 0.00000000 0.00000000

Back ground -0.00000000 -0.00000000 -0.00000000

xyz-coordinates (Ang) and forces (Hartree/Bohr)

<coordinates.forces

5

1 C 0.00000 0.00000 0.00000 0.000000000000 0.00...

2 H -0.88998 -0.62931 0.00000 -0.064890985127 -0.04...

3 H 0.00000 0.62931 -0.88998 0.000000000002 0.04...

4 H 0.00000 0.62931 0.88998 0.000000000002 0.04...

5 H 0.88998 -0.62931 0.00000 0.064890985122 -0.04...

coordinates.forces>

Fractional coordinates of the final structure

1 C 0.00000000000000 0.00000000000000 0.00000000000000

2 H 0.91100190000000 0.93706880000000 0.00000000000000

3 H 0.00000000000000 0.06293120000000 0.91100190000000

4 H 0.00000000000000 0.06293120000000 0.08899810000000

22

5 H 0.08899810000000 0.93706880000000 0.00000000000000

Computational Time (second)

Elapsed.Time. 4.600

Min_ID Min_Time Max_ID Max_Time

Total Computational Time = 0 4.600 0 4.600

readfile = 0 2.578 0 2.578

truncation = 0 0.146 0 0.146

MD_pac = 0 0.000 0 0.000

OutData = 0 0.283 0 0.283

DFT = 0 1.591 0 1.591

*** In DFT ***

Set_OLP_Kin = 0 0.052 0 0.052

Set_Nonlocal = 0 0.039 0 0.039

Set_ProExpn_VNA = 0 0.156 0 0.156

Set_Hamiltonian = 0 0.663 0 0.663

Poisson = 0 0.214 0 0.214

Diagonalization = 0 0.005 0 0.005

Mixing_DM = 0 0.000 0 0.000

Force = 0 0.039 0 0.039

Total_Energy = 0 0.256 0 0.256

Set_Aden_Grid = 0 0.019 0 0.019

Set_Orbitals_Grid = 0 0.015 0 0.015

Set_Density_Grid = 0 0.124 0 0.124

RestartFileDFT = 0 0.004 0 0.004

Mulliken_Charge = 0 0.000 0 0.000

FFT(2D)_Density = 0 0.000 0 0.000

Others = 0 0.005 0 0.005

The files ’met.tden.cube’, ’met.v0.cube’, ’met.vhart.cube’, and ’met.dden.cube’, are the total electron

density, the Kohn-Sham potential, the Hartree potential, and the difference electron density taken

from the superposition of atomic densities of constituent atoms, respectively, which are output in the

Gaussian cube format. Since the Gaussian cube format is one of well used grid formats, you can

visualize the files using free molecular modeling software such as VESTA [103], Molekel [104], and

XCrySDen [105]. The visualization will be illustrated in the later section.

23

5 Automatic running test

In addition to a running test of the Section ’Test calculation’, if you want to check whether most

functionalities of OpenMX have been successfully installed on your computer or not, we recommend

for you to perform an automatic running test. To do this, you can run OpenMX as follows:

For the MPI parallel running

% mpirun -np 8 openmx -runtest

For the MPI/OpenMP parallel running

% mpirun -np 8 openmx -runtest -nt 2

In the parallel execution, you can specify other options for mpirun. Then, OpenMX will run with 14

test files, and compare calculated results with the reference results which are stored in ’work/input example’.

The comparison (absolute difference in the total energy and force) is stored in a file ’runtest.result’

in the directory ’work’. The reference results were calculated using a single processor of a 2.6 GHz

Xeon machine. If the difference is within last seven digits, we may consider that the installation is

successful. As an example, ’runtest.result’ generated by the automatic running test is shown below:

mx17 (Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz), a cluster machine in the Ozaki laboratory

icc version 16.0.2, compiler option -O3 -xHOST -ip -no-prec-div -qopenmp

20 processes (MPI) x 1 thread (OpenMP)

1 input example/Benzene.dat Elapsed time(s)= 3.09 diff Utot= 0.000000000021 diff Force= 0.000000000000

2 input example/C60.dat Elapsed time(s)= 8.71 diff Utot= 0.000000000000 diff Force= 0.000000000000

3 input example/CO.dat Elapsed time(s)= 6.77 diff Utot= 0.000000000000 diff Force= 0.000000000004

4 input example/Cr2.dat Elapsed time(s)= 7.15 diff Utot= 0.000000000001 diff Force= 0.000000000001

5 input example/Crys-MnO.dat Elapsed time(s)= 20.16 diff Utot= 0.000000000003 diff Force= 0.000000000047

6 input example/GaAs.dat Elapsed time(s)= 27.89 diff Utot= 0.000000000000 diff Force= 0.000000000000

7 input example/Glycine.dat Elapsed time(s)= 3.45 diff Utot= 0.000000000001 diff Force= 0.000000000000

8 input example/Graphite4.dat Elapsed time(s)= 3.75 diff Utot= 0.000000000004 diff Force= 0.000000000152

9 input example/H2O-EF.dat Elapsed time(s)= 2.93 diff Utot= 0.000000000000 diff Force= 0.000000000000

10 input example/H2O.dat Elapsed time(s)= 2.80 diff Utot= 0.000000000000 diff Force= 0.000000000000

11 input example/HMn.dat Elapsed time(s)= 8.84 diff Utot= 0.000000000000 diff Force= 0.000000000000

12 input example/Methane.dat Elapsed time(s)= 2.38 diff Utot= 0.000000000013 diff Force= 0.000000000001

13 input example/Mol MnO.dat Elapsed time(s)= 6.05 diff Utot= 0.000000000001 diff Force= 0.000000000000

14 input example/Ndia2.dat Elapsed time(s)= 4.98 diff Utot= 0.000000000000 diff Force= 0.000000000000

Total elapsed time (s) 108.96

The comparison was made using 20 MPI processes on the same Xeon cluster machine as used for the

calculations to obtain the reference results. Since the floating point operation depends on not only

computer environment, but also the number of processors used in parallel execution, we see in the

above example that there is a small difference even using the same machine. The elapsed time of

each job is also output, so it is helpful in comparing the computational speed depending on computer

environment. In the directory ’work/input example’, you can find ’runtest.result’ files generated on

several platforms.

If you want to make reference files by yourself, please execute OpenMX as follows:

% ./openmx -maketest

24

Then, for input files ’*.dat’ in the directory ’work/input example’, OpenMX will generate the output

files ’*.out’ in ’work/input example’. So, you can add a new dat file which is used in the next running

test. But, please make sure that the previous out files in ’work/input example’ will be overwritten

by this procedure. For advanced testers for checking the reliability of code, see also the Sections

’Automatic force tester’ and ’Automatic memory leak tester’.

For reference, the results of ’runtest’ on a couple of machines are given below:

System B (sekirei) at ISSP, Univ. of Tokyo (Intel Xeon E5-2680v3 12core 2.5GHz)
icc version 18.0.5, compiler option: -O3 -xHOST -ip -no-prec-div -qopenmp -Dkcomp -fp-model precise
6 processes (MPI) x 4 thread (OpenMP)

1 input example/Benzene.dat Elapsed time(s)= 3.69 diff Utot= 0.000000000034 diff Force= 0.000000000005

2 input example/C60.dat Elapsed time(s)= 11.54 diff Utot= 0.000000000005 diff Force= 0.000000000006

3 input example/CO.dat Elapsed time(s)= 6.14 diff Utot= 0.000000000106 diff Force= 0.000000001979

4 input example/Cr2.dat Elapsed time(s)= 5.80 diff Utot= 0.000000000364 diff Force= 0.000000000033

5 input example/Crys-MnO.dat Elapsed time(s)= 58.73 diff Utot= 0.000000000003 diff Force= 0.000000000005

6 input example/GaAs.dat Elapsed time(s)= 48.60 diff Utot= 0.000000000010 diff Force= 0.000000000002

7 input example/Glycine.dat Elapsed time(s)= 3.39 diff Utot= 0.000000000001 diff Force= 0.000000000000

8 input example/Graphite4.dat Elapsed time(s)= 9.05 diff Utot= 0.000000000016 diff Force= 0.000000000019

9 input example/H2O-EF.dat Elapsed time(s)= 3.04 diff Utot= 0.000000000002 diff Force= 0.000000000001

10 input example/H2O.dat Elapsed time(s)= 2.69 diff Utot= 0.000000000000 diff Force= 0.000000000019

11 input example/HMn.dat Elapsed time(s)= 10.50 diff Utot= 0.000000000085 diff Force= 0.000000000022

12 input example/Methane.dat Elapsed time(s)= 2.05 diff Utot= 0.000000000003 diff Force= 0.000000000002

13 input example/Mol MnO.dat Elapsed time(s)= 6.41 diff Utot= 0.000000000617 diff Force= 0.000000000018

14 input example/Ndia2.dat Elapsed time(s)= 5.59 diff Utot= 0.000000000000 diff Force= 0.000000000000

Total elapsed time (s) 177.21

System C (enaga) at ISSP, Univ. of Tokyo (Intel Xeon 6148 20core 2.4GHz)
icc version 18.0.5, compiler option: -O3 -xHOST -ip -no-prec-div -qopenmp -Dkcomp -fp-model precise
5 processes (MPI) x 4 thread (OpenMP)

1 input example/Benzene.dat Elapsed time(s)= 2.92 diff Utot= 0.000000000025 diff Force= 0.000000000002

2 input example/C60.dat Elapsed time(s)= 9.47 diff Utot= 0.000000000005 diff Force= 0.000000000003

3 input example/CO.dat Elapsed time(s)= 5.71 diff Utot= 0.000000000072 diff Force= 0.000000001573

4 input example/Cr2.dat Elapsed time(s)= 5.46 diff Utot= 0.000000000845 diff Force= 0.000000000111

5 input example/Crys-MnO.dat Elapsed time(s)= 40.05 diff Utot= 0.000000000002 diff Force= 0.000000000066

6 input example/GaAs.dat Elapsed time(s)= 37.81 diff Utot= 0.000000000009 diff Force= 0.000000000001

7 input example/Glycine.dat Elapsed time(s)= 2.96 diff Utot= 0.000000000001 diff Force= 0.000000000001

8 input example/Graphite4.dat Elapsed time(s)= 5.76 diff Utot= 0.000000000002 diff Force= 0.000000000140

9 input example/H2O-EF.dat Elapsed time(s)= 2.44 diff Utot= 0.000000000000 diff Force= 0.000000000000

10 input example/H2O.dat Elapsed time(s)= 2.39 diff Utot= 0.000000000002 diff Force= 0.000000003224

11 input example/HMn.dat Elapsed time(s)= 10.08 diff Utot= 0.000000000129 diff Force= 0.000000000020

12 input example/Methane.dat Elapsed time(s)= 1.88 diff Utot= 0.000000000001 diff Force= 0.000000000000

13 input example/Mol MnO.dat Elapsed time(s)= 6.09 diff Utot= 0.000000000272 diff Force= 0.000000000150

14 input example/Ndia2.dat Elapsed time(s)= 4.02 diff Utot= 0.000000000000 diff Force= 0.000000000001

Total elapsed time (s) 137.06

hster at JAIST (Intel(R) Xeon(R) CPU E5-2640 0 @ 2.50GHz)
icc compiler Ver. 14.0.2.144, compiler option: -openmp -O3 -xAVX -ip -no-prec-div
20 processes (MPI) x 1 thread (OpenMP)

25

1 input example/Benzene.dat Elapsed time(s)= 5.30 diff Utot= 0.000000000038 diff Force= 0.000000000003

2 input example/C60.dat Elapsed time(s)= 12.53 diff Utot= 0.000000000001 diff Force= 0.000000000002

3 input example/CO.dat Elapsed time(s)= 10.55 diff Utot= 0.000000000047 diff Force= 0.000000007948

4 input example/Cr2.dat Elapsed time(s)= 10.74 diff Utot= 0.000000000381 diff Force= 0.000000000102

5 input example/Crys-MnO.dat Elapsed time(s)= 27.48 diff Utot= 0.000000000001 diff Force= 0.000000000035

6 input example/GaAs.dat Elapsed time(s)= 38.56 diff Utot= 0.000000000001 diff Force= 0.000000000001

7 input example/Glycine.dat Elapsed time(s)= 5.76 diff Utot= 0.000000000001 diff Force= 0.000000000000

8 input example/Graphite4.dat Elapsed time(s)= 6.73 diff Utot= 0.000000000003 diff Force= 0.000000000073

9 input example/H2O-EF.dat Elapsed time(s)= 5.00 diff Utot= 0.000000000001 diff Force= 0.000000000001

10 input example/H2O.dat Elapsed time(s)= 4.86 diff Utot= 0.000000000000 diff Force= 0.000000000020

11 input example/HMn.dat Elapsed time(s)= 13.97 diff Utot= 0.000000000118 diff Force= 0.000000000001

12 input example/Methane.dat Elapsed time(s)= 4.36 diff Utot= 0.000000000006 diff Force= 0.000000000002

13 input example/Mol MnO.dat Elapsed time(s)= 9.83 diff Utot= 0.000000000144 diff Force= 0.000000000079

14 input example/Ndia2.dat Elapsed time(s)= 8.39 diff Utot= 0.000000000000 diff Force= 0.000000000001

Total elapsed time (s) 164.04

CRAY-XC40 at JAIST (Intel Xeon E5-2695v4 2.1GHz)
icc version 17.0.7, compiler option: -Dxt3 -O3 -axCOMMON-AVX512,CORE-AVX512,CORE-AVX2,CORE-
AVX-I,AVX,SSE4.2,SSE4.1,SSE3,SSSE3,SSE2 -qopenmp
18 processes (MPI) x 2 thread (OpenMP)

1 input example/Benzene.dat Elapsed time(s)= 4.23 diff Utot= 0.000000000040 diff Force= 0.000000000002

2 input example/C60.dat Elapsed time(s)= 12.40 diff Utot= 0.000000000001 diff Force= 0.000000000001

3 input example/CO.dat Elapsed time(s)= 9.09 diff Utot= 0.000000000150 diff Force= 0.000000009551

4 input example/Cr2.dat Elapsed time(s)= 8.56 diff Utot= 0.000000000462 diff Force= 0.000000000004

5 input example/Crys-MnO.dat Elapsed time(s)= 20.81 diff Utot= 0.000000000001 diff Force= 0.000000000014

6 input example/GaAs.dat Elapsed time(s)= 31.99 diff Utot= 0.000000000001 diff Force= 0.000000000001

7 input example/Glycine.dat Elapsed time(s)= 4.71 diff Utot= 0.000000000001 diff Force= 0.000000000002

8 input example/Graphite4.dat Elapsed time(s)= 4.89 diff Utot= 0.000000000032 diff Force= 0.000000000004

9 input example/H2O-EF.dat Elapsed time(s)= 4.03 diff Utot= 0.000000000001 diff Force= 0.000000000002

10 input example/H2O.dat Elapsed time(s)= 3.83 diff Utot= 0.000000000001 diff Force= 0.000000001042

11 input example/HMn.dat Elapsed time(s)= 12.73 diff Utot= 0.000000000064 diff Force= 0.000000000029

12 input example/Methane.dat Elapsed time(s)= 3.24 diff Utot= 0.000000000004 diff Force= 0.000000000001

13 input example/Mol MnO.dat Elapsed time(s)= 8.32 diff Utot= 0.000000000576 diff Force= 0.000000000032

14 input example/Ndia2.dat Elapsed time(s)= 6.12 diff Utot= 0.000000000000 diff Force= 0.000000000001

Total elapsed time (s) 134.96

FX100 at Nagoya Univ. (PRIMEHPC FX100, SPARC64b XIfx, 2.2Gz)
mpifccpx, compiler option: -Kfast -Kopenmp -Dnosse -Dkcomp
16 processes (MPI) x 2 thread (OpenMP)

1 input example/Benzene.dat Elapsed time(s)= 12.29 diff Utot= 0.000000000003 diff Force= 0.000000000005

2 input example/C60.dat Elapsed time(s)= 29.15 diff Utot= 0.000000000158 diff Force= 0.000000000050

3 input example/CO.dat Elapsed time(s)= 38.71 diff Utot= 0.000000000125 diff Force= 0.000000003104

4 input example/Cr2.dat Elapsed time(s)= 25.43 diff Utot= 0.000000001020 diff Force= 0.000000000007

5 input example/Crys-MnO.dat Elapsed time(s)= 84.38 diff Utot= 0.000000006058 diff Force= 0.000000073199

6 input example/GaAs.dat Elapsed time(s)= 80.54 diff Utot= 0.000000000011 diff Force= 0.000000015689

7 input example/Glycine.dat Elapsed time(s)= 14.78 diff Utot= 0.000000000000 diff Force= 0.000000000000

8 input example/Graphite4.dat Elapsed time(s)= 14.52 diff Utot= 0.000000000016 diff Force= 0.000000000001

9 input example/H2O-EF.dat Elapsed time(s)= 12.78 diff Utot= 0.000000000001 diff Force= 0.000000000001

10 input example/H2O.dat Elapsed time(s)= 13.07 diff Utot= 0.000000000001 diff Force= 0.000000000023

11 input example/HMn.dat Elapsed time(s)= 37.63 diff Utot= 0.000000000153 diff Force= 0.000000000000

12 input example/Methane.dat Elapsed time(s)= 9.82 diff Utot= 0.000000000007 diff Force= 0.000000000002

13 input example/Mol MnO.dat Elapsed time(s)= 26.48 diff Utot= 0.000000000209 diff Force= 0.000000000058

14 input example/Ndia2.dat Elapsed time(s)= 19.74 diff Utot= 0.000000000000 diff Force= 0.000000000001

Total elapsed time (s) 419.32

26

pauli (AMD EPYC 7351P, 2.4GHz), a machine in the Ozaki laboratory
gcc version 7.4.0, compiler option: -Dkcomp -O3 -march=znver1 -mtune=znver1 -mfma -mavx2 -m3dnow -
fomit-frame-pointer -fopenmp
12 processes (MPI) x 1 thread (OpenMP)

1 input example/Benzene.dat Elapsed time(s)= 3.32 diff Utot= 0.000000000039 diff Force= 0.000000000002

2 input example/C60.dat Elapsed time(s)= 13.49 diff Utot= 0.000000000013 diff Force= 0.000000000006

3 input example/CO.dat Elapsed time(s)= 9.13 diff Utot= 0.000000000064 diff Force= 0.000000000934

4 input example/Cr2.dat Elapsed time(s)= 8.43 diff Utot= 0.000000002324 diff Force= 0.000000000157

5 input example/Crys-MnO.dat Elapsed time(s)= 25.40 diff Utot= 0.000000000003 diff Force= 0.000000000070

6 input example/GaAs.dat Elapsed time(s)= 38.09 diff Utot= 0.000000000002 diff Force= 0.000000000001

7 input example/Glycine.dat Elapsed time(s)= 4.41 diff Utot= 0.000000000001 diff Force= 0.000000000003

8 input example/Graphite4.dat Elapsed time(s)= 4.83 diff Utot= 0.000000000015 diff Force= 0.000000000011

9 input example/H2O-EF.dat Elapsed time(s)= 3.55 diff Utot= 0.000000000000 diff Force= 0.000000000001

10 input example/H2O.dat Elapsed time(s)= 2.95 diff Utot= 0.000000000001 diff Force= 0.000000000806

11 input example/HMn.dat Elapsed time(s)= 11.85 diff Utot= 0.000000000113 diff Force= 0.000000000001

12 input example/Methane.dat Elapsed time(s)= 2.72 diff Utot= 0.000000000006 diff Force= 0.000000000001

13 input example/Mol MnO.dat Elapsed time(s)= 8.01 diff Utot= 0.000000000326 diff Force= 0.000000000050

14 input example/Ndia2.dat Elapsed time(s)= 5.93 diff Utot= 0.000000000000 diff Force= 0.000000000000

Total elapsed time (s) 142.11

6 Automatic running test with large-scale systems

In some cases, one may want to know machine performance for more time consuming calculations.

For this purpose, an automatic running test with relatively large-scale systems can be performed by

For the MPI parallel running

% mpirun -np 112 openmx -runtestL

For the MPI/OpenMP parallel running

% mpirun -np 112 openmx -runtestL -nt 2

Then, OpenMX will run with 16 test files, and compare calculated results with the reference results

which are stored in ’work/large example’. The comparison (absolute difference in the total energy and

force) is stored in a file ’runtestL.result’ in the directory ’work’. The reference results were calculated

using 28 MPI processes of a 2.6 GHz Xeon cluster machine. If the difference is within last seven digits,

we may consider that the installation is successful. As an example, ’runtestL.result’ generated by the

automatic running test is shown below:

27

1 large example/5 5 13COb2.dat Elapsed time(s)= 52.78 diff Utot= 0.000000000020 diff Force= 0.000000000004

2 large example/B2C62 Band.dat Elapsed time(s)= 403.51 diff Utot= 0.000000000001 diff Force= 0.000000063810

3 large example/CG15c-DC-LNO.dat Elapsed time(s)= 103.31 diff Utot= 0.000000000269 diff Force= 0.000000000551

4 large example/DIA512-1.dat Elapsed time(s)= 49.35 diff Utot= 0.000000027379 diff Force= 0.000000031436

5 large example/FeBCC.dat Elapsed time(s)= 80.54 diff Utot= 0.000000000016 diff Force= 0.000000000001

6 large example/GEL.dat Elapsed time(s)= 44.95 diff Utot= 0.000000000009 diff Force= 0.000000000004

7 large example/GFRAG.dat Elapsed time(s)= 27.68 diff Utot= 0.000000000001 diff Force= 0.000000000001

8 large example/GGFF.dat Elapsed time(s)= 643.36 diff Utot= 0.000000000037 diff Force= 0.000000000809

9 large example/MCCN.dat Elapsed time(s)= 82.04 diff Utot= 0.000000005885 diff Force= 0.000000003486

10 large example/Mn12 148 F.dat Elapsed time(s)= 74.25 diff Utot= 0.000000000015 diff Force= 0.000000000010

11 large example/N1C999.dat Elapsed time(s)= 1212.42 diff Utot= 0.000000000035 diff Force= 0.000000000390

12 large example/Ni63-O64.dat Elapsed time(s)= 70.90 diff Utot= 0.000000000211 diff Force= 0.000000000008

13 large example/Pt63.dat Elapsed time(s)= 58.76 diff Utot= 0.000000001297 diff Force= 0.000000000242

14 large example/SialicAcid.dat Elapsed time(s)= 16.75 diff Utot= 0.000000000001 diff Force= 0.000000000001

15 large example/ZrB2 2x2.dat Elapsed time(s)= 133.10 diff Utot= 0.000000000044 diff Force= 0.000000000020

16 large example/nsV4Bz5.dat Elapsed time(s)= 99.37 diff Utot= 0.000000004771 diff Force= 0.000000003167

Total elapsed time (s) 3153.08

The comparison was made using 112 MPI processes on the same Xeon cluster machine. Since the

automatic running test requires large memory, you may encounter a segmentation fault in case that a

small number of cores are used. Also the above example implies that the total elapsed time is about

53 minutes even using 112 cores. See also the Section ’Large-scale calculation’ for another large-scale

benchmark calculation.

28

7 Input file

7.1 An example: methane molecule

An input file ’Methane.dat’ in the directory ’work’ is shown below. The input file has a flexible data

format in such a way that a parameter is given behind a keyword, the order of keywords is arbitrary,

and a blank and a comment can be also described freely. For the keywords and options, both capital,

small letters, and the mixture are acceptable, although these options in below example are written in

a specific form.

#

File Name

#

System.CurrrentDirectory ./ # default=./

System.Name met

level.of.stdout 1 # default=1 (1-3)

level.of.fileout 1 # default=1 (0-2)

#

Definition of Atomic Species

#

Species.Number 2

<Definition.of.Atomic.Species

H H5.0-s1 H_PBE19

C C5.0-s1p1 C_PBE19

Definition.of.Atomic.Species>

#

Atoms

#

Atoms.Number 5

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU

<Atoms.SpeciesAndCoordinates

1 C 0.000000 0.000000 0.000000 2.0 2.0

2 H -0.889981 -0.629312 0.000000 0.5 0.5

3 H 0.000000 0.629312 -0.889981 0.5 0.5

4 H 0.000000 0.629312 0.889981 0.5 0.5

5 H 0.889981 -0.629312 0.000000 0.5 0.5

Atoms.SpeciesAndCoordinates>

Atoms.UnitVectors.Unit Ang # Ang|AU

<Atoms.UnitVectors

10.0 0.0 0.0

0.0 10.0 0.0

0.0 0.0 10.0

Atoms.UnitVectors>

#

29

SCF or Electronic System

#

scf.XcType GGA-PBE # LDA|LSDA-CA|LSDA-PW|GGA-PBE

scf.SpinPolarization off # On|Off|NC

scf.ElectronicTemperature 300.0 # default=300 (K)

scf.energycutoff 120.0 # default=150 (Ry)

scf.maxIter 100 # default=40

scf.EigenvalueSolver cluster # DC|Cluster|Band

scf.Kgrid 1 1 1 # means n1 x n2 x n3

scf.Mixing.Type rmm-diis # Simple|Rmm-Diis|Gr-Pulay|Kerker|Rmm-Diisk

scf.Init.Mixing.Weight 0.30 # default=0.30

scf.Min.Mixing.Weight 0.001 # default=0.001

scf.Max.Mixing.Weight 0.400 # default=0.40

scf.Mixing.History 7 # default=5

scf.Mixing.StartPulay 5 # default=6

scf.criterion 1.0e-10 # default=1.0e-6 (Hartree)

#

MD or Geometry Optimization

#

MD.Type nomd # Nomd|Opt|NVE|NVT_VS|NVT_NH

Constraint_Opt|DIIS

MD.maxIter 1 # default=1

MD.TimeStep 1.0 # default=0.5 (fs)

MD.Opt.criterion 1.0e-4 # default=1.0e-4 (Hartree/Bohr)

7.2 Keywords

The specification of each keyword is given below. The list does not include all the keywords in

OpenMX, and those keywords will be explained in each corresponding section.

File name

System.CurrrentDir

The output directory of output files is specified by this keyword. The default is ’./’.

System.Name

The file name of output files is specified by this keyword.

DATA.PATH

The path to the VPS and PAO directories can be specified in your input file by the following keyword:

DATA.PATH ../DFT_DATA19 # default=../DFT_DATA19

Both the absolute and relative specifications are available. The default is ’../DFT DATA19’.

30

level.of.stdout

The amount of the standard output during the calculation is controlled by the keyword ’level.of.stdout’.

In case of ’level.of.stdout=0’, minimum information. In case of ’level.of.stdout=1’, standard informa-

tion. In case of ’level.of.stdout=2’, additional information together with the minimum output infor-

mation. ’level.of.stdout=3’ is for developers. The default is 1.

level.of.fileout

The amount of information output to the files is controlled by the keyword ’level.of.fileout’. In

case of ’level.of.fileout=0’, minimum information (no Gaussian cube and grid files). In case of

’level.of.fileout=1’, standard output. In case of ’level.of.fileout=2’, additional information together

with the standard output. The default is 1.

Definition of Atomic Species

Species.Number

The number of atomic species in the system is specified by the keyword ’Species.Number’.

Definition.of.Atomic.Species

Please specify atomic species by giving both the file name of pseudo-atomic basis orbitals and pseu-

dopotentials which must be existing in the directories ’DFT DATA19/PAO’ and ’DFT DATA19/VPS’,

respectively. For example, they are specified as follows:

<Definition.of.Atomic.Species

H H5.0-s1>1p1>1 H_CA19

C C5.0-s1>1p1>1 C_CA19

Definition.of.Atomic.Species>

The beginning of the description must be ’<Definition.of.Atomic.Species’, and the last of the descrip-

tion must be ’Definition.of.Atomic.Species>’. In the first column, you can give any name to specify

the atomic species. The name is used in the specification of atomic coordinates by

’Atoms.SpeciesAndCoordinates’. In the second column, the file name of the pseudo-atomic basis or-

bitals without the file extension and the number of primitive orbitals and contracted orbitals are given.

Here we introduce an abbreviation of the basis orbital we used as H4.0-s1>1p1>1, where H4.0 indi-

cates the file name of the pseudo-atomic basis orbitals without the file extension which must exist in

the directory ’DFT DATA19/PAO’, s1>1 means that one optimized orbitals are constructed from one

primitive orbitals for the s-orbital, which means no contraction. Also, in case of s1>1, corresponding

to no contraction, you can use a simple notation ’s1’ instead of ’s1>1’. Thus, ’H4.0-s1p1’ is equivalent

to ’H4.0-s1>1p1>1’. In the third column, the file name for the pseudopotentials without the file

extension is given. Also the file must exist in the directory ’DFT DATA19/VPS’. It can be possible

to assign as the different atomic species for the same atomic element by specifying the different basis

orbitals and pseudopotentials. For example, you can define the atomic species as follows:

<Definition.of.Atomic.Species

H1 H5.0-s1p1 H_CA19

H2 H5.0-s2p2d1 H_CA19

31

C1 C5.0-s2p2 C_CA19

C2 C5.0-s2p2d2 C_CA19

Definition.of.Atomic.Species>

The flexible definition may be useful for the decrease of computational efforts, in which only high

level basis functions are used for atoms belonging to the essential part which determines the electric

properties in the system, and lower level basis functions are used for atoms in the other inert parts.

Atoms

Atoms.Number

The total number of atoms in the system is specified by the keyword ’Atoms.Number’.

Atoms.SpeciesAndCoordinates.Unit

The unit of the atomic coordinates is specified by the keyword ’Atoms.SpeciesAndCoordinates.Unit’.

Please specify ’Ang’ when you use the unit of Angstrom, and ’AU’ when the unit of atomic unit. The

fractional coordinate is also available by ’FRAC’. Then, please specify the coordinates spanned by a,

b, and c-axes given in ’Atoms.UnitVectors’. In the fractional coordinates, the coordinates can range

from 0.0 to 1.0, and the coordinates beyond its range will be automatically adjusted after the input

file is read.

Atoms.SpeciesAndCoordinates

The atomic coordinates and the number of spin charge are given by the keyword

’Atoms.SpeciesAndCoordinates’ as follows:

<Atoms.SpeciesAndCoordinates

1 C 0.000000 0.000000 0.000000 2.0 2.0

2 H -0.889981 -0.629312 0.000000 0.5 0.5

3 H 0.000000 0.629312 -0.889981 0.5 0.5

4 H 0.000000 0.629312 0.889981 0.5 0.5

5 H 0.889981 -0.629312 0.000000 0.5 0.5

Atoms.SpeciesAndCoordinates>

The beginning of the description must be ’<Atoms.SpeciesAndCoordinates’, and the last of the de-

scription must be ’Atoms.SpeciesAndCoordinates>’. The first column is a sequential serial number

for identifying atoms. The second column is given to specify the atomic species which must be given

in the first column of the specification of the keyword ’Definition.of.Atomic.Species’ in advance. In

the third, fourth, and fifth columns, x-, y-, and z-coordinates are given. When ’FRAC’ is chosen for

the keyword ’Atoms.SpeciesAndCoordinates.Unit’, the third, fourth, and fifth columns are fractional

coordinates spanned by a, b, and c-axes, where the coordinates can range from 0.0 to 1.0, and the

coordinates beyond its range will be automatically adjusted after the input file is read. The sixth

and seventh columns give the number of initial charges for up and down spin states of each atom,

respectively. The sum of up and down charges must be the number of valence electrons for the atomic

element. When you calculate spin-polarized systems using ’LSDA-CA’ or ’LSDA-PW’, you can give

32

the initial spin charges for each atom, which might be those of the ground state, to accelerate the SCF

convergence.

Atoms.UnitVectors.Unit

The unit of the vectors for the unit cell is specified by the keyword ’Atoms.UnitVectors.Unit’. Please

specify ’Ang’ when you use the unit of Angstrom, and ’AU’ when the unit of atomic unit.

Atoms.UnitVectors

The vectors, a, b, and c of the unit cell are given by the keyword ’Atoms.UnitVectors’ as follows:

<Atoms.UnitVectors

10.0 0.0 0.0

0.0 10.0 0.0

0.0 0.0 10.0

Atoms.UnitVectors>

The beginning of the description must be ’<Atoms.UnitVectors’, and the last of the description must

be ’Atoms.UnitVectors>’. The first, second, and third rows correspond to the vectors, a, b, and c of

the unit cell, respectively. If the keyword is absent in the cluster calculation, a unit cell is automatically

determined so that the isolated system cannot overlap with the image systems in the repeated cells

via basis functions. See also the Section ’Automatic determination of the cell size’.

SCF or Electronic System

scf.XcType

The keyword ’scf.XcType’ specifies the exchange-correlation potential. Currently, ’LDA’, ’LSDA-CA’,

’LSDA-PW’, and ’GGA-PBE’ are available, where ’LSDA-CA’ is the local spin density functional of

Ceperley-Alder [2], ’LSDA-PW’ is the local spin density functional of Perdew-Wang, in which the

gradient of density is set to zero in their GGA formalism [4]. Note: ’LSDA-CA’ is faster than ’LSDA-

PW’. ’GGA-PBE’ is a GGA functional proposed by Perdew et al [5].

scf.SpinPolarization

The keyword ’scf.SpinPolarization’ specifies the non-spin polarization or the spin polarization for the

electronic structure. If the calculation for the spin polarization is performed, then specify ’ON’. If

the calculation for the non-spin polarization is performed, then specify ’OFF’. When you use ’LDA’

for the keyword ’scf.XcType’, the keyword ’scf.SpinPolarization’ must be ’OFF’. In addition to these

options, ’NC’ is supported for the non-collinear DFT calculation. For this calculation, see also the

Section ’Non-collinear DFT’.

scf.partialCoreCorrection

The keyword ’scf.partialCoreCorrection’ is a flag for a partial core correction (PCC) in calculations

of exchange-correlation energy and potential. ’ON’ means that PCC is made, and ’OFF’ is none. In

any cases, the flag should be ’ON’, since pseudopotentials generated with PCC should be used with

PCC, and also PCC does not affect the result for pseudopotentials without PCC because of zero PCC

charge in this case.

33

scf.Hubbard.U

In case of the LDA+U or GGA+U calculation, the keyword ’scf.Hubbard.U’ should be switched ’ON’

(ON|OFF). The default is ’OFF’.

scf.Hubbard.Occupation

In the LDA+U method, three occupation number operators ’onsite’, ’full’, and ’dual’ are available

which can be specified by the keyword ’scf.Hubbard.Occupation’.

Hubbard.U.values

An effective U-value on each orbital of species is defined by the following keyword:

<Hubbard.U.values # eV

Ni 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 4.0 2d 0.0

O 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 0.0

Hubbard.U.values>

The beginning of the description must be ’<Hubbard.U.values’, and the last of the description must

be ’Hubbard.U.values>’. For all the basis orbitals specified by the ’Definition.of.Atomic.Species’, you

have to give an effective U-value in the above format. The ’1s’ and ’2s’ mean the first and second

s-orbital, and the number behind ’1s’ is the effective U-value (eV) for the first s-orbital. The same

rule is applied to p- and d-orbitals.

scf.Constraint.NC.Spin

The keyword ’scf.Constraint.NC.Spin’ should be switched ’ON’ (ON|OFF) when the constraint DFT

method for the non-collinear spin orientation is performed.

scf.Constraint.NC.Spin.v

The keyword ’scf.Constraint.NC.Spin.v’ gives a prefactor (eV) of the penalty functional in the con-

straint DFT for the non-collinear spin orientation.

scf.ElectronicTemperature

The electronic temperature (K) is given by the keyword ’scf.ElectronicTemperature’. The default is

300 (K).

scf.energycutoff

The keyword ’scf.energycutoff’ specifies the cutoff energy which is used in the calculation of matrix

elements associated with difference charge Coulomb potential and exchange-correlation potential and

the solution of Poisson’s equation using fast Fourier transform (FFT). The default is 150 (Ryd).

scf.Ngrid

The keyword ’scf.Ngrid’ gives the number of grids to discretize the a-, b-, and c-axes. Although

’scf.energycutoff’ is usually used for the discretization, when the numbers of grids are specified by

’scf.Ngrid’, they are used for the discretization instead of those by ’scf.energycutoff’.

scf.maxIter

The maximum number of SCF iterations is specified by the keyword ’scf.maxIter’. The SCF loop is

terminated at the number specified by ’scf.maxIter’ even if a convergence criterion is not satisfied.

The default is 40.

34

scf.EigenvalueSolver

The solution method for the eigenvalue problem is specified by the keyword ’scf.EigenvalueSolver’. An

O(N) divide-conquer method ’DC’, an O(N) divide-conquer method with localized natural orbitals

’DC-LNO’, an O(N) Krylov subspace method ’Krylov’, a numerically exact low-order scaling method

’ON2’, the cluster calculation ’Cluster’, and the band calculation ’Band’ are available.

scf.Kgrid

When you specify the band calculation ’Band’ for the keyword ’scf.EigenvalueSolver’, then you need

to give a set of numbers (n1,n2,n3) of grids to discretize the first Brillouin zone in the k-space by

the keyword ’scf.Kgrid’. For the reciprocal vectors ã, b̃, and c̃ in the k-space, please provide a set of

numbers (n1,n2,n3) of grids as n1 n2 n3. The k-points in OpenMX are generated by a regular mesh

method.

scf.ProExpn.VNA

Switch on the keyword ’scf.ProExpn.VNA’ in case that the neutral atom potential VNA is expanded

by projector operators [42]. Otherwise turn off. The default is ’ON’.

scf.ProExpn.VNA ON # ON|OFF, default = ON

In case that ’scf.ProExpn.VNA=OFF’, the matrix elements for the VNA potential are evaluated by

using the regular mesh in real space.

scf.Mixing.Type

A mixing method of the electron density (or the density matrix) to generate an input electron density

at the next SCF step is specified by keyword ’scf.Mixing.Type’. A simple mixing method (’Simple’),

’GR-Pulay’ method (Guaranteed-Reduction Pulay method) [57], ’RMM-DIIS’ method [58], ’Kerker’

method [59], ’RMM-DIISK’ method [58], ’RMM-DIISV’ method [58], and ’RMM-DIISH’ method

[58] are available. The simple mixing method used here is modified to accelerate the convergence,

referring to a convergence history. When ’GR-Pulay’, ’RMM-DIIS’, ’Kerker’, ’RMM-DIISK’, ’RMM-

DIISV’, or ’RMM-DIISH’ is used, the following recipes are helpful to obtain faster convergence of SCF

calculations:

• Use a rather larger value for ’scf.Mixing.StartPulay’. Before starting the Pulay-like mixing,

achieve a convergence at some level. An appropriate value may be 10 to 30 for ’scf.Mixing.StartPulay’.

• Use a rather larger value for ’scf.ElectronicTemperature’ in case of metallic systems. When

’scf.ElectronicTemperature’ is too low, numerical instabilities appear often.

• Use a large value for ’scf.Mixing.History’. In most cases, ’scf.Mixing.History=30’ can be a good

value.

Among these mixing schemes, the robustest one might be ’RMM-DIISK’.

scf.Init.Mixing.Weight

The keyword ’scf.Init.Mixing.Weight’ gives the initial mixing weight used by the simple mixing, the

GR-Pulay, the RMM-DIIS, the Kerker, the RMM-DIISK, the RMM-DIISV, and the RMM-DIISH

methods. The valid range is 0 <scf.Init.Mixing.Weight< 1. The default is 0.3.

scf.Min.Mixing.Weight

35

The keyword ’scf.Min.Mixing.Weight’ gives the lower limit of a mixing weight in the simple and Kerker

mixing methods. The default is 0.001.

scf.Max.Mixing.Weight

The keyword ’scf.Max.Mixing.Weight’ gives the upper limit of a mixing weight in the simple and

Kerker mixing methods. The default is 0.4.

scf.Kerker.factor

The keyword gives a Kerker factor which is used in the Kerker and RMM-DIISK mixing methods.

If the keyword is not given, a proper value is automatically determined. For further details, see the

Section ’SCF convergence’.

scf.Mixing.History

In the GR-Pulay method [57], the RMM-DIIS method [58], the Kerker method [59], the RMM-DIISK

method [58], the RMM-DIISV method [58], and the RMM-DIISH method [58], the input electron den-

sity (Hamiltonian) at the next SCF step is estimated based on the output electron densities (Hamil-

tonian) in the several previous SCF steps. The keyword ’scf.Mixing.History’ specifies the number of

previous SCF steps which are used in the estimation. For example, if ’scf.Mixing.History’ is specified

to be 3, and when the SCF step is 6th, the electron densities at 5, 4, and 3 SCF steps are taken into

account. Around 30 is a better choice.

scf.Mixing.StartPulay

The SCF step which starts the GR-Pulay, the RMM-DIIS, the Kerker, the RMM-DIISK, the RMM-

DIISV method, or the RMM-DIISH methods is specified by the keyword ’scf.Mixing.StartPulay’. The

SCF steps before starting these Pulay-type methods are then performed by the simple or Kerker mix-

ing methods. The default is 6.

scf.Mixing.EveryPulay

The residual vectors in the Pulay-type mixing methods tend to become linearly dependent each other

as the mixing steps accumulate, and the linear dependence among the residual vectors makes the

convergence difficult. A way of avoiding the linear dependence is to do the Pulay-type mixing oc-

casionally during the Kerker mixing. With this prescription, you can specify the frequency using

the keyword ’scf.Mixing.EveryPulay’. For example, in case of ’scf.Mixing.EveryPulay=5’, the Pulay-

mixing is made at every five SCF iterations, while the Kerker mixing is used at the other steps.

’scf.Mixing.EveryPulay=1’ corresponds to the conventional Pulay-type mixing. It is noted that the

keyword ’scf.Mixing.EveryPulay’ is supported for only ’RMM-DIISK’, and the default value is 1.

scf.criterion

The keyword ’scf.criterion’ specifies a convergence criterion (Hartree) for the SCF calculation. The

SCF iteration is ended when a condition, dUele<scf.criterion, is satisfied, where dUele is defined as

the absolute deviation between the eigenvalue energy at the current and previous SCF steps. The

default is 1.0e-6 (Hartree).

scf.Electric.Field

The keyword ’scf.Electric.Field’ gives the strength of a uniform external electric field given by a saw-

tooth waveform. For example, when an electric field of 1.0 GV/m (109 V/m) is applied along the

a-axis, specify in your input file as follows:

36

scf.Electric.Field 1.0 0.0 0.0 # default=0.0 0.0 0.0 (GV/m)

The sign of electric field is taken as that applied to electrons. The default is 0.0 0.0 0.0.

scf.system.charge

The keyword ’scf.system.charge’ gives the amount of the electron and hole dopings. The plus and

minus signs correspond to hole and electron dopings, respectively. The default is 0.

scf.SpinOrbit.Coupling

When the spin-orbit coupling is included, the keyword should be ’ON’, otherwise please set to ’OFF’.

In case of the inclusion of the spin-orbit coupling, you have to use j-dependent pseudopotentials. See

also the Section ’Relativistic effects’ as for the j-dependent pseudopotentials.

1D FFT

1DFFT.EnergyCutoff

The keyword ’1DFFT.EnergyCutoff’ gives the energy range to tabulate the Fourier transformed radial

functions of pseudo-atomic orbitals and of the projectors for non-local potentials. The default is 3600

(Ryd).

1DFFT.NumGridK

The keyword ’1DFFT.NumGridK’ gives the the number of radial grids in the k-space. The values

of the Fourier transformation for radial functions of pseudo-atomic orbitals and of the projectors for

non-local potentials are tabulated on the grids, ranging from zero to 1DFFT.EnergyCutoff, as a func-

tion of radial axis in the k-space. The default is 900.

1DFFT.NumGridR

The keyword ’1DFFT.NumGridR’ gives the the number of radial grids in real space which is used

in the numerical grid integrations of the Fourier transformation for radial functions of pseudo-atomic

orbitals and of the projectors for non-local potentials. The default is 900.

Orbital Optimization

orbitalOpt.Method

The keyword ’orbitalOpt.Method’ specifies a method for the orbital optimization. When the orbital

optimization is not performed, then choose ’OFF’. When the orbital optimization is performed, the

following two options are available: ’atoms’ in which basis orbitals on each atom are fully optimized,

’species’ in which basis orbitals on each species are optimized. In ’atoms’, the radial functions of

basis orbitals are optimized with a constraint that the radial wave function R is independent on the

magnetic quantum number, which guarantees the rotational invariance of the total energy. However,

the optimized orbital on all the atoms can be different from each other. In the ’species’, basis orbitals

in atoms with the same species name, that you define in ’Definition.of.Atomic.Species’, are optimized

as the same orbitals. If you want to assign the same orbitals to atoms with almost the same chemical

environment, and optimize these orbitals, this scheme is useful.

37

orbitalOpt.scf.maxIter

The maximum number of SCF iterations in the orbital optimization is specified by the keyword ’or-

bitalOpt.scf.maxIter’.

orbitalOpt.Opt.maxIter

The maximum number of iterations for the orbital optimization is specified by the keyword ’or-

bitalOpt.Opt.maxIter’. The iteration loop for the orbital optimization is terminated at the number

specified by ’orbitalOpt.Opt.maxIter’ even if a convergence criterion is not satisfied.

orbitalOpt.Opt.Method

Two schemes for the optimization of orbitals are available: ’EF’ which is an eigenvector following

method, ’DIIS’ which is the direct inversion method in iterative subspace. The algorithms are ba-

sically the same as for the geometry optimization. Either ’EF’ or ’DIIS’ is chosen by the keyword

’orbitalOpt.Opt.Method’.

orbitalOpt.StartPulay

The quasi Newton method ’EF’ and ’DIIS’ starts from the optimization step specified by the keyword

’orbitalOpt.StartPulay’.

orbitalOpt.HistoryPulay

The keyword ’orbitalOpt.HistoryPulay’ specifies the number of previous steps to estimate the next

input contraction coefficients used in the quasi Newton method ’EF’ and ’DIIS’.

orbitalOpt.SD.step

The orbital optimization at optimization steps before moving to the quasi Newton method ’EF’ or

’DIIS’ is performed by the steepest decent method. The prefactor used in the steepest decent method

is specified by the keyword ’orbitalOpt.SD.step’. In most cases, ’orbitalOpt.SD.step’ of 0.001 can be

a good prefactor.

orbitalOpt.criterion

The keyword ’orbitalOpt.criterion’ specifies a convergence criterion ((Hartree/Borg)2) for the orbital

optimization. The iterations loop is finished when a condition, Norm of derivatives<orbitalOpt.criterion,

is satisfied.

CntOrb.fileout

If you want to output the optimized radial orbitals to files, then the keyword ’CntOrb.fileout’ must

be ’ON’.

Num.CntOrb.Atoms

The keyword ’Num.CntOrb.Atoms’ gives the number of atoms whose optimized radial orbitals are

output to files.

Atoms.Cont.Orbitals

The keyword ’Atoms.Cont.Orbitals’ specifies the atom number, which is given by the first column in

the specification of the keyword ’Atoms.SpeciesAndCoordinates’ for the output of optimized orbitals

as follows:

<Atoms.Cont.Orbitals

1

38

2

Atoms.Cont.Orbitals>

The beginning of the description must be ’<Atoms.Cont.Orbitals’, and the last of the description

must be ’Atoms.Cont.Orbitals>’. The number of lines should be consistent with the number speci-

fied in the keyword ’Atoms.Cont.Orbitals’. For example, the name of files are C 1.pao and H 2.pao,

where the symbol corresponds to that given by the first column in the specification of the keyword

’Definition.of.Atomic.Species’ and the number after the symbol means that of the first column in

the specification of the keyword ’Atoms.SpeciesAndCoordinates’. These output files ’C 1.pao’ and

’H 2.pao’ can be an input data for pseudo-atomic orbitals as is.

SCF Order-N

orderN.HoppingRanges

The keyword ’orderN.HoppingRanges’ defines the radius of a sphere which is centered on each atom.

The physically truncated cluster for each atom is constructed by picking up atoms inside the sphere

with the radius in the DC, DC-LNO, and Krylov subspace O(N) methods.

orderN.KrylovH.order

The dimension of the Krylov subspace of Hamiltonian in each truncated cluster is given by the ’or-

derN.KrylovH.order’.

orderN.KrylovS.order

In case of ’orderN.Exact.Inverse.S=off’, the inverse is approximated by a Krylov subspace method for

the inverse, where the dimension of the Krylov subspace of overlap matrix in each truncated cluster

is given by the keyword ’orderN.KrylovS.order’. The default value is ’orderN.KrylovH.order’×4.

orderN.Exact.Inverse.S

In case of ’orderN.Exact.Inverse.S=on’, the inverse of overlap matrix for each truncated cluster is

exactly evaluated. Otherwise, see the keyword ’orderN.KrylovS.order’. The default is ’on’ (on|off).

orderN.Recalc.Buffer

In case of ’orderN.Recalc.Buffer=on’, the buffer matrix is recalculated at every SCF step. Otherwise,

the buffer matrix is calculated at the first SCF step, and fixed at subsequent SCF steps. The default

is ’on’ (on|off).

orderN.Expand.Core

In case of ’orderN.Expand.Core=on’, the core region is defined by atoms within a sphere with radius

of 1.2 × rmin, where rmin is the distance between the central atom and the nearest atom. The core

region defines a set of vectors used for the first step in the generation of the Krylov subspace for each

truncated cluster. In case of ’orderN.Expand.Core=off’, the central atom is considered as the core

region. The default is ’on’ (on|off).

MD or Geometry Optimization

39

MD.Type

Please specify the type of the molecular dynamics calculation or the geometry optimization. Currently,

NO MD (Nomd), MD with the NVE ensemble (NVE), MD with the NVT ensemble by a velocity scal-

ing scheme (NVT VS)[30], MD with the NVT ensemble by a Nose-Hoover scheme (NVT NH) [31],

MD with multi-heat bath (NVT VS2 or NVT VS4), the geometry optimization by the steepest decent

(SD) method (Opt), DIIS optimization method (DIIS), the eigenvector following (EF) method (EF)

[63], and the rational function (RF) method (RF) [64] are available. For the details, see the Sections

’Geometry optimization’ and ’Molecular dynamics’.

MD.Fixed.XYZ

In the geometry optimization and the molecular dynamics simulations, it is possible to separately fix

the x-, y-, and z-coordinates of the atomic position to the initial position in your input file by the

following keyword:

<MD.Fixed.XYZ

1 1 1 1

2 1 0 0

MD.Fixed.XYZ>

The example is for a system consisting of two atoms. If you have N atoms, then you have to provide

N rows in this specification. The 1st column is the same sequential number to specify atom as in the

specification of the keyword ’Atoms.SpeciesAndCoordinates’. The 2nd, 3rd, and 4th columns are flags

for the x-, y-, and z-coordinates, respectively. ’1’ means that the coordinate is fixed, and ’0’ relaxed.

In the above example, the x-, y-, and z-coordinates of the atom ’1’ are fixed, only the x-coordinate of

the atom ’2’ is fixed. The default setting is that all the coordinates are relaxed. The fixing of atomic

positions are valid all the geometry optimizers and molecular dynamics schemes.

MD.maxIter

The keyword ’MD.maxIter’ gives the number of MD iterations.

MD.TimeStep

The keyword ’MD.TimeStep’ gives the time step (fs).

MD.Opt.criterion

When any of the geometry optimizers is chosen for the keyword ’MD.Type’, then the keyword

’MD.Opt.criterion’ specifies a convergence criterion (Hartree/Bohr). The geometry optimization is

finished when a condition, the maximum force on atom is smaller than ’MD.Opt.criterion’, is satisfied.

MD.Opt.DIIS.History

The keyword ’MD.Opt.DIIS.History’ gives the number of previous steps to estimate the optimized

structure used in the geometry optimization by ’DIIS’, ’EF’, and ’RF’. The default value is 3.

MD.Opt.StartDIIS

The geometry optimization step at which ’DIIS’, ’EF’, or ’RF’ starts is specified by the keyword

’MD.Opt.StartDIIS’. The geometry optimization steps before starting the DIIS-type method is per-

formed by the steepest decent method. The default value is 5.

MD.TempControl

40

The keyword specifies temperature for atomic motion in MD of the NVT ensembles. In ’NVT VS’,

the temperature for nuclear motion can be controlled by

<MD.TempControl

3

100 2 1000.0 0.0

400 10 700.0 0.4

700 40 500.0 0.7

MD.TempControl>

The beginning of the description must be ’<MD.TempControl’, and the last of the description must

be ’MD.TempControl>’. The first number ’3’ gives the number of the following lines to control the

temperature. In this case, you can see that there are three lines. Following the number ’3’, in the

consecutive lines the first column means MD steps and the second column gives the interval of MD

steps that the velocity scaling is made. For the above example, a velocity scaling is performed at every

two MD steps until 100 MD steps, at every 10 MD steps from 100 to 400 MD steps, and at every 40

MD steps from 400 to 700 MD steps. The third and fourth columns give a given temperature (K) and

a scaling parameter α in the interval. For further details see the Section ’Molecular dynamics’. On

the other hand, in NVT NH, the temperature for nuclear motion can be controlled by

<MD.TempControl

4

1 1000.0

100 1000.0

400 700.0

700 600.0

MD.TempControl>

The beginning of the description must be ’<MD.TempControl’, and the last of the description must

be ’MD.TempControl>’. The first number ’4’ gives the number of the following lines to control the

temperature. In this case you can see that there are four lines. Following the number ’4’, in the

consecutive lines the first and second columns give the MD steps and a given temperature for nuclear

motion. The temperature between the MD steps explicitly specified by the keyword is given by a

linear interpolation.

NH.Mass.HeatBath

In ’NVT NH’, a mass of heat bath is given by the keyword. The default mass is 20, and the dimension

is length2 × mass. In this specification we use the bohr radius for the length, and the unified atomic

mass unit, that the principal isotope of carbon atom is 12.0, for the mass.

MD.Init.Velocity

For molecular dynamics simulations, it is possible to provide the initial velocity of each atom by the

following keyword:

<MD.Init.Velocity

41

1 3000.000 0.0 0.0

2 -3000.000 0.0 0.0

MD.Init.Velocity>

The example is for a system consisting of two atoms. If you have N atoms, then you have to provide

N rows in this specification. The 1st column is the same sequential number to specify atom as in the

specification of the keyword ’Atoms.SpeciesAndCoordinates’. The 2nd, 3rd, and 4th columns are x-,

y-, and z-components of the velocity of each atom. The unit of the velocity is m/s. The keyword

’MD.Init.Velocity’ is compatible with the keyword ’MD.Fixed.XYZ’.

42

Band dispersion

Band.dispersion

When you evaluate the band dispersion, please specify ’ON’ for the keyword ’Band.dispersion’.

Band.KPath.UnitCell

The keyword ’Band.KPath.UnitCell’ gives unit vectors, which are used in the calculation of the band

dispersion, as follows:

<Band.KPath.UnitCell

3.56 0.0 0.0

0.0 3.56 0.0

0.0 0.0 3.56

Band.KPath.UnitCell>

The beginning of the description must be ’<Band.KPath.UnitCell’, and the last of the description must

be ’Band.KPath.UnitCell>’. If ’Band.KPath.UnitCell’ exists, the reciprocal lattice vectors for the

calculation of the band dispersion are calculated by the unit vectors specified in ’Band.KPath.UnitCell’.

If ’Band.KPath.UnitCell’ is not found, the reciprocal lattice vectors, which are calculated by the unit

vectors specified in ’Atoms.UnitVectors’, is employed for the calculation of the band dispersion. In case

of fcc, bcc, base centered cubic, and trigonal cells, the reciprocal lattice vectors for the calculation

of the band dispersion should be specified using the keyword ’Band.KPath.UnitCell’ based on the

consuetude in the band calculations.

Band.Nkpath

The keyword ’Band.Nkpath’ gives the number of paths for the band dispersion.

Band.kpath

The keyword ’Band.kpath’ specifies the paths of the band dispersion as follows:

<Band.kpath

15 0.0 0.0 0.0 1.0 0.0 0.0 g X

15 1.0 0.0 0.0 1.0 0.5 0.0 X W

15 1.0 0.5 0.0 0.5 0.5 0.5 W L

15 0.5 0.5 0.5 0.0 0.0 0.0 L g

15 0.0 0.0 0.0 1.0 1.0 0.0 g X

Band.kpath>

The beginning of the description must be ’<Band.kpath’, and the last of the description must be

’Band.kpath>’. The number of lines should be consistent with ’Band.Nkpath’. The first column

is the number of grids at which eigenvalues are evaluated on the path. The following (n1, n2, n3)

and (n1’, n2’, n3’), spanned by the reciprocal lattice vectors, specifies the starting and ending k-

points of the path in the first Brillouin zone. If ’Band.KPath.UnitCell’ is found, the reciprocal lat-

tice vectors for the calculation of the band dispersion are calculated by the unit vectors specified in

’Band.KPath.UnitCell’. If ’Band.KPath.UnitCell’ is not found, the reciprocal lattice vectors, which

43

are calculated by the unit vectors specified in ’Atoms.UnitVectors’ is employed for the calculation of

the band dispersion. The final two alphabets give the name of the starting and ending k-points of the

path.

Restarting

scf.restart

If you want to restart the SCF calculation using a previous file ’System.Name rst/*’ which should be

generated in the previous calculation, then set the keyword ’scf.restart’ to ’ON’.

Output of molecular orbitals (MOs)

MO.fileout

If you want to output molecular orbitals (MOs) to files, then set the keyword ’MO.fileout’ to ’ON’.

num.HOMOs

The keyword ’num.HOMOs’ gives the number of the highest occupied molecular orbitals (HOMOs)

that you want to output to files.

num.LUMOs

The keyword ’num.LUMOs’ gives the number of the lowest unoccupied molecular orbitals (LUMOs)

that you want to output to files.

MO.Nkpoint

When you have specified ’MO.fileout=ON’ and ’scf.EigenvalueSolver=Band’, the keyword ’MO.Nkpoint’

gives the number of the k-points at which you output MOs to files.

MO.kpoint

The keyword ’MO.kpoint’ specifies the k-point, at which MOs are evaluated for the output to files, as

follows:

<MO.kpoint

0.0 0.0 0.0

MO.kpoint>

The beginning of the description must be ’<MO.kpoint’, and the last of the description must be

’MO.kpoint>’. The k-points are specified by (n1, n2, n3) which is spanned by the reciprocal lattice

vectors, where the the reciprocal lattice vectors are determined in the same way as ’Band.kpath’.

DOS and PDOS

Dos.fileout

If you want to evaluate density of states (DOS) and projected partial density of states (PDOS), please

set in ’Dos.fileout=ON’.

44

Dos.Erange

The keyword ’Dos.Erange’ determines the energy range for the DOS calculation as

Dos.Erange -10.0 10.0

The first and second values are the lower and upper bounds of the energy range (eV) for the DOS

calculation, respectively.

Dos.Kgrid

The keyword ’Dos.Kgrid’ gives a set of numbers (n1,n2,n3) of grids to discretize the first Brillouin

zone in the k-space, which is used in the DOS calculation.

Interface for developers

HS.fileout

If you want to use Kohn-Sham Hamiltonian, overlap, and density matrices, please set in ’HS.fileout=ON’.

Then, these data are stored to ’System.Name.scfout’ in a binary form, where ’System.Name’ is the

file name specified by the keyword ’System.Name’. The utilization of these data is illustrated in the

Section ’Interface for developers’.

Voronoi charge

Voronoi.charge

If you want to calculate Voronoi charges, then set the keyword ’Voronoi.charge’ to ’ON’. The result is

found in ’System.Name.out’, ’System.Name’ is the file name specified by the keyword ’System.Name’.

45

8 Output files

In case of ’level.of.fileout=0’, the following files are generated. In the following, ’System.Name’ is the

file name specified by the keyword ’System.Name’.

• System.Name.out

The history of SCF calculations, the history of geometry optimization, Mulliken charges, the

total energy, and the dipole moment.

• System.Name.xyz

The final geometrical structure obtained by MD or the geometry optimization, which can be

read by OpenMX Viewer [152, 151] and XCrySDen [105].

• System.Name.bulk.xyz

If ’scf.EigenvalueSolver=Band’, atomic coordinates including atoms in copied cells are output,

which can be read by OpenMX Viewer [152, 151] and XCrySDen [105].

• System.Name rst/

The directory storing restart files.

• System.Name.md

Geometrical coordinates at every MD step in the xyz format, which can be read by OpenMX

Viewer [152, 151].

• System.Name.md2

Geometrical coordinates at the final MD step with the species names that you specified .

• System.Name.cif

Initial geometrical coordinates in the cif format.

• System.Name.ene

Values computed at every MD step. The values are found in the routine ’iterout.c’.

In case of ’level.of.fileout=1’, the following Gaussian cube files are generated, in addition to files

generated in ’level.of.fileout=0’, In the following, ’System.Name’ is the file name specified by the

keyword ’System.Name’.

• System.Name.tden.cube

Total electron density in the Gaussian cube format.

• System.Name.sden.cube

If the spin-polarized calculation using ’LSDA-CA’, ’LSDA-PW’, or ’GGA-PBE’ is performed,

then spin electron density is output in the Gaussian cube format.

• System.Name.dden.cube

Difference electron density taken from superposition of atomic densities of constituent atoms in

the Gaussian cube format.

46

• System.Name.v0.cube

The Kohn-Sham potential excluding the non-local potential for up-spin in the Gaussian cube

format. If the projector expansion method is switched on by the keyword ’scf.ProExpn.VNA’,

the VNA potential is also excluded. See also the technical note ’Total Energy and Forces’ at

http://www.openmx-square.org/tech notes/tech notes.html .

• System.Name.v1.cube

The Kohn-Sham potential excluding the non-local potential for down-spin in the Gaussian cube

format in the spin-polarized calculation. If the projector expansion method is switched on by

the keyword ’scf.ProExpn.VNA’, the VNA potential is also excluded. See also the technical note

’Total Energy and Forces’ at http://www.openmx-square.org/tech notes/tech notes.html .

• System.Name.vhart.cube

The Hartree potential calculated by the difference charge density in the Gaussian cube format.

See also the technical note ’Total Energy and Forces’ at

http://www.openmx-square.org/tech notes/tech notes.html .

In case of ’level.of.fileout=2’, the following files are generated in addition to files generated in

level.of.fileout=1, In the following, ’System.Name’ is the file name specified by the keyword ’Sys-

tem.Name’.

• System.Name.vxc0.cube

The exchange-correlation potential for up-spin in the Gaussian cube format.

• System.Name.vxc1.cube

The exchange-correlation potential for down-spin in the Gaussian cube format.

• System.Name.grid

The real space grids which are used numerical integrations and the solution of Poisson’s equation.

If ’MO.fileout=ON’ and ’scf.EigenvalueSolver=Cluster’, the following files are also generated:

• System.Name.homo0 0.cube, System.Name.homo0 1.cube, ...

The HOMOs are output in the Gaussian cube format. The first number below ’homo’ means

a spin state (up=0, down=1). The second number specifies the eigenstates, i.e., 0, 1, and 2

correspond to HOMO, HOMO-1, and HOMO-2, respectively.

• System.Name.lumo0 0.cube, System.Name.lumo0 1.cube, ...

The LUMOs are output in the Gaussian cube format. The first number below ’lumo’ means

a spin state (up=0, down=1). The second number specifies the eigenstates, i.e., 0, 1, and 2

correspond to LUMO, LUMO+1, and LUMO+2, respectively.

If ’MO.fileout=ON’ and ’scf.EigenvalueSolver=Band’, the following files are also generated:

47

• System.Name.homo0 0 0 r.cube, System.Name.homo1 0 1 r.cube, ... System.Name.homo0 0 0 i.cube,

System.Name.homo1 0 1 i.cube, ...

The HOMOs are output in the Gaussian cube format. The first number below ’homo’ means the

k-point number, which is specified by the keyword ’MO.kpoint’. The second number is a spin

state (up=0, down=1). The third number specifies the eigenstates, i.e., 0, 1, and 2 correspond

to HOMO, HOMO-1, and HOMO-2, respectively. The ’r’ and ’i’ mean the real and imaginary

parts of the wave function.

• System.Name.lumo0 0 0 r.cube, System.Name.lumo1 0 1 r.cube, ... System.Name.lumo0 0 0 i.cube,

System.Name.lumo1 0 1 i.cube, ...

The LUMOs are output in the Gaussian cube format. The first number below ’lumo’ means the

k-point number, which is specified in the keyword, MO.kpoint. The second number is a spin

state (up=0, down=1). The third number specifies the eigenstates, i.e., 0, 1, and 2 correspond

to LUMO, LUMO+1, and LUMO+2, respectively. The ’r’ and ’i’ mean the real and imaginary

parts of the wave function.

If ’Band.Nkpath’ is not 0 and ’scf.EigenvalueSolver=Band’, the following file is also generated:

• System.Name.Band

A data file for the band dispersion.

If ’Dos.fileout=ON’, the following files are also generated:

• System.Name.Dos.val

A data file of eigenvalues for calculating the density of states.

• System.Name.Dos.vec

A data file of eigenvectors for calculating the density of states.

If ’scf.SpinPolarization=NC’ and ’level.of.fileout=1’ or ’2’, the following files are also generated:

• System.Name.nco.xsf

A vector file which stores a non-collinear orbital moment projected on each atom by means of

Mulliken analysis, which can be visualized using ’Display→Forces’ in XCrySDen.

• System.Name.nc.xsf

A vector file which stores a non-collinear spin moment projected on each atom by means of

Mulliken analysis, which can be visualized using ’Display→Forces’ in XCrySDen.

• System.Name.ncsden.xsf

A vector file which stores a non-collinear spin moment on real space grids, which can be visualized

using ’Display→Forces’ in XCrySDen.

48

9 Functional

In OpenMX, local density approximations (LDA, LSDA) [2, 3, 4] and a generalized gradient approx-

imation (GGA) [5] to exchange-correlation functional are used. Using a keyword ’scf.XcType’, you

can choose one of approximations to the exchange-correlation functional:

scf.XcType LDA # LDA|LSDA-CA|LSDA-PW|GGA-PBE

Currently, ’LDA’, ’LSDA-CA’, ’LSDA-PW’, and ’GGA-PBE’ are available, where ’LSDA-CA’ is the

local spin density functional of Ceperley-Alder [2], ’LSDA-PW’ is the local spin density functional

of Perdew-Wang, in which the gradient of density is set in zero in their GGA formalism [4]. Note:

’LSDA-CA’ is faster than ’LSDA-PW’. ’GGA-PBE’ is GGA proposed by Perdew, Burke, and Ernz-

erhof [5]. The GGA is implemented by using the first order finite difference method in real space.

In addition, LDA+U (or GGA+U) functionals are also available. For the details, see the Section

’DFT+U ’. The relevant keyword to specify the spin (un)polarized and non-collinear calculations is

’scf.SpinPolarization’.

scf.SpinPolarization off # On|Off|NC

If the calculation for the spin polarization is performed, then specify ’ON’. If the calculation for the non-

spin polarization is performed, then specify ’OFF’. When you use ’LDA’ for the keyword ’scf.XcType’,

the keyword ’scf.SpinPolarization’ must be off. In addition to these options, ’NC’ is supported for the

non-collinear DFT calculation. For this calculation, see also the Section ’Non-collinear DFT’.

49

10 Basis sets

10.1 General

OpenMX uses numerical pseudo-atomic orbitals (PAOs) χ as basis function to expand one-particle

Kohn-Sham wave functions. The PAO function is given by a product of a radial function R and a real

spherical harmonic function Y as

χ(r) = R(r)Y (r̂),

where the radial function R is a numerically defined one, and finite within a cutoff radius in real space.

In other words, the function R becomes zero beyond a pre-defined cutoff radius. The PAO function

calculated by ADPACK is called primitive function, and an optimized PAO function is obtained by

the orbital optimization method in OpenMX starting from the primitive PAO function [41]. They are

stored in a file with a file extension of ’pao’. When the OpenMX calculation is performed, the numerical

data stored in the file are read, and the value at any r is obtained by an interpolation technique. The

files with the file extension of ’pao’ should be stored in a directory, e.g., ’DFT DATA19/PAO’, where

the directory without ’PAO’ can be specified by the following keyword:

DATA.PATH ../DFT_DATA19 # default=../DFT_DATA19

Both the absolute and relative specifications are possible, and the default is ’../DFT DATA19’.

In an input file for the OpenMX calculation, The basis set is specified by a keyword ’Defini-

tion.of.Atomic.Species’ as follows:

<Definition.of.Atomic.Species

H H5.0-s2p1 H_PBE19

C C5.0-s2p1 C_PBE19

Definition.of.Atomic.Species>

where an abbreviation, H5.0-s2p1, of the basis function is introduced. H5.0 stands for the file name of

the PAO functions without the file extension which must exist in a directory specified by the keyword

’DATA.PATH’, e.g., DFT DATA19/PAO, and 5.0 implies the cutoff radius of the PAO functions.

Also, s2p1 means that two s-state radial functions and one p-state radial function stored in the file

are used. In this case, totally five PAO basis functions (2x1+1x3=5) are assigned for ’H’.

Since optimized basis functions are available on the website (http://www.openmx-square.org/) as

the database Ver. 2019. We recommend for general users to use these optimized basis functions. But

for experts, both the primitive and optimized PAO functions are explained in the subsequent sections.

10.2 Primitive basis functions

The primitive basis functions are generated by ADPACK, and they are the ground and exited states of

a pseudo-atom with a confinement pseudopotential [41] as shown in Fig. 1. The functions are numerical

table function stored in a file of which file extension is ’pao’. You will see that the ground state is

nodeless and the first exited state has one node, and the number of nodes increases in the further

excited states. When you use the primitive PAO functions as basis set, the one-particle Kohn-Sham

functions are expressed by the linear combination of the pseudo-atomic type basis functions where

50

0 1 2 3 4 5

−4.0

−2.0

0.0

2.0

4.0

−1.0

0.0

1.0

r (a.u.)

P
s
e
u
d
o
 p

o
te

n
ti
a
l
(H

a
rt

re
e
)

R
a
d
ia

l W
a
v
e
 F

u
n
c
tio

n

node=0node=1
node=2

node=
3

Figure 1: Primitive basis functions for s-orbitals of a carbon pseudo-atom with a confinement pseu-

dopotential.

each basis function is the product of the radial function and a real spherical harmonics function. The

accuracy and efficiency of the calculations can be controlled by two parameters: a cutoff radius and

the number of basis functions. In general, one can get the convergent results by increasing the cutoff

radius and the number of basis functions as shown in Fig. 2. However, it is noted that the use of a

large number of basis orbitals with a large cutoff radius requires an extensive computational resource

such as memory size and computational time. The general trend to choose the cutoff radius and the

number of basis orbitals in a compromising way is discussed in Ref. [41], where you may find that

basis orbitals with a higher angular momentum are needed to achieve the sufficient convergence for

elements, such as F and Cl, in the right hand side of the periodic table, and that a large cutoff radius

of basis orbitals should be used for elements, such as Li and Na, in the left hand side of the periodic

table. Since optimized basis functions are available on the website (http://www.openmx-square.org/)

as the database Ver. 2019. We recommend for general users to use these optimized basis functions

instead of the primitive PAO functions.

10.3 Optimized basis functions provided by the database Ver. 2019

The optimized PAO functions are provided on the website (http://www.openmx-square.org/) as the

database Ver. 2019. This should be the first choice by general users, since they were generated by the

orbital optimization method [41], and tested well through a series of benchmark calculations. For most

elements in the database Ver. 2019, three systems are chosen as training sets of chemical environment,

and the PAO functions were optimized by the orbital optimization method for the chosen systems [41].

Then, those optimized ones are unified to form a single PAO file through a combination scheme of a

subspace rotation method and Gram-Schmidt orthogonalization. Thus, the optimized PAO functions

51

−10.90

−10.80

−10.70

−10.60

−10.50

0 5 10 15 20 25 30 35 40 45
1.16

1.24

1.32

1.40

T
o

ta
l
E

n
e

rg
y
 (

H
a

rt
re

e
)

rc=3.5 (a.u.)
rc=4.0 (a.u.)
rc=4.5 (a.u.)
rc=5.0 (a.u.)
rc=5.5 (a.u.)
rc=6.0 (a.u.)

E
q

u
ili

b
ri
u

m
 B

o
n

d
 L

e
n

g
th

 (
A

)

rc=3.5 (a.u.)
rc=4.0 (a.u.)
rc=4.5 (a.u.)
rc=5.0 (a.u.)
rc=5.5 (a.u.)
rc=6.0 (a.u.)

(a)

(b)

C2

C2

Exp.

s+p s+p+d

s+p+ds+p

Number of Bases per Atom

Figure 2: Convergence properties of (a) the total energy and (b) the equilibrium bond length for a

carbon dimer with respect to the cutoff radius and the number of basis functions.

have been already optimized for a set of different chemical environments, which may increase the

transferability of the optimized PAO functions. In fact, the series of benchmark calculations shown in

the website of the database are in good agreement with corresponding all electron calculations. From

the benchmark calculations one may find a proper cutoff radius and the number of basis functions for

each element. The input files used for the benchmark calculations are also available on the website,

which may be useful for users to get used to the OpenMX calculations at the initial stage. The

accuracy of the database (2019) was validated by the delta gauge [40]. The mean delta factor of

71 elements is 1.774 meV/atom with the standard deviation of 1.702 meV/atom, which implies high

accuracy of the database (2019). Users are strongly encouraged to use the new database due to the

high accuracy. See also the section ’Calculation of Energy vs. lattice constant’.

For user’s convenience, a set of proper choices for the basis functions is provided in Tables 1 and 2.

For each pseudopotential, three choices: Quick, Standard, and Precise are given in the Tables. Quick

allows us a quick calculation, but with a reasonably accuracy. Standard can be a proper choice for

the most of users, which balances the accuracy and efficiency. Precise almost reaches to convergent

results in most of cases. The tables give a guideline in choosing the basis functions, while of course,

52

Figure 3: The isosurface map of the highest occupied state at the Γ point for NaCl with a Cl-site

vacancy, which shows a F-center in NaCl with a Cl vacancy. The isosurface map was drawn using

XCrySDen with the isovalue of 0.042 [105]. The calculation was done with the system charge of -1

using a keyword ’scf.system.charge’. The watery and silver colors correspond to sodium and chlorine

atoms,respectively, and the yellow small ball shows the position of empty atom.

basis functions should be properly selected depending on your purpose.

10.4 Optimization of PAO by yourself

Starting from the primitive basis functions, you can optimize the radial shape variationally so that

the accuracy can be increased. See the details in the Section ’Orbital optimization’.

10.5 Empty atom scheme

The primitive and optimized PAO functions are usually assigned to atoms. Moreover, it is possible to

assign basis functions in any vacant region using an empty atom. You will find the empty atom ’E’

in the website of the database (http://www.openmx-square.org/). Using the pseudopotential for the

empty atom ’E’, though the pseudopotential is a flat zero potential, you can put basis functions at

any place independently of atomic position. To do that, you can define empty atoms by

<Definition.of.Atomic.Species

H H5.0-s2p1 H_PBE19

C C5.0-s2p1 C_PBE19

EH H5.0-s2p1 E

53

EC C5.0-s2p1 E

Definition.of.Atomic.Species>

In the example, two sorts of empty atoms are defined as ’EH’ and ’EC’ which have basis sets specified

by ’H5.0-s2p1’ and ’C5.0-s2p1’, respectively, which means that one can use any basis functions for

an empty atom as shown above. Then ’EH’ and ’EC’ can be put to any place by the keyword

’Atoms.SpeciesAndCoordinates’, where the number of electrons for the empty atom is zero. To define

an empty atom, only thing you have to do is to use ’E.vps’ as pseudopotential for the empty atom.

The empty atom scheme enables us not only to estimate the basis set superposition error (BSSE)

using the counterpoise correction (CP) method [46, 47], but also to treat a vacancy state and a nearly

free electron state on metal surfaces within the linear combination of pseudo-atomic orbitals (LCPAO)

method. As an example, a calculation of a F-center in NaCl with a Cl vacancy is shown in Fig. 3. We

see that the highest occupied state at the Γ point is the F-center state. You can follow the calculation

using ’NaCl FC.dat’ in the directory ’work’.

10.6 Specification of a directory storing PAO and VPS files

The path to the VPS and PAO directories can be specified in your input file by the following keyword:

DATA.PATH ../DFT_DATA19 # default=../DFT_DATA19

Both the absolute and relative specifications are possible. PAO files in a database should not be used

for the VPS in other databases, since semicore states included in several elements are different from

each other. So, the consistency in the version of PAO and VPS must be kept. For that reason, it

would be better to store PAO and VPS files of each version in different directories. In this case, the

keyword is useful.

54

Table 1: A set of choices for the PAO basis functions from E to Kr.

VPS Valence electrons Quick Standard Precise

E 0.0 Kr10.0-s1p1 Kr10.0-s2p1d1 Kr10.0-s2p2d1f1

H PBE19 1.0 H5.0-s2 H6.0-s2p1 H7.0-s2p2d1

He PBE19 2.0 He8.0-s1p1 He8.0-s2p1 He10.0-s2p2d1

Li PBE19 3.0 Li8.0-s3p1 Li8.0-s3p2 Li8.0-s3p2d1

Be PBE19 2.0 Be7.0-s2p1 Be7.0-s2p2 Be7.0-s3p2d1

B PBE19 3.0 B7.0-s2p2 B7.0-s2p2d1 B7.0-s3p2d2

C PBE19 4.0 C6.0-s2p2 C6.0-s2p2d1 C6.0-s3p2d2

N PBE19 5.0 N6.0-s2p2 N6.0-s2p2d1 N6.0-s3p2d2

O PBE19 6.0 O6.0-s2p2 O6.0-s2p2d1 O6.0-s3p2d2

F PBE19 7.0 F6.0-s2p2 F6.0-s2p2d1 F6.0-s3p3d2f1

Ne PBE19 8.0 Ne9.0-s2p2 Ne9.0-s2p2d1 Ne9.0-s3p2d2

Na PBE19 9.0 Na9.0-s3p2 Na9.0-s3p2d1 Na9.0-s3p2d2

Mg PBE19 8.0 Mg9.0-s2p2 Mg9.0-s3p2d1 Mg9.0-s3p2d2

Al PBE19 3.0 Al7.0-s2p1d1 Al7.0-s2p2d1 Al7.0-s3p2d2

Si PBE19 4.0 Si7.0-s2p1d1 Si7.0-s2p2d1 Si7.0-s3p3d2

P PBE19 5.0 P7.0-s2p2d1 P7.0-s2p2d1f1 P7.0-s3p2d2f1

S PBE19 6.0 S7.0-s2p2d1 S7.0-s2p2d1f1 S7.0-s3p2d2f1

Cl PBE19 7.0 Cl7.0-s2p2d1 Cl7.0-s2p2d1f1 Cl7.0-s3p2d2f1

Ar PBE19 8.0 Ar9.0-s2p2d1 Ar9.0-s2p2d1f1 Ar9.0-s3p2d2f1

K PBE19 9.0 K10.0-s3p2 K10.0-s3p2d1 K10.0-s3p2d2

Ca PBE19 10.0 Ca9.0-s3p2 Ca9.0-s3p2d1 Ca9.0-s3p2d2

Sc PBE19 11.0 Sc9.0-s2p2d1 Sc9.0-s3p2d1 Sc9.0-s3p2d2

Ti PBE19 12.0 Ti7.0-s2p2d1 Ti7.0-s3p2d1 Ti7.0-s3p2d2f1

V PBE19 13.0 V6.0-s2p2d1 V6.0-s3p2d1 V6.0-s3p2d2f1

Cr PBE19 14.0 Cr6.0-s2p2d1 Cr6.0-s3p2d1 Cr6.0-s3p2d2f1

Mn PBE19 15.0 Mn6.0-s2p2d1 Mn6.0-s3p2d1 Mn6.0-s3p2d2f1

Fe PBE19H 16.0 Fe5.5H-s2p2d1 Fe5.5H-s3p2d1 Fe5.5H-s3p2d2f1

Fe PBE19S 14.0 Fe6.0S-s2p2d1 Fe6.0S-s3p2d1 Fe6.0S-s3p2d2f1

Co PBE19H 17.0 Co6.0H-s2p2d1 Co6.0H-s3p2d1 Co6.0H-s3p2d2f1

Co PBE19S 15.0 Co6.0S-s2p2d1 Co6.0S-s3p2d1 Co6.0S-s3p2d2f1

Ni PBE19H 18.0 Ni6.0H-s2p2d1 Ni6.0H-s3p2d1 Ni6.0H-s3p2d2f1

Ni PBE19S 16.0 Ni6.0S-s2p2d1 Ni6.0S-s3p2d1 Ni6.0S-s3p2d2f1

Cu PBE19H 19.0 Cu6.0H-s2p2d1 Cu6.0H-s3p2d1 Cu6.0H-s3p2d2f1

Cu PBE19S 11.0 Cu6.0S-s2p1d1 Cu6.0S-s3p2d1 Cu6.0S-s3p2d2f1

Zn PBE19H 20.0 Zn6.0H-s2p2d1 Zn6.0H-s3p2d1 Zn6.0H-s3p2d2f1

Zn PBE19S 12.0 Zn6.0S-s2p1d1 Zn6.0S-s3p2d1 Zn6.0S-s3p2d2f1

Ga PBE19 13.0 Ga7.0-s2p2d1 Ga7.0-s3p2d2 Ga7.0-s3p2d2f1

Ge PBE19 4.0 Ge7.0-s2p1d1 Ge7.0-s3p2d2 Ge7.0-s3p2d2f1

As PBE19 15.0 As7.0-s3p2d1 As7.0-s3p2d2 As7.0-s3p2d2f1

Se PBE19 6.0 Se7.0-s3p2d1 Se7.0-s3p2d2 Se7.0-s3p2d2f1

Br PBE19 7.0 Br7.0-s3p2d1 Br7.0-s3p2d2 Br7.0-s3p2d2f1

Kr PBE19 8.0 Kr10.0-s2p2d1 Kr10.0-s3p2d2 Kr10.0-s3p2d2f1

55

Table 2: A set of choices for the PAO basis functions from Rb to Bi.

VPS Valence electrons Quick Standard Precise

Rb PBE19 9.0 Rb11.0-s2p2d1 Rb11.0-s3p2d2 Rb11.0-s3p2d2f1

Sr PBE19 10.0 Sr10.0-s2p2d1 Sr10.0-s3p2d2 Sr10.0-s3p3d2f1

Y PBE19 11.0 Y10.0-s3p2d1 Y10.0-s3p2d2 Y10.0-s3p3d2f1

Zr PBE19 12.0 Zr7.0-s3p2d1 Zr7.0-s3p2d2 Zr7.0-s3p2d2f1

Nb PBE19 13.0 Nb7.0-s3p2d1 Nb7.0-s3p2d2 Nb7.0-s3p2d2f1

Mo PBE19 14.0 Mo7.0-s3p2d1 Mo7.0-s3p2d2 Mo7.0-s3p2d2f1

Tc PBE19 15.0 Tc7.0-s3p2d1 Tc7.0-s3p2d2 Tc7.0-s3p2d2f1

Ru PBE19 14.0 Ru7.0-s3p2d1 Ru7.0-s3p2d2 Ru7.0-s3p2d2f1

Rh PBE19 15.0 Rh7.0-s3p2d1 Rh7.0-s3p2d2 Rh7.0-s3p2d2f1

Pd PBE19 16.0 Pd7.0-s3p2d1 Pd7.0-s3p2d2 Pd7.0-s3p2d2f1

Ag PBE19 17.0 Ag7.0-s3p2d1 Ag7.0-s3p2d2 Ag7.0-s3p2d2f1

Cd PBE19 12.0 Cd7.0-s3p2d1 Cd7.0-s3p2d2 Cd7.0-s3p2d2f1

In PBE19 13.0 In7.0-s3p2d1 In7.0-s3p2d2 In7.0-s3p2d2f1

Sn PBE19 14.0 Sn7.0-s3p2d1 Sn7.0-s3p2d2 Sn7.0-s3p2d2f1

Sb PBE19 15.0 Sb7.0-s3p2d1 Sb7.0-s3p2d2 Sb7.0-s3p2d2f1

Te PBE19 16.0 Te7.0-s3p2d2 Te7.0-s3p2d2f1 Te7.0-s3p3d2f1

I PBE19 7.0 I7.0-s3p2d2 I7.0-s3p2d2f1 I7.0-s3p3d2f1

Xe PBE19 8.0 Xe11.0-s3p2d1 Xe11.0-s3p2d2 Xe11.0-s3p2d2f1

Cs PBE19 9.0 Cs12.0-s3p2d1 Cs12.0-s3p2d2 Cs12.0-s3p2d2f1

Ba PBE19 10.0 Ba10.0-s3p2d1 Ba10.0-s3p2d2 Ba10.0-s3p2d2f1

La PBE19 11.0 La8.0-s3p2d1f1 La8.0-s3p2d2f1 La8.0-s3p3d2f1

Ce PBE19 12.0 Ce8.0-s3p2d1f1 Ce8.0-s3p2d2f1 Ce8.0-s3p3d2f1

Pr PBE19 13.0 Pr8.0-s3p2d1f1 Pr8.0-s3p2d2f1 Pr8.0-s3p3d2f1

Nd PBE19 14.0 Nd8.0-s3p2d1f1 Nd8.0-s3p2d2f1 Nd8.0-s3p3d2f1

Pm PBE19 15.0 Pm8.0-s3p2d1f1 Pm8.0-s3p2d2f1 Pm8.0-s3p3d2f1

Sm PBE19 16.0 Sm8.0-s3p2d1f1 Sm8.0-s3p2d2f1 Sm8.0-s3p3d2f1

Dy PBE19 20.0 Dy8.0-s3p2d1f1 Dy8.0-s3p2d2f1 Dy8.0-s3p3d2f1

Ho PBE19 21.0 Ho8.0-s3p2d1f1 Ho8.0-s3p2d2f1 Ho8.0-s3p3d2f1

Lu PBE19 11.0 Lu8.0-s3p2d2 Lu8.0-s3p2d2f1 Lu8.0-s3p3d2f1

Hf PBE19 12.0 Hf9.0-s3p2d2 Hf9.0-s3p2d2f1 Hf9.0-s3p3d2f1

Ta PBE19 13.0 Ta7.0-s3p2d2 Ta7.0-s3p2d2f1 Ta7.0-s3p3d2f1

W PBE19 12.0 W7.0-s3p2d2 W7.0-s3p2d2f1 W7.0-s3p3d2f1

Re PBE19 15.0 Re7.0-s3p2d2 Re7.0-s3p2d2f1 Re7.0-s3p3d2f1

Os PBE19 14.0 Os7.0-s3p2d2 Os7.0-s3p2d2f1 Os7.0-s3p3d2f1

Ir PBE19 15.0 Ir7.0-s3p2d2 Ir7.0-s3p2d2f1 Ir7.0-s3p3d2f1

Pt PBE19 16.0 Pt7.0-s3p2d2 Pt7.0-s3p2d2f1 Pt7.0-s3p3d2f1

Au PBE19 17.0 Au7.0-s3p2d2 Au7.0-s3p2d2f1 Au7.0-s3p3d2f1

Hg PBE19 18.0 Hg8.0-s3p2d2 Hg8.0-s3p2d2f1 Hg8.0-s3p3d2f1

Tl PBE19 19.0 Tl8.0-s3p2d2 Tl8.0-s3p2d2f1 Tl8.0-s3p3d2f1

Pb PBE19 14.0 Pb8.0-s3p2d2 Pb8.0-s3p2d2f1 Pb8.0-s3p3d2f1

Bi PBE19 15.0 Bi8.0-s3p2d2 Bi8.0-s3p2d2f1 Bi8.0-s3p3d2f1

56

11 Pseudopotentials

11.1 Conventional pseudopotentials

The core Coulomb potential in OpenMX is replaced by a tractable norm-conserving pseudopotential

proposed by Morrison, Bylander, and Kleinman [36], which is a norm-conserving version of the ultrasoft

pseudopotential by Vanderbilt [37]. Although the pseudopotentials can be generated using ADPACK

which is a program package for atomic density functional calculations and available from a website

(http://www.openmx-square.org/), for your convenience, we offer a database (http://www.openmx-

square.org/) of the pseudopotentials as the database Ver. 2019. If you want to use pseudopotentials

stored in the database, then copy them to the directory, ’openmx3.9/DFT DATA19/VPS/’, while most

of data have been already copied in the distributed package of OpenMX Ver. 3.9. You can freely utilize

these data, but we cannot offer any warranty on these data. The assignation of pseudopotentials can

be made using a keyword ’Definition.of.Atomic.Species’ as in the case of specification of basis functions

as follows:

<Definition.of.Atomic.Species

H H6.0-s2p1 H_CA19

C C6.0-s2p2 C_CA19

Definition.of.Atomic.Species>

The pseudopotential file can be specified in the third column, and the file must be existing in the

directory ’DFT DATA19/VPS’. In the specification of atomic coordinates, it is required to give the

number of electrons for up- and down-spin states for each atom as follows:

<Atoms.SpeciesAndCoordinates

1 C 0.000000 0.000000 0.000000 2.0 2.0

2 H -0.889981 -0.629312 0.000000 0.5 0.5

3 H 0.000000 0.629312 -0.889981 0.5 0.5

4 H 0.000000 0.629312 0.889981 0.5 0.5

5 H 0.889981 -0.629312 0.000000 0.5 0.5

Atoms.SpeciesAndCoordinates>

where the sixth and seventh columns give the number of initial charges for up and down spin states for

each atom, respectively. The sum of up and down charges for the atomic element should be equivalent

to the number of electrons which is taken into account in the pseudopotential generation. Then, the

proper number for each pseudopotential can be found in the pseudopotential file ’*.vps’. For example,

you will see the following line in the file ’C PBE19.vps’ for carbon atom in the database Ver. 2019.

valence.electron 4.0000

The number ’4.0’ corresponds to the number of electrons which is taken into account in the pseudopo-

tential generation. So, we see in the above example that the sum of up (2.0) and down (2.0) spins

charges is 4.0 for ’C’ in the specification of ’Atoms.SpeciesAndCoordinates’. In Tables 2 and 1 we

show the number of valence electrons in the pseudopotentials provided as the database Ver. 2019.

When you make pseudopotentials using ADPACK by yourself, you should pay attention to the

following points.

57

• Check whether unphysical calculations have been caused by the ghost states or not. Because

of the use of the separable form, the ghost states often appear. You should check whether the

pseudopotentials are appropriate or not by performing calculations of simple systems before you

calculate systems that you are interested in.

• Make smooth core densities for the partial core correction. If not so, numerical instabilities

appear often, since a high energy cutoff is needed for accurate numerical integrations.

You will find the further details in the manual of the program package ’ADPACK’. However, it is

noted that generation of good pseudopotentials requires considerable experiences more than what we

think at the beginning.

11.2 Open core pseudopotentials

The 4f -states in lanthanide elements are spin-polarized in many cases, and the majority states are

located at below a few eV taken from the Fermi level. However, LDAs and GGAs cannot describe the

feature of band structures for those materials. Although one way is to perform the plus U method by

introducing on-site Coulomb repulsion for the 4f -states in such a case, OpenMX provides a simpler way

that the spin-polarizaion of 4f-states is taken into account via a pseudopotential, so-called open core

pseudopotential, while a few open core pseudopotentials are available in the database Ver. 2019. The

open core pseudopotential of a lanthanide element is generated by assuming that the 4f-states are a part

of core states, and the partial core correction charge is generated so that the radial shape resembles well

the charge distribution of the 4f-states. Pseudopotentials: Nd CA19 OC.vps and Nd PBE19 OC.vps

stored in the database Ver. 2019 were generated in this way.

4.7 4.8 4.9 5 5.1
0

0.2

0.4

0.6

0.8

1

Lattice constant of a (Ang.)

T
o
ta

l
e
n
e
g
y
 (

e
V

/f
.u

.)

LDA

LDA+U (4 eV)

Open core

Expt.

4.7 4.8 4.9 5 5.1

�4

�3.5

�3

�2.5

�2

�1.5

�1

�0.5

0

Lattice constant of a (Ang.)

S
p
in

 m
o
m

e
n
t
(m

u
B

/f
.u

.)

LDA

LDA+U (4 eV)

Open core

LDA

LDA+U (4 eV)

Open core

Experimental
lattice constant

(a) (b)

Figure 4: (a) The total energy of NdCo5 in the CaCu5 structure as a function of lattice constant,

calculated by the LDA, LDA+U (U=4 eV for 4f-states), and open core pseudopotential methods. (b)

Spin magnetic moment per the formula unit of the same system as (a). The input files used for the

calculations are ’NdCo5 4f.dat’, ’NdCo5 4f+U.dat’, and ’NdCo5 OC.dat’, which can be found in the

directory ’work’.

58

To illustrate how the open core pseudopotential can be used, a series of calculations for NdCo5 in the

CaCu5 structure is shown in Fig. 4. It is found that the calculation with the open core pseudopotential

qualitatively reproduces the result by the LDA+U method. When the open core pseudopotential is

used by OpenMX, the partial core correction charge can be spin-polarized by the following keyword:

<scf.pcc.opencore

Nd 1

Co 0

scf.pcc.opencore>

The example is for the NdCo5 calculation discussed above. The first column is the name of species

which is defined by the keyword ’Definition.of.Atomic.Species’, and the second is a flag to specify the

spin direction, where ’1’ and ’-1’ mean that the partial core correction charge is fully spin-polarized

upward and downward along the z-axis, respectively, and ’0’ means no spin-polarization. Using the

keyword, one can control the spin direction of 4f states being open core states site by site. It is also

noted that the open core pseudopotential is valid if the overlap between the 4f -states and orbitals

in the neighboring atoms is negligible, and if the occupation of the 4f -states is not largely different

between the pseudopotential generation for an atom and the states in compounds.

11.3 Pseudopotentials for core level excitations

The database of fully relativistic pseudopotentials (VPS) and pseudo-atomic orbitals (PAO), which can

be used for calculations of core level excitations, are available as Database (2019) for core excitations

at the following website:

https://t-ozaki.issp.u-tokyo.ac.jp/vps_pao_core2019/

The data for B, C, N, O, Si, S, Ge, Pt elements are available. When you calculate absolute binding

energies of core levels in bulk and gaseous systems, which can be measured in X-ray photoemission

spectroscopy (XPS), the VPS and PAO files have to be used. See also the section ’Absolute binding

energies of core levels: XPS core level energies’.

59

12 Cutoff energy: grid fineness for numerical integrations

12.1 Convergence

The computational effort and accuracy depend on the cutoff energy, which is controlled by the keyword

’scf.energycutoff’, for the numerical integrations and the solution of Poisson’s equation [42]. Figure 5

shows the convergence of the total energy of a methane molecule with respect to the cutoff energy,

where the input file is ’Methane.dat’ used in the Section ’Input file’. Since the cutoff energy is not for

basis set as in plane wave methods, but for the numerical integrations, the total energy does not have

to converge from the upper energy region with respect to the cutoff energy like that of plane wave

basis set. In most cases, the cutoff energy of 150-200 Ryd is an optimum choice. However, it should be

noted that there is a subtle problem which requires the cutoff energy more than 300 Ryd. Calculations

of a very flat potential minimum and a small energy difference among different spin orders could be

such a subtle problem.

Structural parameters and the dipole moment of a water molecule, calculated with a different

cutoff energy, are shown in Table 3, where the input file is ’H2O.dat’ in the directory ’work’. A

convergent result is obtained using around 90 Ryd. Although a sufficient cutoff energy depends on

elements, 150-200 Ryd might be enough to achieve the convergence for most cases. However, we

recommend that you would check physical properties for your system. For the other cutoff energy,

1DFFT.EnergyCutoff, we commonly use 3600 (Ryd) which is quite enough for the convergence with

no high computational demands.

0 200 400 600 800 1000
−8.07

−8.06

−8.05

−8.04

−8.03

Cutoff energy (Ryd)

T
o

ta
l
e

n
e

rg
y
 (

H
a

rt
re

e
)

Cutoff energy Total energy

10
20
40
80

120
160
200
300
400
600

−8.049218519560
−8.032819076631
−8.033382638844
−8.033515406506
−8.033671477264
−8.033793661537
−8.034041263333
−8.034166130227
−8.034325637002

(Hartree) (Hartree)

1000 −8.034477885766

−8.028581767049

Figure 5: Convergence of the total energy of a methane molecule with respect to the cutoff energy.

60

Table 3: Convergence of structural parameters, dipole moment of a water molecule with respect

to the cutoff energy. The input file is ’H2O.dat’ in the directory ’work’.

Ecut(Ryd) r(H-O) (Å) ̸ (H-O-H) (deg) Dipole moment (Debye)

60 0.970 103.4 1.838

90 0.971 103.7 1.829

120 0.971 103.7 1.832

150 0.971 103.6 1.829

180 0.971 103.6 1.833

Exp. 0.957 104.5 1.85

12.2 A tip for calculating the energy curve for bulks

When the energy curve for bulk system is calculated as a function of the lattice parameter, a sudden

change of the number of real space grids is a serious problem which produces an erratic discontinuity

on the energy curve. In fact, we see the discontinuity in cases of 200 and 290 (Ryd) in Fig. 6 when

the cutoff energy is fixed. The discontinuity occurs at the lattice parameter where the number of grids

changes. To avoid the discontinuity on the energy curve, a keyword ’scf.Ngrid’ is available.

scf.Ngrid 32 32 32 # n1, n2, and n3 for a-, b-, and c-axes

When the number of grids is explicitly specified by the keyword, the axis is discretized by the number

without depending on the keyword ’scf.energycutoff’. We see in Fig. 6 that the fixed grids with

32 × 32 × 32 gives a smooth curve, while the discontinuity is not so serious even in the cases of

’scf.energycutoff’.

12.3 Fixing the relative position of regular grid

OpenMX Ver. 3.9 uses the regular real space grid for the evaluation of Hamiltonian matrix elements

associated with the Hartree potential by the difference charge density and exchange-correlation po-

tential, and solution of Poisson’s equation. Thus, the total energy depends on the relative position

between atomic coordinates and the regular grid. When one calculates an interaction energy or energy

curve as a function of atomic coordinates, it is quite important to keep the relative position in all the

calculations required for the evaluation of the interaction energy. In the calculation for one of the

structures, you will find ’Grid Origin’ in the standard output which gives x-, y-, and z-components of

the origin of the regular grid as:

Grid_Origin xxx yyy zzz

Then, in order to keep the relative position, you have to include the following keyword ’scf.fixed.grid’

in your input file for all the systems in the calculations required for the evaluation of the interaction

energy:

scf.fixed.grid xxx yyy zzz

61

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

-179.14

-179.13

8

12

16

20

24

28

32

200 Ryd
290 Ryd
Fixed (32x32x32)

a/a0

T
o

ta
l
E

n
e

rg
y
 (

H
a

rt
re

e
)

N
u

m
b

e
r o

f G
rid

s
 a

lo
n

g
 a

, b
, a

n
d

 c
-a

x
e

s

Figure 6: The total energy of bcc iron as a function of the lattice parameter, where the experimental

equilibrium lattice constant a0 is 2.87 Å. A cubic unit cell including two atoms was considered. The

input file is ’Febcc2.dat’ in the directory ’work’.

where ’xxx yyy zzz’ is the coordinate of the origin you got in the calculation for one of the structures.

The procedure largely suppresses the numerical error involved in the use of the regular grid. In

addition, as discussed in the previous subsection ’A tip for calculating the energy curve for bulks’,

the number of grids should be fixed by the keyword ’scf.Ngrid’ when the lattice parameters are also

changed in the evaluation of interaction energy.

62

13 SCF convergence

13.1 General

Seven charge mixing schemes in OpenMX Ver. 3.9 are available by the keyword ’scf.Mixing.Type’:

• Simple mixing (Simple)

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight

• Residual minimization method in the direct inversion iterative subspace (RMM-DIIS) [58]

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight,

scf.Mixing.History, scf.Mixing.StartPulay

• Guaranteed reduction Pulay method (GR-Pulay) [57]

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight,

scf.Mixing.History, scf.Mixing.StartPulay

• Kerker mixing (Kerker) [59]

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight,

scf.Kerker.factor

• RMM-DIIS with Kerker metric (RMM-DIISK) [58]

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight,

scf.Mixing.History, scf.Mixing.StartPulay, scf.Mixing.EveryPulay, scf.Kerker.factor

• RMM-DIIS for Kohn-Sham potentials with Kerker metric (RMM-DIISV) [58]

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight,

scf.Mixing.History, scf.Mixing.StartPulay, scf.Mixing.EveryPulay, scf.Kerker.factor

• RMM-DIIS for Kohn-Sham Hamiltonian (RMM-DIISH) [58]

Relevant keywords: scf.Init.Mixing.Weight, scf.Min.Mixing.Weight, scf.Max.Mixing.Weight,

scf.Mixing.History, scf.Mixing.StartPulay, scf.Mixing.EveryPulay,

In the first three schemes density matrices, which are regarded as a quantity in real space, are mixed

to generate the input density matrix which can be easily converted into (spin) charge density. On

the other hand, the charge mixing is made in Fourier space in the next three schemes: ’Kerker’,

’RMM-DIISK’, and ’RMM-DIISV’. The last scheme, ’RMM-DIISH’, mixes Kohn-Sham Hamiltonian

matrices, which may be suitable for the plus U method and the constraint schemes. Generally, it is

easier to achieve SCF convergence in large gap systems using any mixing scheme. However, it would

be difficult to achieve a sufficient SCF convergence in smaller gap and metallic systems, since a charge

sloshing problem in the SCF calculations becomes serious often. To handle such difficult systems,

three mixing schemes are currently available: ’Kerker’, ’RMM-DIISK’, and ’RMM-DIISV’ methods.

The three mixing schemes could be an effective way for achieving the SCF convergence of metallic

systems. When ’Kerker’, ’RMM-DIISK’, or ’RMM-DIISV’ is used, the following prescriptions are

helpful to obtain the convergence of SCF calculations:

63

• Increase of ’scf.Mixing.History’. A relatively larger vaule 30-50 may lead to the convergence. In

addition, ’scf.Mixing.EveryPulay’ should be set in 1.

• Use a rather larger value for ’scf.Mixing.StartPulay’. Before starting the Pulay-type mixing,

achieve a convergence at some level. An appropriate value may be 10 to 30 for ’scf.Mixing.StartPulay’.

• Use a rather larger value for ’scf.ElectronicTemperature’ in case of metallic systems. When

’scf.ElectronicTemperature’ is too low, numerical instabilities appear often.

0 10 20 30 40 50

10
−15

10
−12

10
−9

10
−6

10
−3

10
0

0 10 20 30 40 50 60 70 80 90 100

10
−15

10
−12

10
−9

10
−6

10
−3

10
0

0 10 20 30 40 50 60 70 80 90 100

10
−9

10
−6

10
−3

10
0

10
3

Number of SCF iterations

N
o
rm

 o
f
re

s
id

u
a
l
d
e
n
s
it
y
 m

a
tr

ix
 o

r
c
h
a
rg

e
 d

e
n
s
it
y

Number of SCF iterations

(a)

(b)

Simple
RMM−DIIS
GR−Pulay

Kerker
RMM−DIISK

Number of SCF iterations

(c)

RMM−DIISV
RMM−DIISH

Simple
RMM−DIIS
GR−Pulay

Kerker
RMM−DIISK

RMM−DIISV
RMM−DIISH

Simple
RMM−DIIS
GR−Pulay

Kerker
RMM−DIISK

RMM−DIISV
RMM−DIISH

Figure 7: Convergence of the norm of residual density matrix or charge density in the SCF calculations

using five mixing schemes of (a) a sialic acid molecule, (b) a Pt13 cluster, and (c) a Pt63 cluster. The

input files are ’SialicAcid.dat’, ’Pt13.dat’, and ’Pt63.dat’ in the directory ’work’.

In addition, the charge sloshing, which comes from charge components with long wave length, can be

significantly suppressed by tuning Kerker’s factor α by the keyword ’scf.Kerker.factor’, where Kerker’s

64

metric is defined by

⟨A|B⟩ =
∑
q

A∗
qBq

wq

wq =
|q|2

|q|2 + q20

q0 = α|qmin|

where qmin is the q vector with the minimum magnitude except 0-vector. A larger α significantly

suppresses the charge sloshing, but leads to slower convergence. Since an optimum value depends on

system, you may tune an appropriate value for your system.

Furthermore, the behavior of ’RMM-DIISK’ can be controlled by the following keyword:

scf.Mixing.EveryPulay 5 # default = 1

The residual vectors in the Pulay-type mixing schemes tend to become linearly dependent on each

other as the mixing steps accumulate, and the linear dependence among the residual vectors makes

the convergence difficult. A way of avoiding the linear dependence is to do the Pulay-type mixing

occasionally during the Kerker mixing. With this prescription, you can specify the frequency using

the keyword ’scf.Mixing.EveryPulay’. For example, in case of ’scf.Mixing.EveryPulay=5’, the Pulay-

mixing is made at every five SCF iterations, while the Kerker-type mixing is used at the other steps.

’scf.Mixing.EveryPulay=1’ corresponds to the conventional Pulay-type mixing. It is noted that the

keyword ’scf.Mixing.EveryPulay’ is supported for only ’RMM-DIISK’, and the default value is ’1’.

The above prescription works in some cases. But the most recommended prescription to accelerate

the convergence is the following:

• Increase of ’scf.Mixing.History’. A relatively larger vaule 30-50 may lead to the convergence. In

addition, ’scf.Mixing.EveryPulay’ should be set in 1.

Since the Pulay-type mixing such as ’RMM-DIIS’, ’RMM-DIISK’, and ’RMM-DIISV’ is based on a

quasi Newton method, the convergence speed is governed by how a good approximate Hessian matrix

can be found. As ’scf.Mixing.History’ increases, the calculated Hessian may become more accurate.

In Fig. 7 a comparison of seven mixing schemes is shown for the SCF convergence for (a) a sialic acid

molecule, (b) a Pt13 cluster, and (c) a Pt63 cluster, where the norm of residual density matrix or charge

density can be found as NormRD in the file ’System.Name.out’ and the input files are ’SialicAcid.dat’,

’Pt13.dat’, and ’Pt63.dat’ in the directory ’work’. We see that ’RMM-DIISK’ and ’RMM-DIISV’ work

with robustness for all the systems shown in Fig. 7. In most cases, ’RMM-DIISK’ and ’RMM-DIISV’

will be the best choice, while the use of ’Kerker’ is required with a large ’scf.Kerker.factor’ and a small

’scf.Max.Mixing.Weight’ for quite difficult cases in which the convergence is hardly obtained. Also our

experiences imply that ’RMM-DIISH’ is suitable for the plus U method and the constraint schemes,

while such a case is not shown in Fig. 7.

65

13.2 Automatic determination of Kerker’s factor

If the keyword ’scf.Kerker.factor’ is not given in your input file, OpenMX Ver. 3.9 automatically

estimates a proper value of Kerker’s factor α by the following equation:

α =
0.5

|bmin|2
(
4
Dq

Aq
+ 1.0

)
with

Aq =
1

3

(
|b1|2 + |b2|2 + |b3|2

)
,

Dq =
1

3

∑
i<j

∣∣∣|bi|2 − |bj |2
∣∣∣ ,

where bi(i = 1, 2, 3) is a reciprocal vector, and bmin is the smallest vector among {b}. The equation

takes account of the dependency of α on the size and anisotropy of the system. From a series of

numerical calculations it is found that the estimated value works well in most cases.

13.3 On-the-fly control of SCF mixing parameters

During the SCF calculation, it is possible to change the following parameters for the SCF mixing:

scf.maxIter

scf.Min.Mixing.Weight

scf.Max.Mixing.Weight

scf.Kerker.factor

scf.Mixing.StartPulay

For example, when you specify the following two keywords in your input file as

System.CurrrentDirectory ./ # default=./

System.Name c60

then make a file whose name is ’c60 SCF keywords’ in the directory ’./’, and write in it as

scf.maxIter 100

scf.Min.Mixing.Weight 0.01

scf.Max.Mixing.Weight 0.10

scf.Kerker.factor 10.0

scf.Mixing.StartPulay 30

scf.criterion 1.0e-6

OpenMX will try to read the file ’c60 SCF keywords’ at every SCF step, and show the following

message in the standard output, if the file is successfully read by OpenMX.

The keywords for SCF iteration are renewed by ./c60_SCF_keywords.

Also, if a minus value is given for the keyword ’scf.maxIter’, then OpenMX will be terminated. The

on-the-fly control of SCF mixing parameters may be useful when large-scale calculations are performed.

66

14 Restarting

14.1 General

After finishing your first calculation or achieving the self consistency, you may want to continue the

calculation or to calculate density of states, band dispersion, molecular orbitals, and etc. using the self

consistent charge density in order to save the computational time. To do this, a keyword ’scf.restart’

is available.

scf.restart on # on|off,default=off

When the keyword ’scf.restart’ is switched on, restart files generated by your first calculation will be

used as the input Hamiltonian or charge density in the second calculation, while ’System.Name’ in

the second calculation should be the same as in the first calculation. The restart files are stored in a

directory ’System.Name rst’ below the directory ’work’, where System.Name means ’System.Name’.

The restart files in the ’System.Name rst’ contain all the information for both the density matrix

mixing schemes and k-space mixing schemes. So, it is also possible to use another mixing scheme

in the second calculation. As an example, we illustrate the restarting procedure using an input file

C60.dat which can be found in the directory ’work’. In Fig. 8, we see that the second calculation is

accelerated due to the use of the restart file.

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N
o

rm
 o

f
re

s
id

u
a

l
c
h

a
rg

e
 d

e
n

s
it
y

Number of SCF iterations

First calc.
Second calc.

C60 molecule

Figure 8: SCF convergence of a C60 molecule. In the second calculation, the restart files generated by

the first calculation were used. The input file is ’C60.dat’ in the directory ’work’.

67

14.2 Extrapolation scheme during MD and geometry optimization

In the geometry optimization and molecular dynamics simulations, the restart files generated at the

previous steps are automatically utilized at the next step to accelerate the convergence using an

extrapolation scheme [60, 61]. In the extrapolation scheme, the number of previous MD or geometry

optimization steps can be controlled by a keyword:

scf.ExtCharge.History 2 # default=2

From a series of benchmark calculations, ’scf.ExtCharge.History’ of 2 works well and a larger number

tends to be numerically unstable. So, we recommend for users to use the default setting of 2.

14.3 Input file for the restart calculation

An input file ’System.Name.dat#’ is generated at every MD step for the restart calculation with the

final structure and the same ’Grid Origin’ explained in the Section ’Fixing the relative position of

regular grid’. Using the file ’System.Name.dat#’, it can be possible to continue MD calculations and

geometry optimization from the last step.

68

15 Geometry optimization

15.1 Steepest decent optimization

An example of the geometry optimization is illustrated in this Section. As an initial structure, let us

consider the methane molecule given in the Section ’Input file’, but the x-coordinate of the carbon

atom of the methane molecule is moved to 0.3 Å as follows:

<Atoms.SpeciesAndCoordinates

1 C 0.300000 0.000000 0.000000 2.0 2.0

2 H -0.889981 -0.629312 0.000000 0.5 0.5

3 H 0.000000 0.629312 -0.889981 0.5 0.5

4 H 0.000000 0.629312 0.889981 0.5 0.5

5 H 0.889981 -0.629312 0.000000 0.5 0.5

Atoms.SpeciesAndCoordinates>

Then, a keyword ’MD.type’ is specified as ’Opt’, and set to 200 for a keyword ’MD.maxIter’. The

’Opt’ is based on a simple steepest decent method with a variable prefactor. Figure 8 (a) shows the

convergence history of the norm of the maximum force on atom as a function of the number of the

optimization steps. We see that the norm of the maximum force on atom converges after the structure

overshot the stationary point because of change of the prefactor. Using ’Methane2.dat’ in the directory

’work’, you can trace the calculation. As well as the case of the methane molecule, a similar behavior

can be seen for the silicon diamond as shown in Fig. 9(b).

0 5 10 15 20 25

10
−4

10
−2

10
0

0 5 10 15 20 25

10
−4

10
−2

10
0

N
o

rm
 o

f
M

a
x
im

u
m

 F
o

rc
e

 (
H

a
rt

re
e

/B
o

h
r)

Methane molecule

(a)

Number of Geomergy Optimization Steps

Bulk Si
(b)

Opt Opt

Figure 9: The norm of the maximum force on atom of (a) a methane molecule (b) silicon in the

diamond structure as a function of geometry optimization steps. The initial structures are ones

distorted from the the equilibrium structures. The input files are ’Methane2.dat’ and ’Si8.dat’ in the

directory ’work’, respectively.

69

15.2 EF, BFGS, RF, and DIIS optimizations

Although ’Opt’ is a robust scheme, the convergence speed can be slow in general. Faster schemes

based on quasi Newton methods are available for the geometry optimization. They are the eigenvector

following (EF) method [63], the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [65], the rational

function (RF) method [64], and a direct inversion iterative sub-space (DIIS) method [62], implemented

in Cartesian coordinate. In the EF and RF methods, the approximate Hessian is updated by the BFGS

method. Thus, five geometry optimizers, Opt, EF, BFGS, RF and DIIS, are available in OpenMX

Ver. 3.9, which can be specified by ’MD.Type’. The relevant keywords are listed below:

MD.Type EF # Opt|DIIS|BFGS|RF|EF

MD.Opt.DIIS.History 3 # default=3

MD.Opt.StartDIIS 5 # default=5

MD.Opt.EveryDIIS 200 # default=200

MD.maxIter 100 # default=1

MD.Opt.criterion 1.0e-4 # default=0.0003 (Hartree/Bohr)

Especially, you can control these schemes by two keywords:

MD.Opt.DIIS.History 3 # default=3

MD.Opt.StartDIIS 5 # default=5

The keyword ’MD.Opt.DIIS.History’ specifies the number of the previous steps to update an optimum

Hessian matrix. The default value is 3. Also, the geometry optimization step at which ’EF’, ’BFGS’,

’RF’, or ’DIIS’ starts is specified by the keyword ’MD.Opt.StartDIIS’. The geometry optimization

steps before starting these methods is performed by the steepest decent method as in ’Opt’. The

default value is 5.

The initial step in the optimization is automatically tuned by monitoring the maximum force in

the initial structure. As shown in Fig. 10 which shows the number of geometry steps to achieve the

maximum force of below 0.0003 Hartree/Bohr in molecules and bulks, in most cases the RF method

seems to be the most robust and efficient scheme, while the EF and BFGS methods also show a similar

performance. The input files used for those calculations and the out files can be found in the directory

’work/geoopt example/’.

It should be also noted that by these quasi Newton methods geometrical structures tend to be

converged to a saddle point rather than a stationary minimum point. This is because the structure

at which the quasi Newton method started to be employed does not reach at a flexion point. In

such a case, the structure should be optimized well by the steepest decent method before moving

to the quasi Newton method. The treatment can be easily done by only taking a larger value for

’MD.Opt.StartDIIS’, or by restarting the calculation using a file ’System.Name.dat#’, where ’Sys-

tem.Name’ is ’System.Name’ specified in your input file.

In general, a faster convergence can be obtained by employing a large ’scf.energycutoff’ leading to

a smooth energy curve. This situation is apparent especially for weakly interacting systems such as

molecular solids. We recommend for users to employ a large ’scf.energycutoff’, e.g., 300-400 Ryd for

such a system.

70

0

40

80

120

160

200

0

10

20

30

40

50

Methane Glycine C60 Sialic
acid

Water
dimer

Nitro
C6H6

Si7C Diamond
surface

B2C62 TiO2 V2O5 NaCl

N
u
m

b
e
r

o
f
o
p
ti
m

iz
a
ti
o
n
 s

te
p
s
 t
o
 a

c
h
ie

v
e
 3

x
1
0

−
4
 h

a
rt

re
e
/b

o
h
r

EF
BFGS
RF
DIIS

EF
BFGS
RF
DIIS

(a)

(b)

Figure 10: The number of optimization steps to achieve the maximum force of below 3 × 10−4

Hartree/Bohr for (a) molecular systems and (b) bulk systems using four kinds of optimization methods.

15.3 Initial Hessian for the RF and EF optimizers

Two sorts of the initial approximate Hessian for the RF and EF optimizers in the geometry optimiza-

tion are available in OpenMX Ver. 3.9, which can be specified by the following keyword:

MD.Opt.Init.Hessian Schlegel # Schlegel|iden, default=Schlegel

The defaut is ’Schlegel’ which was proposed by Schlegel [66], and estimates the initial Hessian using a

simple model consisting of bond stretching, angle bending, and torsion, while only the bond stretching

term is taken into account in the implementation of OpenMX Ver. 3.9. The other is ’iden’ which starts

from the identity matrix for the approximate Hessian. In both the cases, the initial Hessian is updated

every geometry optimization step by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [65]. It is

noted that ’Schlegel’ is not supported for the optimizers of ’BFGS’ and ’DIIS’. In general, the method

of Schlegel provides a faster convergence in the optimization compared to the initial approximate

Hessian of the identity matrix. Thus, one should use ’Schlegel’ being default as a first choice. In

71

0

40

80

120

160

0

5

10

15

20

25

30

Methane Glycine
C60

Sialic
acid

Water
dimer

Nitro
C6H6

Si7C Diamond
surface

B2C62 TiO2 V2O5 NaCl

N
u
m

b
e
r

o
f
o
p
ti
m

iz
a
ti
o
n
 s

te
p
s
 t
o
 a

c
h
ie

v
e
 3

x
1
0

−
4
 h

a
rt

re
e
/b

o
h
r

iden
Schlegel

(a)

(b)

iden
Schlegel

Figure 11: The number of optimization steps to achieve the maximum force of below 3 × 10−4

Hartree/Bohr for (a) molecular systems and (b) bulk systems using the RF method with the initial

Hessian of ’iden’ and ’Schlegel’.

Fig. 11 a comparison between ’Schlegel’ and ’iden’ is shown during the geometry optimization using

the EF method. It can be seen that the EF method with ’Schlegel’ is faster than ’iden’ in most cases

including molecules and bulks.

15.4 Constrained relaxation

It is possible to optimize geometrical structures with a constraint in which atoms can be fixed in the

initial position. The constraint can be applied separately to the x-, y-, and z-coordinates to the initial

atomic position in your input file by the following keyword ’MD.Fixed.XYZ’:

<MD.Fixed.XYZ

1 1 1 1

2 1 0 0

MD.Fixed.XYZ>

72

The example is for a system consisting of two atoms. If you have N atoms, then you have to provide

N rows in this specification. The 1st column is the same sequential number to specify atom as in

the specification of the keyword ’Atoms.SpeciesAndCoordinates’. The 2nd, 3rd, and 4th columns are

flags for the x-, y-, and z-coordinates, respectively. ’1’ means that the coordinate is fixed, and ’0’

relaxed. In the above example, the x-, y-, and z-coordinates of the atom ’1’ are fixed, and only the

x-coordinate of the atom ’2’ is fixed. The default setting is that all the coordinates are relaxed. The

fixing of atomic positions are valid for all the geometry optimizers and molecular dynamics schemes.

The constrained relaxation may be useful for a refinement of the local structure in large-scale systems.

15.5 Restart of geometry optimization

If the first trial for geometry optimization does not reach a convergent result, one can restart the

geometry optimization using an input file ’System.Name.dat#’ which is generated at every geometry

optimization step for the restart calculation with the final structure. In such a case, it is better to

restart the optimization with the approximate Hessian matrix calculated in the first trial to accelerate

the convergence. In OpenMX Ver. 3.9, the approximate Hessian matrix is also saved every geometry

optimization step, and is reused when the restart is performed by ’System.Name.dat#’. Thus, even

if the geometry optimization is intermittently repeated by subsequent job submission, the number

of iterations for the geometry optimization step is the same as that in the single submission. The

functionality may be useful when users optimize large-scale systems using computational systems in

common use for which the wall time is set for each job.

73

16 Variable cell optimization

16.1 General

The variable cell optimizations with/without constraints are supported in OpenMX Ver. 3.9. The

relevant keywords for the variable cell optimizations are listed below:

MD.Type RFC5 # OptC1|OptC2|OptC3|OptC4|OptC5

OptC6|OptC7|RFC5|RFC6|RFC7

MD.Opt.DIIS.History 3 # default=3

MD.Opt.StartDIIS 5 # default=5

MD.Opt.EveryDIIS 200 # default=200

MD.maxIter 100 # default=1

MD.Opt.criterion 1.0e-4 # default=0.0003 (Hartree/Bohr)

As confirmed, the keywords listed above are exactly the same as in the section ’Geometry optimization’.

Thus, the variable cell optimization can be controlled just like the geometry optimization. The variable

cell optimization is supported for only the collinear calculations including the plus U method, while,

however, the cell optimization for the DFT-D2 and DFT-D3 methods for vdW interaction is not

supported. By the keyword ’MD.Type’, a method for the variable cell optimization is specified.

When you perform the variable cell optimization, you can choose the following option for the keyword

’MD.Type’:

• OptC1

Cell vectors are optimized without any constraint, while keeping the initial fractional coordinates.

The optimization is performed by a steepest decent method with a variable prefactor.

• OptC2

Cell vectors are optimized with a constraint that angles between cell vectors are fixed at the initial

values, while keeping the initial fractional coordinates. Thus, only the length of cell vectors is

optimized during the optimization. The optimization is performed by a steepest decent method

with a variable prefactor.

• OptC3

Cell vectors are optimized with a constraint that angles between cell vectors are fixed at the

initial values and the length of cell vectors is equivalent to each other: |a1| = |a2| = |a3|, while
keeping the initial fractional coordinates during the optimization. Thus, only the length of cell

vectors is optimized. The optimization is performed by a steepest decent method with a variable

prefactor.

• OptC4

Cell vectors are optimized with a constraint that angles between cell vectors are fixed at the

initial values and the length of cell vectors is optimized under a condition: |a1| = |a2| ̸= |a3|,
while keeping the initial fractional coordinates. Thus, only the length of cell vectors is optimized

during the optimization. The optimization is performed by a steepest decent method with a

variable prefactor.

74

• OptC5

Cell vectors and internal coordinates are simultaneously optimized without any constraint by

using a steepest decent method with a variable prefactor.

• OptC6

Cell vectors and internal coordinates are simultaneously optimized with a constraint that a cell

vector a3 is fixed. The optimization is performed with a steepest decent method with a variable

prefactor.

• OptC7

Cell vectors and internal coordinates are simultaneously optimized with a constraint that two

cell vectors a2 and a3 are fixed. The optimization is performed with a steepest decent method

with a variable prefactor.

• RFC5

Cell vectors and internal coordinates are simultaneously optimized without any constraint by

using a combination scheme of the rational function (RF) method [64] and the direct inversion

iterative sub-space (DIIS) method [62] with a BFGS update [65] for the approximate Hessian.

The initial Hessian is given by an identity matrix or a model Hessian by Schlegel [66], which

can be specified by the keyword ’MD.Opt.Init.Hessian’ in the same way as in the geometry

optimization. See the details for the section ’Geometry optimization’.

• RFC6

Cell vectors and internal coordinates are simultaneously optimized witht a constraint that a cell

vector a3 is fixed. The optimization is performed with the same way as for the RFC5.

• RFC7

Cell vectors and internal coordinates are simultaneously optimized witht a constraint that two

cell vectors a2 and a3 are fixed. The optimization is performed with the same way as for the

RFC5.

Depending on your purpose, one of the options listed above should be properly chosen. Other con-

straint schemes will be implemented in future work.

As an example of the variable cell optimization, we show the simultaneous optimization of cell vec-

tors and internal coordinates for the diamond primitive cell below. The calculation can be performed

by

% mpirun -np 16 openmx Cdia-RFC5.dat > Cdia-RFC5.std &

where the input file ’Cdia-RFC5.dat’ can be found in the directory ’work/cellopt example’, so that
you can trace the same calculation. As an illustration the initial structure is distorted as shown below:

Atoms.Number 2

Atoms.SpeciesAndCoordinates.Unit frac # Ang|AU

<Atoms.SpeciesAndCoordinates

1 C 0.10000000000000 0.00000000000000 -0.05000000000000 2.0 2.0

2 C 0.25000000000000 0.25000000000000 0.25000000000000 2.0 2.0

75

Atoms.SpeciesAndCoordinates>

Atoms.UnitVectors.Unit Ang # Ang|AU

<Atoms.UnitVectors

1.6400 1.6400 0.0000

1.6400 0.0000 1.6400

0.0000 1.6400 1.6400

Atoms.UnitVectors>

Using a cluster machine consisting of Intel Xeon of 2.6 GHz, the elapsed time of the calculation was 326
sec., which corresponds to 12 optimization steps. The history of the total energy and the maximum
gradients of the total energy with respect to atomic coordinates or cell vectors can be confirmed in
’System.Name.out’. You may find the following information in ’Cdia-RFC5.out’ for the case.

History of cell optimization

MD_iter SD_scaling |Maximum force| Maximum step Utot Enpy Volume

(Hartree/Bohr) (Ang) (Hartree) (Hartree) (Ang^3)

1 1.25981732 0.16438857 0.10583545 -11.59621750 -11.59621750 8.82188800

2 1.25981732 0.08853079 0.05902053 -11.64994330 -11.64994330 9.81261691

3 1.25981732 0.04581932 0.03054622 -11.66453803 -11.66453803 10.28662955

4 1.25981732 0.02205340 0.01470227 -11.66928384 -11.66928384 10.56026328

5 3.14954331 0.01336972 0.02228286 -11.67121215 -11.67121215 10.73689973

6 3.14954331 0.00678359 0.01130598 -11.67332696 -11.67332696 11.04288573

7 3.14954331 0.00487464 0.01195765 -11.67421713 -11.67421713 11.13669753

8 3.14954331 0.00354039 0.02370087 -11.67479906 -11.67479906 11.18107598

9 3.14954331 0.00157491 0.00373195 -11.67534267 -11.67534267 11.29495641

10 3.14954331 0.00137813 0.00160469 -11.67537385 -11.67537385 11.34330266

11 3.14954331 0.00067979 0.00165878 -11.67538616 -11.67538616 11.37836604

12 3.14954331 0.00003708 0.00000000 -11.67538985 -11.67538985 11.39519327

It can be seen that the absolute value of the maximum gradient rapidly converged, and dropped to

below the criterion of 0.0003 Hartree/bohr.

Other examples (input and output files) for the variable cell optimization can be found in a

directory ’work/cellopt example’.

16.2 Stress tensor

In the previous subsection, we discussed how the variable cell optimizations can be performed by

specifying the keyword ’MD.Type’. In these cases, the stress tensor is automatically calculated by

analytically evaluating the gradient of the total energy with respect to strain, and then transformed

to the gradients with respect to cell vectors. If you do not perform the variable cell optimization, and

however want to calculate the gradient of the total energy with respect to cell vectors, the following

keyword is available:

scf.stress.tensor on # on|off, default=off

When the keyword ’scf.stress.tensor’ is switched on, you may find the gradient of the total energy

with respect cell vectors in ’System.Name.out.

76

16.3 Constraint for cell vectors

When the options ’OptC1’, ’OptC2’, or ’OptC5’ is used for the keyword ’MD.Type’, each Cartesian

component of cell vectors can be fixed at the initial value by using the following keyword :

<MD.Fixed.Cell.Vectors

0 0 1

0 0 0

0 0 0

MD.Fixed.Cell.Vectors>

where the first line provides the flag for ax, ay, az, the second bx, by, bz, and the third cx, cy, cz,

respectively. ’1’ means that the component is fixed, and ’0’ relaxed.

16.4 Optimization of enthalpy

It is possible to perform the variable cell optimization under an applied pressure. This is done by

minimizing the enthalpy H defined with

H = E + pV, (1)

where E is the total energy of system per unit cell, p is the applied pressure, and V is the volume of

the unit cell. To perform the optimization of enthalpy, you only have to include the following keyword

in your input file:

MD.applied.pressure 10.0 # in GPa, default=0

The positive pressure corresponds to the compression of cell. The functionality is compatible with
’OptC1’, ’OptC2’, ’OptC3’, ’OptC4’, ’OptC5’, ’OptC6’, ’OptC7’, and ’RFC5’, ’RFC6’, and ’RFC7’
which can be specified by the keyword ’MD.Type’. As an example, one can perform the enthalpy
optimization using an input file ’Si8-pV.dat’ stored in the directory ’work’, which is for the optimization
of Si crystal under 10 GPa. After the calculation, you may find the history of the optimization in the
out file ’si8-pV.out’ as follows:

History of cell optimization

MD_iter SD_scaling |Maximum force| Maximum step Utot Enpy Volume

(Hartree/Bohr) (Ang) (Hartree) (Hartree) (Ang^3)

1 1.25981732 0.07663140 0.05108760 -32.84057849 -32.47335956 160.10300700

2 1.25981732 0.06717954 0.04478636 -32.84541333 -32.48138995 158.70978745

3 1.25981732 0.05879663 0.03919775 -32.84853574 -32.48736913 157.46427382

4 1.25981732 0.05131728 0.03421152 -32.85047522 -32.49182806 156.36581813

5 3.14954331 0.04468030 0.07446716 -32.85159836 -32.49515060 155.40690918

6 3.14954331 0.02956430 0.04927383 -32.85232293 -32.50062291 153.33695214

7 3.14954331 0.01960389 0.03267316 -32.85158714 -32.50293764 152.00696345

8 3.14954331 0.01318467 0.02197446 -32.85069024 -32.50392104 151.18717226

9 7.87385828 0.00909382 0.03789092 -32.84998761 -32.50434789 150.69473500

10 7.87385828 0.00253118 0.00537839 -32.84867882 -32.50470324 149.96919000

77

11 7.87385828 0.00198428 0.03321825 -32.84877730 -32.50477155 149.98234416

12 7.87385828 0.00271856 0.01866538 -32.84922787 -32.50499775 150.08016284

13 7.87385828 0.00086782 0.00943670 -32.84942256 -32.50507226 150.13256385

14 7.87385828 0.00077020 0.00982293 -32.84949585 -32.50509162 150.15607426

15 7.87385828 0.00020223 0.00270074 -32.84950610 -32.50511244 150.15146767

16 7.87385828 0.00005544 0.00000000 -32.84950546 -32.50511390 150.15055140

It can be confirmed that the enthalpy is actually optimized with shrinking of the volume rather

than the total energy.

Also, one can apply the pressure to only designated axes in orthorhombic crystal systems by the

following keyword:

MD.applied.pressure.flag 1 1 1 # default=1 1 1

The default setting is ’1 1 1’ which means that the isotropic pressure is equally applied along the

a-, b-, and c-axes. When you specify the keyword as ’1 0 0’, the pressure is applied along only the

a-axis which is the direction perpendicular to the bc-plane in orthorhombic crystal systems. The

functionality is valid for orthorhombic crystal systems, and in this case you need to provide the unit

vectors such as

<Atoms.UnitVectors

10.000 0.000 0.000

0.000 8.000 0.000

0.000 0.000 11.000

Atoms.UnitVectors>

so that the non-zero elements can be diagonal. Apart from the orthorhombic crystal systems, one

may apply the anisotropic pressure along an lattice vector perpendicular to the plane defined by the

other lattice vectors. The case can be found in cases such as hexagonal crystal systems, and you may

specifiy these keywords as follows

MD.applied.pressure.flag 0 0 1 # default=1 1 1

<Atoms.UnitVectors

6.000 0.000 0.000

-3.000 5.196 0.000

0.000 0.000 10.000

Atoms.UnitVectors>

78

17 Molecular dynamics

OpenMX Ver. 3.9 supports five molecular dynamics simulations: constant energy molecular dynamics

(NVE), constant temperature molecular dynamics by a velocity scaling (NVT VS), constant tem-

perature molecular dynamics by a velocity scaling to be considered independently for every atoms

(NVT VS2), constant temperature molecular dynamics by the Nose-Hoover method (NVT NH), and

a multi-heat bath molecular dynamics (NVT VS4).

Each of the molecular dynamics simulations will be explained in the following subsections:

17.1 NVE molecular dynamics (NVE)

A constant energy molecular dynamics simulation is performed by the following keyword ’MD.Type’:

MD.Type NVE # NOMD|Opt|NVE|NVT_VS|NVT_VS2|NVT_NH

Calculated quantities at every MD step are stored in an output file ’System.Name.ene’, where Sys-

tem.Name means ’System.Name’. Although you can find the details in ’iterout.c’ in the directory

’source’, several quantities are summarized for your convenience as follows:

1: MD step

2: MD time

14: kinetic energy of nuclear motion, Ukc (Hartree)

15: DFT total energy, Utot (Hartree)

16: Utot + Ukc (Hartree)

17: Fermi energy (Hartree)

which means that the first and second columns correspond to MD step and MD time, and so on.

17.2 NVT molecular dynamics by a velocity scaling (NVT VS)

A velocity scaling scheme [30] is supported to perform NVT ensemble molecular dynamics simulations

by the following keyword:

MD.Type NVT_VS # NOMD|Opt|NVE|NVT_VS|NVT_VS2|NVT_NH

Then, in this NVT molecular dynamics the temperature for nuclear motion can be controlled by

<MD.TempControl

3

100 2 1000.0 0.0

400 10 700.0 0.4

700 40 500.0 0.7

MD.TempControl>

The beginning of the description must be ’<MD.TempControl’, and the last of the description must

be ’MD.TempControl>’. The first number ’3’ gives the number of the following lines to control the

temperature. In this case you can see that there are three lines. Following the number ’3’, in the

consecutive lines the first column means MD steps and the second column gives an interval of MD

79

steps that the velocity scaling is made. For the example above, a velocity scaling is performed at every

two MD steps until 100 MD steps, at every 10 MD steps from 100 to 400 MD steps, and at every 40

MD steps from 400 to 700 MD steps. The third and fourth columns give a given temperature Tgive (K)

and a scaling parameter α in the interval, while the temperature in the interval is given by a linear

interpolation. In this velocity scaling, the velocity is scaled by

s =

√
Tgiven + (Tcalc − Tgiven) ∗ α

Tcalc

v′
i = vi × s

where Tgiven and Tcalc are a given and calculated temperatures, respectively. In ’NVT VS’ the tem-

perature is calculated by using velocities of all the atoms. On the other hand, the local temperature

is estimated by the velocity of each atom in ’NVT VS2’, and the velocity scaling is performed by the

local temperature. After the final MD step given in the specification ’MD.TempControl’, the NVT

ensemble is switched to a NVE ensemble. Calculated quantities at every MD step are stored in an

output file ’System.Name.ene’, where ’System.Name’ means ’System.Name’. Although you can find

the details in ’iterout.c’, several quantities are summarized for your convenience as follows:

1: MD step

2: MD time

14: kinetic energy of nuclear motion, Ukc (Hartree)

15: DFT total energy, Utot (Hartree)

16: Utot + Ukc (Hartree)

17: Fermi energy (Hartree)

18: Given temperature for nuclear motion (K)

19: Calculated temperature for nuclear motion (K)

22: Nose-Hoover Hamiltonian (Hartree)

which means that the first and second columns correspond to MD step and MD time, and so on. As

an example, we show a result for the velocity scaling MD of a glycine molecule in Fig. 12 (a). We

see that the temperature in a molecule oscillates around the given temperature. Also for visualization

of molecular dynamics, an output file ’System.Name.md’ can be easily animated using free software

OpenMX Viewer [152, 151] and XCrySDen [105].

17.3 NVT molecular dynamics by the Nose-Hoover method (NVT NH)

The Nose-Hoover molecular dynamics [31] is supported to perform NVT ensemble molecular dynamics

simulations by the following keyword:

MD.Type NVT_NH # NOMD|Opt|NVE|NVT_VS|NVT_NH

Then, in this NVT molecular dynamics the temperature for nuclear motion can be controlled by

<MD.TempControl

4

1 1000.0

80

200 400 600
0

500

1000

1500

2000

2500

200 400 600
0

500

1000

1500

2000

2500

MD steps MD steps

T
e
m

p
e
ra

tu
re

 (
K

)
Given Temperature

Calculated Temperature

Given Temp.

Calculated Temp

Given Temperature

Calculated Temperature

Given Temp.

Calculated Temp

(b)(a)

Figure 12: (a) Given and calculated temperatures of a glycine molecule as a function of MD steps

in a velocity scaling NVT molecular dynamics. (b) Given and calculated temperatures of a glycine

molecule as a function of MD steps in the Nose-Hoover NVT molecular dynamics. The input files are

’Gly VS.dat’ and ’Gly NH.dat’ in the directory ’work’, respectively.

100 1000.0

400 700.0

700 600.0

MD.TempControl>

The beginning of the description must be ’<MD.TempControl’, and the last of the description must

be ’MD.TempControl>’. The first number ’4’ gives the number of the following lines to control the

temperature. In this case you can see that there are four lines. Following the number ’4’, in the con-

secutive lines the first and second columns give MD steps and a given temperature for nuclear motion.

The temperature between the MD steps is given by a linear interpolation. Although the same keyword

’MD.TempControl’ as used in the velocity scaling MD is utilized in this specification, it is noted that

the format is different from each other. In addition to the specification of ’MD.TempControl’, you

must specify a mass of heat bath by the following keyword:

NH.Mass.HeatBath 30.0 # default = 20.0

The dimension is length2 × mass. In this specification we use the bohr radius for the length, and the

unified atomic mass unit, that the principal isotope of carbon atom is 12.0, for the mass. Calculated

quantities at every MD step are stored in an output file ’System.Name.ene’ as explained in ’NVT

molecular dynamics by a velocity scaling’. As an example, we show a result for Nose-Hoover MD of

a glycine molecule in Fig. 12 (b). We see that the temperature in the molecule oscillates around the

given temperature. Also for visualization of molecular dynamics, an output file ’System.Name.md’

can be easily animated using free software such as OpenMX Viewer [152, 151] and XCrySDen [105]

as well as NVT VS.

81

17.4 Multi-heat bath molecular dynamics (NVT VS)

OpenMX Ver. 3.9 supports a multi-heat bath molecular dynamics simulation where the temperature

of each grouped atom is controlled with a heat-bath by a velocity scaling scheme [30]. The method is

performed by the following keyword:

MD.Type NVT_VS4

The number of groups is specified by

MD.num.AtomGroup 2

and the groups are defined by

<MD.AtomGroup

1 1

2 1

3 1

4 2

5 2

MD.AtomGroup>

The beginning of the description must be ’<MD.AtomGroup’, and the last of the description must

be ’MD.AtomGroup>’. The first column is a sequential serial number for identifying atoms. The

second column is an identification number for each atom, representing the group to which the atom

belongs. The identification number has to be specified from 1, and followed by 2, 3, · · ·. The above

is an example where only five atoms are involved in the system and there are two groups. In Ver.

3.9, the profile of temperature for all the groups is controlled by the keyword ’MD.TempControl’ as

discussed in the subsection ’NVT molecular dynamics by a velocity scaling’. In the future release, we

will support a functionality that temperature is independently controlled for each group.

17.5 Constraint molecular dynamics

A constraint scheme is available in the molecular dynamics simulations in which atoms can be fixed

in the initial position. The specification is the same as in the subsection ’Constrained relaxation’. See

the subsection for the specification.

17.6 Initial velocity

For molecular dynamics simulations, it is possible to provide the initial velocity of each atom by the

following keyword:

<MD.Init.Velocity

1 3000.000 0.0 0.0

2 -3000.000 0.0 0.0

MD.Init.Velocity>

82

The example is for a system consisting of two atoms. If you have N atoms, then you have to provide

N rows in this specification. The 1st column is the same sequential number to specify atom as in the

specification of the keyword ’Atoms.SpeciesAndCoordinates’. The 2nd, 3rd, and 4th columns are x-,

y-, and z-components of the velocity of each atom, respectively. The unit of the velocity is m/s. The

keyword ’MD.Init.Velocity’ is compatible with the keyword ’MD.Fixed.XYZ’.

17.7 User definition of atomic mass

In molecular dynamics simulations, OpenMX uses the atomic mass defined in ’Set Atom Weight() of

SetPara DFT.c’. However, one can easily change the atomic mass by the keyword

’Definition.of.Atomic.Species’. In such a case, the atomic mass is defined by the fourth column as

<Definition.of.Atomic.Species

H H5.0-s1 H_PBE19 2.0

C C5.0-s1p1 C_PBE19 12.0

Definition.of.Atomic.Species>

If the fourth column is not given explicitly, then the default atomic mass will be used. This may be

useful to investigate the effect of atomic mass in molecular dynamics, and also may allow us to use

a larger time step by using especially the deuterium mass for hydrogen atom. For the definition of

atomic mass, we use the unified atomic mass unit that the principal isotope of carbon atom is 12.0.

17.8 Converting the file format: md2axsf

In molecular dynamics simulations or geometry optimization, ’System.Name.md’ is generated to save a

series of structural change. Although ’System.Name.md’ being the xyz format can be read in [152, 151]

and XCrySDen [105], the copied cell in periodic systems cannot be displayed in XCrySDen. For such

a purpose, a small post processing code is available to convert the format from ’xyz’ to ’axsf’. The

first step to do that is to compile ’md2axsf.c’ as

% gcc md2axsf.c -lm -o md2axsf

Then, you can convert a ’System.Name.md’ file as

% ./md2axsf System.Name.md System.Name.axsf

The ’System.Name.axsf’ file can be analyzed by using XCrySDen and other software.

83

18 Visualization

The electron densities, molecular orbitals, and potentials are output to files in the Gaussian cube

format. Figure 13 shows examples of isosurface maps visualized by XCrySDen [105]. These data are

output in the Gaussian cube format. So, many software, such as VESTA [103], Molekel [104], and

XCrySDen [105], can be used for the visualization. One can find the details of output files in the cube

format in the Section ’Output files’.

(a) (b)

(c)

Figure 13: (a) Isosurface map of the total electron density of a C60 molecule where 0.13 was used as

isovalue of total electron density. (b) Isosurface map of the highest occupied molecular orbital (HOMO)

of a glycine molecule where |0.06| was used as isovalue of the molecular orbital. (b) Isosurface map

of the spin electron density of a molecular magnet (Mn12O12(CH3COO)16(H2O)4 [106]) where |0.02|
was used as isovalue of the spin electron density.

84

19 Band dispersion

The band dispersion is calculated by the following two steps:

(1) SCF calculation

Let us illustrate the calculation of band dispersion using the carbon diamond. In an input file

’Cdia.dat’ store in the directory ’work’, the atomic coordinates, cell vectors, and ’scf.Kgrid’ are given

by

Atoms.Number 2

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU

<Atoms.SpeciesAndCoordinates

1 C 0.000 0.000 0.000 2.0 2.0

2 C 0.890 0.890 0.890 2.0 2.0

Atoms.SpeciesAndCoordinates>

Atoms.UnitVectors.Unit Ang # Ang|AU

<Atoms.UnitVectors

1.7800 1.7800 0.0000

1.7800 0.0000 1.7800

0.0000 1.7800 1.7800

Atoms.UnitVectors>

scf.Kgrid 7 7 7 # means n1 x n2 x n3

The unit cell for the band dispersion and k-paths are given by

Band.dispersion on # on|off, default=off

<Band.KPath.UnitCell

3.56 0.00 0.00

0.00 3.56 0.00

0.00 0.00 3.56

Band.KPath.UnitCell>

Band.Nkpath 5

<Band.kpath

15 0.0 0.0 0.0 1.0 0.0 0.0 g X

15 1.0 0.0 0.0 1.0 0.5 0.0 X W

15 1.0 0.5 0.0 0.5 0.5 0.5 W L

15 0.5 0.5 0.5 0.0 0.0 0.0 L g

15 0.0 0.0 0.0 1.0 0.0 0.0 g X

Band.kpath>

Then, we execute OpenMX as:

% ./openmx Cdia.dat

85

-25

-20

-15

-10

-5

0

5

10

15

g X W L g X

eV

Figure 14: Band dispersion of carbon diamond. The input file is ’Cdia.dat’ in the directory ’work’.

When the execution is completed normally, then you can find a file ’cdia.Band’ in the directory ’work’.

If ’Band.KPath.UnitCell’ does not exist, the unit cell specified by the ’Atoms.UnitVectors’ will be used.

(2) Converting of the data to a gnuplot format

There is a file ’bandgnu13.c’ in the directory ’source’. Compile the file as follows:

% gcc bandgnu13.c -lm -o bandgnu13

When the compile is completed normally, then you can find an executable file ’bandgnu13’ in the

directory ’source’. Please copy the executable file to the directory ’work’. Using the executable file

’bandgnu13’, a file ’cdia.Band’ can be converted in a gnuplot format as

% ./bandgnu13 cdia.Band

Then, two or three files ’cdia.GNUBAND’ and ’cdia.BANDDAT1’ (’cdia.BANDDAT2’), are gener-

ated. The file ’cdia.GNUBAND’ is a script for gnuplot, and read the data files ’cdia.BANDDAT1’ and

’cdia.BANDDAT2’ for the up- and down-spin states, respectively. If spin-polarized calculations using

’LSDA-CA’, ’LSDA-PW’, or ’GGA-PBE’ is employed in the SCF calculation, ’System.Name.BANDDAT2’

for the down-spin state is generated in addition to ’System.Name.BANDDAT1’. The file ’cdia.GNUBAND’

is plotted using gnuplot as follows:

86

% gnuplot cdia.GNUBAND

Figure 14 shows the band dispersion of carbon diamond generated by the above procedure, while the

range of y-axis was changed in the file ’cdia.GNUBAND’. It is also noted that the chemical potential

is automatically shifted to the origin of energy.

A problem in drawing of the band dispersion is how to choose a unit cell used in calculating

of the band dispersion. Often, the unit cell used in calculating of the band dispersion is differ-

ent from that used in the definition of the periodic system. In such a case, you need to define a

unit cell used in calculating of the band dispersion by the keyword ’Band.KPath.UnitCell’. If you

define ’Band.KPath.UnitCell’, the reciprocal lattice vectors for the calculation of the band disper-

sion are calculated by the unit vectors specified in ’Band.KPath.UnitCell’. If you do not define

’Band.KPath.UnitCell’, the reciprocal lattice vectors, which are calculated by the unit vectors speci-

fied in ’Atoms.UnitVectors’, is employed for the calculation of the band dispersion. In case of fcc, bcc,

base centered cubic, and trigonal cells, the reciprocal lattice vectors for the calculation of the band

dispersion should be specified using the keyword ’Band.KPath.UnitCell’ based on the consuetude in

the band structure calculations.

87

20 Density of states

20.1 Conventional scheme

The density of states (DOS) is calculated by the following two steps:

(1) SCF calculation

Let us illustrate the calculation of DOS using the carbon diamond. In a file ’Cdia.dat’ stored in

the directory ’work’, the keywords for the DOS calculation are set to

Dos.fileout on

Dos.Erange -25.0 20.0

Dos.Kgrid 12 12 12

In the specification of the keyword ’Dos.Erange’, the first and second values are the lower and upper

bounds of the energy range (eV) for the DOS calculation, respectively, where the origin (0.0) of energy

corresponds to the chemical potential. Also, in the specification of the keyword ’Dos.Kgrid’, a set of

numbers (n1,n2,n3) is the number of grids to discretize the first Brillouin zone in the k-space, which

is used in the DOS calculation. Then, we execute OpenMX by:

% ./openmx Cdia.dat

When the execution is completed normally, then you can find files ’cdia.Dos.val’ and ’cdia.Dos.vec’

in the directory ’work’. The eigenvalues and eigenvectors are stored in the files ’cdia.Dos.val’ and

’cdia.Dos.vec’ in a text and binary formats, respectively. The DOS calculation is supported even for

the O(N) calculation, while a Gaussian broadening method is employed in this case.

(2) Calculation of the DOS

Let us compile a program package for calculating DOS. Move to the directory ’source’, and then

compile as follows:

% make DosMain

When the compile is completed normally, then you can find an executable file ’DosMain’ in the

directory ’source’. Please copy the file ’DosMain’ to the directory ’work’, and then move to the

directory ’work’. You can calculate DOS and projected DOS (PDOS) using the program ’DosMain’

from two files ’cdia.Dos.val’ and ’cdia.Dos.vec’ as:

% ./DosMain cdia.Dos.val cdia.Dos.vec

Then, you are interactively asked from the program as follow:

% ./DosMain cdia.Dos.val cdia.Dos.vec

Max of Spe_Total_CNO = 8

1 1 101 102 103 101 102 103

<cdia.Dos.val>

88

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.5

1

1.5

Eigenenergy (eV)

D
O

S
 a

n
d
 P

D
O

S
 (

e
V

−
1
)

DOS
PDOS of s−orbital in atom 1
PDOS of px in atom 1

In
te

g
ra

te
d

 P
D

O
S

Figure 15: DOS and PDOS of the carbon diamond, and the integrated PDOS, where the Fermi level

is set to zero. Since charge redistribution occurs among the s-, p-, and d-orbitals, the integrated PDOS

of s- and p-orbitals at the Fermi level are not exactly 1. The calculation can be traced by using an

input file ’Cdia.dat’ in the directory ’work’.

<cdia>

Which method do you use?, Tetrahedron(1), Gaussian Broadeninig(2)

1

Do you want Dos(1) or PDos(2)?

2

Number of atoms=2

Which atoms for PDOS : (1,...,2), ex 1 2

1

pdos_n=1

1

<Spectra_Tetrahedron> start

Spe_Num_Relation 0 0 1

Spe_Num_Relation 0 1 1

Spe_Num_Relation 0 2 101

Spe_Num_Relation 0 3 102

89

Spe_Num_Relation 0 4 103

Spe_Num_Relation 0 5 101

Spe_Num_Relation 0 6 102

Spe_Num_Relation 0 7 103

make cdia.PDOS.Tetrahedron.atom1.s1

make cdia.PDOS.Tetrahedron.atom1.p1

make cdia.PDOS.Tetrahedron.atom1.p2

make cdia.PDOS.Tetrahedron.atom1.p3

make cdia.PDOS.Tetrahedron.atom1

The tetrahedron [67] and Gaussian broadening methods for evaluating DOS are available. Also, you

can select DOS or PDOS. When you select the calculation of PDOS, then please select atoms for

evaluating PDOS. In this case, each DOS projected on orbitals (s, px (p1), py (p2), pz (p3),..) in

selected atoms are output in each file. In these files, the first and second columns are energy in

eV and DOS (eV−1) or PDOS (eV−1), and the third column is the integrated DOS or PDOS. If

a spin-polarized calculation using ’LSDA-CA’, ’LSDA-PW’, or ’GGA-PBE’ is employed in the SCF

calculation, the second and third columns in these files correspond to DOS or PDOS for up and down

spin states, respectively, and the fourth and fifth columns are the corresponding integrated values.

If you select the Gaussian broadening method, you are requested to set a parameter, a (eV), which

determines the width of Gaussian defined by exp(−(E/a)2). Figure 15 shows DOS and PDOS of the

carbon diamond.

20.2 For calculations with lots of k-points

Since the calculation of density of states (DOS) of a large-scale system with lots of k-points requires

a considerable memory size, the post-processing code ’DosMain’ for generating the partial and total

DOS tends to suffer from a segmentation fault. For such a case, a Gaussian DOS scheme is available

in which the partial DOS is calculated by the Gaussian broadening method in the OpenMX on-the

fly calculation and the information of wave functions is not stored in the file ’System.Name.Dos.vec’.

Since this scheme does not require a large sized memory, it can be used to calculate DOS of large-scale

systems. Then, you can specify the following keywords in your input file as

DosGauss.fileout on # default=off, on|off

DosGauss.Num.Mesh 200 # default=200

DosGauss.Width 0.2 # default=0.2 (eV)

When you use the scheme, please specify ’on’ for the keyword ’DosGauss.fileout’. The keyword ’Dos-

Gauss.Num.Mesh’ gives the number of partitioning for the energy range specified by the keyword

’Dos.Erange’. The keyword ’DosGauss.Width’ gives a parameter a, which is the width of the Gaus-

sian defined by exp(−(E/a)2). The keyword ’DosGauss.fileout’ and the keyword ’Dos.fileout’ are

mutually exclusive. Therefore, when you use the scheme, the keyword ’Dos.fileout’ must be ’off’ as

follows:

Dos.fileout off # on|off, default=off

Also, the following two keywords are valid for both the keywords ’Dos.fileout’ and ’DosGauss.file’.

90

Dos.Erange -20.0 20.0 # default=-20 20

Dos.Kgrid 5 5 5 # default=Kgrid1 Kgrid2 Kgrid3

It should be noted that the keyword ’DosGauss.fileout’ generates only the Gaussian broadening DOS,

which means that DOS by the tetrahedron method cannot be calculated by the keyword ’Dos-

Gauss.fileout’. After the OpenMX calculation with these keywords, the procedure for ’DosMain’

is the same as in the conventional scheme.

91

21 Orbitally decomposed total energy

OpenMX Ver. 3.9 provides a useful tool which decomposes the total energy into each contribution

associated with each basis function, where the decomposition is performed based on projection onto

basis functions [68]. To calculate the orbitally decomposed total energy, you only have to include the

following keyword:

Energy.Decomposition on # on|off, default=off

Let us illustrate the energy decomposition by performing a total energy calculation of a methane

molecule. The calculation as an example can be performed as follows:

% mpirun -np 5 openmx Methane_ED.dat > met_ed.std &

where the input file ’Methane ED.dat’ can be found in the directory ’work’. After finishing the
calculation, you may obtain ’met ed.out’. The part of the file is shown below:

Decomposed energies in Hartree unit

Utot = Utot(up) + Utot(dn)

= Ukin(up) + Ukin(dn) + Uv(up) + Uv(dn)

+ Ucon(up)+ Ucon(dn) + Ucore+UH0 + Uvdw

Uele = Ukin(up) + Ukin(dn) + Uv(up) + Uv(dn)

Ucon arizes from a constant potential added in the formalism

up: up spin state, dn: down spin state

Total energy (Hartree) = -8.216132481346387

Decomposed.energies.(Hartree).with.respect.to.atom

Utot Utot(up) Utot(dn) Ukin(up) Ukin(dn) Uv(up)

1 C -6.132295762765 -3.066148 -3.066148 2.076016 2.076016 -2.957459

2 H -0.520959186503 -0.260480 -0.260480 0.300675 0.300675 -0.499086

3 H -0.520959174111 -0.260480 -0.260480 0.300675 0.300675 -0.499086

4 H -0.520959173764 -0.260480 -0.260480 0.300675 0.300675 -0.499086

5 H -0.520959184204 -0.260480 -0.260480 0.300675 0.300675 -0.499086

Decomposed.energies.(Hartree).with.respect.to.atomic.orbital

1 C Utot Utot(up) Utot(dn) Ukin(up) Ukin(dn) Uv(up)

multiple

none -4.483770 -2.241885 -2.241885 0.000000 0.000000 0.000000

s 0 -0.675699 -0.337849 -0.337849 0.203145 0.203145 -0.556473

s 1 0.003690 0.001845 0.001845 0.036240 0.036240 -0.034310

px 0 -0.325884 -0.162942 -0.162942 0.496144 0.496144 -0.673031

py 0 -0.325912 -0.162956 -0.162956 0.496166 0.496166 -0.673068

pz 0 -0.325884 -0.162942 -0.162942 0.496144 0.496144 -0.673031

px 1 0.005096 0.002548 0.002548 0.107318 0.107318 -0.104552

...

..

.

92

It is found that the total energy is exactly decomposed to atomic and orbital contributions. The

energy decomposition method will be useful to analyze how local distortion such as impurities and

vacancies affects the energy stability/instability for the neighbors. It is also anticipated that the

orbital decomposition of the total energy allows us to analyze physical mechanism for a wide variety

of phenomena. However, the release of the functionality can be still regarded as experimental one.

We may develop and modify the functionality in the near future.

93

22 Orbital optimization

The radial function of basis orbitals can be variationally optimized using the orbital optimization

method [41]. As an illustration of the orbital optimization, let us explain it using a methane molecule

of which input file is ’Methane OO.dat’. In the orbital optimization method the optimized orbitals

are expressed by a linear combination of primitive orbitals, and obtained by variationally optimizing

the contraction coefficients. The number of the primitive and optimized orbitals in the optimization

are specified by

<Definition.of.Atomic.Species

H H5.0-s4>1 H_CA19

C C5.0-s4>1p4>1 C_CA19

Definition.of.Atomic.Species>

For ’H’ one optimized radial function for the s-orbital is obtained from a linear combination of four

primitive radial functions. Similarly, an optimized radial function for the s-(p-)orbital is obtained from

a linear combination of four primitive radial functions for ’C’. In addition, the following keywords are

set in the input file as follows:

orbitalOpt.Method species # Off|Species|Atoms

orbitalOpt.Opt.Method EF # DIIS|EF

orbitalOpt.SD.step 0.001 # default=0.001

orbitalOpt.HistoryPulay 30 # default=15

orbitalOpt.StartPulay 10 # default=1

orbitalOpt.scf.maxIter 60 # default=40

orbitalOpt.Opt.maxIter 140 # default=100

orbitalOpt.per.MDIter 20 # default=1000000

orbitalOpt.criterion 1.0e-4 # default=1.0e-4

CntOrb.fileout on # on|off, default=off

Num.CntOrb.Atoms 2 # default=1

<Atoms.Cont.Orbitals

1

2

Atoms.Cont.Orbitals>

Then, we execute OpenMX as:

% ./openmx Methane_OO.dat

When the execution is completed normally, you can find the history of orbital optimization in the file

’met oo.out’ as:

History of orbital optimization MD= 1

********* Gradient Norm ((Hartree/borh)^2) ********

94

Required criterion= 0.000100000000

iter= 1 Gradient Norm= 0.057098961101 Uele= -3.217161102876

iter= 2 Gradient Norm= 0.044668461503 Uele= -3.220120116009

iter= 3 Gradient Norm= 0.034308306321 Uele= -3.223123238394

iter= 4 Gradient Norm= 0.025847573248 Uele= -3.226177980300

iter= 5 Gradient Norm= 0.019106400842 Uele= -3.229294858054

iter= 6 Gradient Norm= 0.013893824906 Uele= -3.232489198284

iter= 7 Gradient Norm= 0.010499500005 Uele= -3.235304178159

iter= 8 Gradient Norm= 0.008362635043 Uele= -3.237652870812

iter= 9 Gradient Norm= 0.006959703539 Uele= -3.239618540761

iter= 10 Gradient Norm= 0.005994816379 Uele= -3.241268535418

iter= 11 Gradient Norm= 0.005298095979 Uele= -3.242657118263

iter= 12 Gradient Norm= 0.003059655878 Uele= -3.250892948269

iter= 13 Gradient Norm= 0.001390201488 Uele= -3.255123241210

iter= 14 Gradient Norm= 0.000780925380 Uele= -3.255179362845

iter= 15 Gradient Norm= 0.000726631072 Uele= -3.255263012792

iter= 16 Gradient Norm= 0.000390930576 Uele= -3.250873416989

iter= 17 Gradient Norm= 0.000280785975 Uele= -3.250333677139

iter= 18 Gradient Norm= 0.000200668585 Uele= -3.252345643243

iter= 19 Gradient Norm= 0.000240367596 Uele= -3.254238199726

iter= 20 Gradient Norm= 0.000081974594 Uele= -3.258146794679

In most cases, 20-50 iterative steps are enough to achieve a sufficient convergence. The comparison

between the primitive basis orbitals and the optimized orbitals in the total energy is given by

Primitive basis orbitals

Utot = -7.992569945749 (Hartree)

Optimized orbitals by the orbital optimization

Utot = -8.133746986502 (Hartree)

We see that the small but accurate basis set orbitals can be generated by the orbital optimization. In

Fig. 16 we show the convergence properties of total energies for molecules and bulks as a function of

the number of unoptimized and optimized orbitals, implying that a remarkable convergent results are

obtained using the optimized orbitals for all the systems. In this illustration of a methane molecule,

the optimized radial orbitals are output to files ’C 1.pao’ and ’H 2.pao’. These output files ’C 1.pao’

and ’H 2.pao’ could be an input data for pseudo-atomic orbitals as is. This means that it is possible

to perform a pre-optimization of basis orbitals for systems you are interested in. The pre-optimization

could be performed for smaller but chemically similar systems.

The following two options are available for the keyword ’orbitalOpt.Method’: ’atoms’ in which

basis obitals on each atom are fully optimized, ’species’ in which basis obitals on each species are

optimized.

95

0 10 20 30 40 50

−5.49

−5.48

−5.46

−5.45

0 10 20 30 40 50

−8.00

−7.96

−7.92

−7.88

0 5 10 15 20
−5.70

−5.68

−5.66

−5.64

0 10 20 30 40

−7.95

−7.90

−7.85

−7.80

−7.75

40 80 120 160 200 240 280 320

−154.7

−154.6

−154.5

−154.4

−154.3

0 5 10 15 20

−7.72

−7.70

−7.68

Primitive

Optimized

T
o
ta

l
E

n
e
rg

y
 (

H
a
rt

re
e
)

C2

CH4

Number of Bases

C (diamond)

C2H6

C2F6

Number of Bases

Si (diamond)

Primitive

Optimized

Primitive

Optimized

Primitive

Optimized

Primitive

Optimized

Primitive

Optimized

Figure 16: The total energy for a carbon dimer C2, a methane molecule CH4, carbon and silicon in

the diamond structure, an ethane molecule C2H6, and a hexafluoro ethane molecule C2F6 as a function

of the number of primitive and optimized orbitals. The total energy and the number of orbitals are

defined as those per atom for C2, carbon and silicon in the diamond, and as those per molecule for

CH4, C2H6, and C2F6.

• atoms

The radial functions of basis orbitals are optimized with a constraint that the radial wave function

R is independent of the magnetic quantum number, which guarantees the rotational invariance

of the total energy. However, the optimized orbital on all the atoms can be different from eath

other.

• species

Basis orbitals in atoms with the same species name, that you define in ’Definition.of.Atomic.Species’,

are optimized as the same orbitals. If you want to assign the same orbitals to atoms with al-

most the same chemical environment, and optimize these orbitals, this scheme could be quite

convenient. As well as ’atoms’, the optimized radial functions are independent of the magnetic

quantum number, which guarantees the rotational invariance of the total energy.

Although the same information is available in the section ’Input file’, for convenience the details of

the other keywords are listed below:

96

orbitalOpt.scf.maxIter

The maximum number of SCF iterations in the orbital optimization is specified by the keyword ’or-

bitalOpt.scf.maxIter’.

orbitalOpt.Opt.maxIter

The maximum number of iterations for the orbital optimization is specified by the keyword ’or-

bitalOpt.Opt.maxIter’. The iteration loop for the orbital optimization is terminated at the number

specified by ’orbitalOpt.Opt.maxIter’ even when a convergence criterion is not satisfied.

orbitalOpt.Opt.Method

Two schemes for the optimization of orbitals are available: ’EF’ which is an eigenvector following

method, ’DIIS’ which is the direct inversion method in an iterative subspace. The algorithms are

basically same as for the geometry optimization. Either ’EF’ or ’DIIS’ is chosen by the keyword,

’orbitalOpt.Opt.Method’.

orbitalOpt.StartPulay

The quasi Newton methods, ’EF’ and ’DIIS’ start from the optimization step specified by the keyword

’orbitalOpt.StartPulay’.

orbitalOpt.HistoryPulay

The keyword ’orbitalOpt.HistoryPulay’ specifies the number of previous steps to estimate the next

input contraction coefficients used in the quasi Newton methods ’EF’ and ’DIIS’.

orbitalOpt.SD.step

Steps before moving to the quasi Newton method ’EF’ or ’DIIS’ is performed by the steepest de-

cent method. The prefactor used in the steepest decent method is specified by the keyword ’or-

bitalOpt.SD.step’. In most cases, orbitalOpt.SD.step of 0.001 can be a good prefactor.

orbitalOpt.criterion

The keyword ’orbitalOpt.criterion’ specifies a convergence criterion ((Hartree/borh)2) for the orbital

optimization. The iterations loop is finished when a condition, Norm of derivatives<orbitalOpt.criterion,

is satisfied.

CntOrb.fileout

If you want to output the optimized radial orbitals to files, then the keyword ’CntOrb.fileout’ must

be ON.

Num.CntOrb.Atoms

The keyword ’Num.CntOrb.Atoms’ gives the number of atoms whose optimized radial orbitals are

output to files.

Atoms.Cont.Orbitals

The keyword ’Atoms.Cont.Orbitals’ specifies the atom number, which is given by the first column in

the specification of the keyword ’Atoms.SpeciesAndCoordinates’ for the output of optimized orbitals

as follows:

<Atoms.Cont.Orbitals

1

2

97

Atoms.Cont.Orbitals>

The beginning of the description must be ’<Atoms.Cont.Orbitals’, and the last of the description

must be ’Atoms.Cont.Orbitals>’. The number of lines should be consistent with the number specified

in the keyword ’Atoms.Cont.Orbitals’. For example, the name of files are ’C 1.pao’ and ’H 2.pao’,

where the symbol corresponds to that given by the first column in the specification of the keyword

’Definition.of.Atomic.Species’ and the number after the symbol means that of the first column in

the specification of the keyword ’Atoms.SpeciesAndCoordinates’. These output files ’C 1.pao’ and

’H 2.pao’ can be an input data for pseudo-atomic orbitals as is.

98

23 Order(N) method

The computational effort of the conventional diagonalization scheme scales as the third power of the

number of basis orbitals, which means that the part could be a bottleneck when large-scale systems are

calculated. On the other hand, the O(N) methods can solve the eigenvalue problem in O(N) operation

in exchange for accuracy. Thus, O(N) methods could be efficient for large-scale systems, while a careful

consideration is always required for the accuracy. In OpenMX Ver. 3.9, three O(N) methods are

available: a divide-conquer (DC) method [50], a divide-conquer (DC) method with localized natural

orbitals (LNO) [51], and a Krylov subspace method [43]. Our recommendation among the three O(N)

methods is the DC-LNO method, since the method is robust, and can be applied to a wide range of

materials including metals, and the parallel efficiency is expected to be the best one among the three

methods. In the following subsections each O(N) method is illustrated by examples.

23.1 Divide-conquer method

The DC method is a robust scheme and can be applicable to a wide variety of materials with a

reasonable degree of accuracy and efficiency, while this scheme is suitable especially for covalent

systems. In this subsection, the O(N) calculation using the DC method is illustrated. In an input

file ’DIA8 DC.dat’ which can be found in the directory ’work’, please specify ’DC’ for the keyword

’scf.EigenvalueSolver’.

scf.EigenvalueSolver DC

Then, one can execute OpenMX by:

% ./openmx DIA8_DC.dat

The input file is for an O(N) calculation (1 MD step) of the diamond including 8 carbon atoms. The

computational time is 120 seconds using a Xeon machine (2.6 GHz). Figure 17 shows the computational

time and memory size to calculate a MD step of the carbon diamond as a function of number of atoms

in the supercell. In fact, we see that the computational time and memory size are almost proportional

to the number of atoms. The accuracy and efficiency of the DC method are controlled by a single

parameter: ’orderN.HoppingRanges’.

• orderN.HoppingRanges

The keyword ’orderN.HoppingRanges’ defines the radius of a sphere which is centered on each

atom. The physically truncated cluster for each atom is constructed by picking up atoms inside

the sphere with the radius in the DC, DC-LNO, and O(N) Krylov subspace methods.

99

0 100 200 300 400 500 600
0

4

8

12

16

20

24

0

400

800

1200

E
la

p
s
e
d
 t
im

e
 (

s
)

M
e
m

o
ry

 s
iz

e
 (M

B
y
te

)

Number of atoms in the super cell

Elapsed TIme

Memory size

Figure 17: Elapsed time of the diagonalization part per SCF step and computational memory size

per MPI process as a function of carbon atoms in the diamond supercell, where 16 processes were

used in the MPI parallel calculations. C5.0-s1p1 was used as basis functions. For the DC method,

orderN.HoppingRanges=6.0 (Å) is used. A Xeon machine (2.6 GHz) was used to measure the elapsed

time. The input files are ’DIA8 DC.dat’, ’DIA64 DC.dat’, ’DIA216 DC.dat’, and ’DIA512 DC.dat’ in

the directory ’work’.

Table 4: Total energy and computational time per MD step of a C60 molecule and small peptide

molecules (valorphin [107]) and DNA consisting of cytosines and guanines calculated by the conven-

tional diagonalization and the O(N) DC method, where a minimal basis set was used. In this Table,

numbers in the parenthesis after DC means ’orderN.HoppingRanges’ used in the DC calculation. The

computational times were measured using an Opteron PC cluster (48 cpus × 2.4 GHz). The input

files are ’C60 DC.dat’, ’Valorphin DC.dat’, ’CG15c DC.dat’ in the directory ’work’.

Total energy (Hartree) Computational time (s)

C60

(60 atoms, 240 orbitals)

Conventional -343.89680 36

DC (7.0) -343.89555 37

Valorphin

(125 atoms, 317 orbitals)

Conventional -555.28953 81

DC (6.5) -555.29019 76

DNA

(650 atoms, 1880 orbitals)

Conventional -4090.95463 576

DC (6.3) -4090.95092 415

100

0 100 200 300 400 500
10

-6

10
-5

10
-4

10
-3

10
-2

Carbon diamond

Silicon diamond
MnO bulk

Ih Ice

 E
 (

H
a

rt
re

e
/a

to
m

)

0 100 200 300 400 500 600
10

-4

10
-3

10
-2 bcc Fe

fcc Al
bcc Li

LiAl (B32)

 E
 (

H
a
rt

re
e
/a

to
m

)

0 5 0 100 150
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Number of Atoms in Each Cluster

E
 (

H
a
rt

re
e
/a

to
m

)

Small peptide (dynorphin A)

Finite (6,6) carbon nanotube

DNA (CG)

(a)

(b)

(c)

�¢
�¢

�¢

Figure 18: Error in the total energy of (a) bulks with a finite gap, (b) metals, and (c) molecular

systems calculated by the divide-conquer (DC) method as a function of the number of atoms in each

cluster. The dotted horizontal line indicates ’milli-Hartree’ accuracy.

101

If the number of atoms in the systems isN , N small eigenvalue problems for theN physically truncated

clusters are solved, and then the total density of states (DOS) is constructed as the sum of the projected

DOS of each physically truncated cluster. Although the appropriate value for ’orderN.HoppingRanges’

depends on systems, for molecular systems the following values are recommended as a trade-off between

the computational accuracy and efficiency:

orderN.HoppingRanges 6.0 - 7.0

Table 4 shows the comparison in the total energy between the exact diagonalization and the DC

method for a C60 molecule and small peptide molecules (valorphin [107]), and DNA consisting of

cytosines and guanines. We find that errors in the total energy calculated by the DC method are

about a few mHartree in the system size. Also, it can be estimated that the DC method is faster than

the conventional diagonalization when the number of atoms is larger than 500 atoms, while the crossing

point between the conventional diagonalization and the DC method with respect to computational

time depends on systems and the number of processors in the parallel calculation.

To see an overall tendency in the convergence properties of total energy with respect to the size

of truncated cluster, the error in the total energy, compared to the exact diagonalization, is shown as

a function of the number of atoms in each cluster for (a) bulks with a finite gap, (b) metals, and (c)

molecular systems in Fig. 18. We see that the error decreases almost exponentially for the bulks with

a finite gap and molecular systems, while the convergence speed is slower for metals.

23.2 Divide-conquer method with localized natural orbitals (DC-LNO) method

The DC-LNO method [51] is a variant of the DC method. The computational efficiency is improved

by introducing localized natural orbitals (LNOs) to span the subspace of each atom. The dimension

of the resultant subspace is smaller than that in the DC method, leading to the reduction of com-

putational cost. The LNOs are non-iteratively calculated by a low-rank approximation via a local

eigendecomposition of a projection operator for the occupied space. As shown in Fig. 19(a), intro-

ducing LNOs to represent the long range region of a truncated cluster reduces the computational cost

of the DC method while keeping computational accuracy. The method can be applied to not only

gapped systems, but also metallic systems as long as the size of truncated clusters is large enough, and

typically clusters including more than 200 atoms might be chosen. The functionality is compatible

with not only the collinear calculation, but also the non-collinear calculations.

As a first step for O(N) calculations of the DC-LNO method, one can perform an O(N) calculation

for Si crystal using an input file store in the directory ’work’ as

% mpirun -np 112 ./openmx Si8-LNO.dat | tee si8-lno.std

The calculation was performed in 66 seconds using 112 cores on a Xeon cluster machine of 2.6 GHz.

In order for you to start an trial calculation by the DC-LNO method, an input file ’Si8-LNO.dat’ is

available in the directory ’work’. Since as shown in Fig. 19(b) the three level parallelization has been

implemented: atom level, spin level, and diagonalization level, it is expected that the method scales

up to, e.g., 40000 CPU cores for a 1000 atom system in the parallel calculations, where we assumed

1000 atoms × 2 (spin-polarized calculation) × 20 CPU cores per node, resulting in that the product

becomes 40000. The benchmark calculation of the multi-level parallelization will be shown later on.

When you try to perform the hybrid parallelization, the following keyword has to be switched on:

102

Figure 19: Truncation of a system in the DC method with LNOs. The short range (orange) and long

range (yellow) regions are represented by PAOs and LNOs, respectively.

scf.dclno.threading on # off|on

In the hybrid parallelization the diagonalization at the bottom level will be parallelized by OpenMP.

The computational accuracy and efficiency of the method can be controlled by the following keywords:

orderN.HoppingRanges 7.0 # 7.0 (Ang.)

orderN.LNO.Buffer 0.2 # default = 0.2

orderN.LNO.Occ.Cutoff 0.1 # default = 0.1

The role of the keyword ’orderN.HoppingRanges’ is exactly the same as that in the DC method.

For each atom a truncated cluster is constructed by picking-up atoms within a sphere whose radius is

specified by the keyword ’orderN.HoppingRanges’. Though the proper choice of the parameter depends

on systems, a serie of benchmark calculations implies that the accuracy is enough for not only gapped

systems, but also metallic systems if ’orderN.HoppingRanges’ is set so that the resultant truncated

cluste can include 300 atoms. The setting might be regarded as a conservative choice to ensure the

accuracy rather than efficiency. So, a compromising choice with respect to both accuracy and efficiency

may be in between 200 and 300 atoms. The region in the truncated cluster where the PAOs are replaced

by LNOs is determined by the keyword ’orderN.LNO.Buffer’. The ’orderN.LNO.Buffer=0.0’ means

that PAOs allocated on all the SNAN atoms are replaced by LNOs, while the PAOs on all the SNAN

atoms remain unchanged in the case with the ’orderN.LNO.Buffer=1.0’ which is equivalent to the DC

method. As for the SNAN, please refer the subsection 23.4 ’User definition of FNAN+SNAN’. The

orderN.LNO.Buffer of 0.1∼0.2 might be a proper choice with respect to accuracy and efficiency, while

the default value is 0.2. The selection of LNOs for each atom i is performed by monitoring eigenvalues

of Λ0i defined with [51]

Λ0i =
∑
Rj

ρ0i,RjSRj,0i, (2)

103

0 100 200 300 400 500 600 700
10

5

10
4

10
3

10
2

0 100 200 300 400 500 600 700
10

5

10
4

10
3

10
2

0 100 200 300 400 500 600 700
10

5

10
4

10
3

10
2

(a) Diamond

(b) Silicon

(c) r TiO2

DC

DC LNO

DC

DC LNO

DC

DC LNO

Number of atoms in a truncated cluster

A
b

s
o

lu
te

 e
rr

o
r

in
 t

o
ta

l
e

n
e

rg
y
 (

H
a

rt
re

e
/a

to
m

)

0 100 200 300 400 500 600 700 800 900
10

5

10
4

10
3

10
2

0 100 200 300 400 500 600 700 800
10

5

10
4

10
3

10
2

0 100 200 300 400 500 600 700
10

5

10
4

10
3

10
2

(d) BCC Li

(e) FCC Al

(f) BCC Fe

DC

DC LNO

DC

DC LNO

DC

DC LNO

Number of atoms in a truncated cluster

A
b

s
o

lu
te

 e
rr

o
r

in
 t

o
ta

l
e

n
e

rg
y
 (

H
a

rt
re

e
/a

to
m

)

Figure 20: Absolute error in the total energy (Hatree/atom) for (a) diamond, (b) silicon in the

diamond structure, (c) rutile TiO2, (d) BCC lithium, (e) FCC aluminum, and (f) BCC iron as a

function of the number of atoms in a truncated cluster calculated by the DC and DC-LNO methods.

The experimental lattice constants were used for all the cases.

where ρ0i,Rj and SRj,0i are block elements of density matrix and overlap matrix, respectively. Since

the eigenvalues can be understood as population of LNOs,. the LNOs having the population more

than orderN.LNO.Occ.Cutoff are chosen as basis functions for the targeted atom, which well span

the occupied subspace space. Instead of using ’orderN.LNO.Occ.Cutoff’, one can directly specify the

number of LNOs for each species by the keyword ’LNOs.Num’. When you define the species as

<Definition.of.Atomic.Species

Si Si7.0-s2p2d1 Si_PBE19

H H6.0-s2p1 H_PBE19

Definition.of.Atomic.Species>

the number of LNOs can be specified by

104

2 4 6 8
0

1

2

2 4 6 8
0

1

2

3
2 4 6 8

0

1

2

2 4 6 8
0

2

4

6

8

O(N
3
)

DC�LNO

r (Å)

R
a
d
ia

l d
is

tr
ib

u
tio

n
 f
u
n
ct

io
n

O(N
3
)

DC�LNO

(a) Si

(b) Al

O(N
3
)

DC�LNO

r (Å)

R
a
d
ia

l d
is

tr
ib

u
tio

n
 f
u
n
ct

io
n

O(N
3
)

DC�LNO

(c) Li

(d) SiO2

Figure 21: Total radial distribution function (RDF) of (a) silicon at 3500 K, (b) aluminum at 2500 K,

(c) lithium at 800 K, and (d) SiO2 at 3000 K, calculated by the conventional O(N3) diagonalization

and the DC-LNO methods. The MD simulations were performed for cubic supercells containing 64,

108, 128, and 192 atoms with a fixed lattice constant of 10.86, 12.15, 14.04, 14.25 for silicon, aluminum,

lithium, and SiO2, respectively, for 10 ps with the time step of 2 fs. The details of the simulations

can be in Ref. [51].

<LNOs.Num

Si 4

H 1

LNOs.Num>

In this case, the numbers of the LNOs are fixed to 4 and 1 for Si and H, respectively. To avoid a sudden

change of the number of LNOs during geometry optimization and molecular dynamics simulations, it

might be better to use ’LNOs.Num’ rather than orderN.LNO.Occ.Cutoff. The comparison between

the DC and DC-LNO methods is shown in Fig. 20. Although the PAOs in the long range region

are replaced by the LNOs, it is found that the accuracy is comparable to the DC method both in

gapped and metallic systems. As an illustration for applications of the DC-LNO method, we show

in Fig. 21 radial distribution functions (RDF) of liquids for silicon, aluminum, lithium, and SiO2. It

turns out that in all the cases the DC-LNO method reproduces well the results by the conventional

O(N3) diagonalization method, and that the obtained RDFs are well compared to other computational

results [52, 53, 54, 55].

In Fig. 22 the speed-up ratio in the MPI parallelization of the DC-LNO method is shown for

non-spin polarized calculations of a diamond supercell containing 64 atoms. Since the multiplicity of

spin index is 1, we see a nearly ideal behavior up to 64 MPI processes. Beyond 64 MPI processes the

parallelization in the diagonalization level is taken into account on top of the parallelization in the

atom level. A superlinear speed-up is observed at 128 and 256 MPI processes, which might be due

105

0 500 1000 1500 2000
0

500

1000

1500

2000

The number of MPI processes

S
p
e
e
d

�

u
p
 r

a
ti
o

Parallel efficiency

70.0%

Ideal

Figure 22: Speed-up ratio in the MPI parallelization of the DC-LNO method for a diamond supercell

containing 64 atoms, where the cutoff radius rL of 8.0 Åwas used, leading to the numbers of atoms

of 239 and 142 in the short and long range regions, and the dimension of matrices of 3675 for the

truncated cluster problem. The details of the benchmark calculation can be in Ref. [51].

to an effective use of cache by the reduction of memory usage, and a good scaling is achieved up to

1280 MPI processes at which the parallel efficiency is calculated to be 70% using the elapsed time at

1 MPI process as reference. Since each computer node has 20 CPU cores in this case, it would be

reasonable to observe the good caling up to 1280 (=64×20) MPI processes. Thus, we see that the

multilevel parallelization is very effective to minimize the computational time in accordance with a

recent development of massively parallel computers.

23.3 Krylov subspace method

The DC method is robust and accurate for a wide variety of systems. However, the size of truncated

clusters to obtain an accurate result tends to be large for metallic systems as shown in Fig. 18. A

way of reducing the computational efforts is to map the original vector space defined by the truncated

cluster into a Krylov subspace of which dimension is smaller than that of the original space [43]. The

Krylov subspace method is available by

scf.EigenvalueSolver Krylov

Basically, the accuracy and efficiency are controlled by the following two keywords:

orderN.HoppingRanges 6.0

106

orderN.KrylovH.order 400

The keyword ’orderN.HoppingRanges’ defines the radius of a sphere centered on each atom in the

same sense as that in the DC method. The dimension of the Krylov subspace of Hamiltonian in each

truncated cluster is given by ’orderN.KrylovH.order’. Moreover, the Krylov subspace method can be

precisely tuned by the following keywords:

0

0.001

0.002

3500

2500

1500

500

(47,76)

(61,66)

(40,26)

fcc Al

B32LiAl

(55,194)

(124,135)

bcc Fe
(51,38)

bulk Si

Ih Ice

DNA

Krylov
DC

E
ro

rr
 (

H
a
rt

re
e
/a

to
m

)
E

la
p
s
e
d
 t
im

e
 (

s
/a

to
m

/M
D

)

x 10
3

x 10

(a)

(b)

(23,100)

(46,100)

(43,100)

(72,100)

(97,100)

(100,100)

Figure 23: (a) absolute error, with respect to the band calculations, in the total energy (Hartree/atom)

calculated by the Krylov subspace and DC methods for metals and finite gap systems, (b) computa-

tional time (s/atom/MD). For a substantial comparison, the calculations were performed using a single

Xeon processor. The set of numbers in the parenthesis of (a) means the average number of atoms in

the core and buffer regions. The set of numbers in the parenthesis of (b) means the percentage of the

dimension of the subspaces relative to the total number of basis functions in the truncated cluster,

respectively.

• orderN.Exact.Inverse.S on| off, default=on

In case of ’orderN.Exact.Inverse.S=on’, the inverse of overlap matrix for each truncated cluster

is exactly evaluated. Otherwise, see the next keyword ’orderN.KrylovS.order’.

• orderN.KrylovS.order 1200, default=orderN.KrylovH.order×4

In case of ’orderN.Exact.Inverse.S=off’, the inverse is approximated by a Krylov subspace

method for the inverse, where the dimension of the Krylov subspace of overlap matrix in each

truncated cluster is given by the keyword ’orderN.KrylovS.order’.

• orderN.Recalc.Buffer on| off, default=on

107

In case of ’orderN.Recalc.Buffer=on’, the buffer matrix is recalculated at every SCF step. Oth-

erwise, the buffer matrix is calculated at the first SCF step, and fixed at the subsequent SCF

steps.

• orderN.Expand.Core on| off, default=on

In case of ’orderN.Expand.Core=on’, the core region is defined by atoms within a sphere with

radius of 1.2× rmin, where rmin is the distance between the central atom and the nearest atom.

The core region defines a set of vectors used for the first step in the generation of the Krylov

subspace for each truncated cluster. In case of ’orderN.Expand.Core=off’, the central atom is

considered as the core region. The default is ’on’.

It is better to switch on ’orderN.Exact.Inverse.S’ and ’orderN.Expand.Core’ as the covalency increases,

while the opposite could becomes better in simple metallic systems. In Fig. 23 the absolute error in

the total energy calculated by the Krylov and DC methods are shown for a wide variety of materials.

It is found that in comparison with the DC method, the Krylov subspace method is more efficient

especially for metallic systems, and that the efficiency become comparable as the covalency and ionicity

in the electronic structure increase.

It is also noted that the O(N) Krylov subspace method is well parallelized to realize large-scale

calculations. The most efficient parallelization for the O(N) Krylov subspace method can be realized

by using the same number of MPI processes as that of atoms together with OpenMP threads. Figure

24 shows that a system consisting of a hundred thousand atoms can be treated on a massively parallel

computer [44, 45], where the diamond structure consisting of 131072 carbon atoms is considered as a

benchmark system.

0

200

400

600

800

1000

1200

1400

16384 32768 65536 131072

Time
Efficiency

E
la

p
se

d
 T

im
e

(s
ec

o
n
d
)

P
ar

al
le

l
E

ff
ic

ie
n
cy

 (
%

)

0

20

40

60

80

100

Total number of cores

Figure 24: Parallel efficiency of the O(N) Krylov subspace method in the hybrid parallelization on

the K-computer, where eight threads were used for all the cases. The diamond structure consisting of

131072 carbon atoms was considered as a benchmark system.

108

23.4 User definition of FNAN+SNAN

In all the O(N) methods supported by OpenMX Ver. 3.9, neighboring atoms in each truncated cluster

are classified into two categories: first and second neighboring atoms. If the sum, r0 + rN, of a cutoff

radius, r0, of basis functions allocated to the central atom and that, rN, of a neighboring atom is

smaller than the distance between the two atoms, then the neighboring atom is regarded as a first

neighboring atom, and the other atoms, which does not satisfy the criterion, in the truncated cluster

are called the second neighboring atom. The second neighboring atoms are determined by a keyword

’orderN.HoppingRanges’. The numbers of the first and second neighboring atoms determined by the

keyword are shown in the standard output as FNAN and SNAN, respectively. In addition to the use

of the keyword ’orderN.HoppingRanges’ for determining FNAN and SNAN, one can directory control

the number, FNAN+SNAN, by the following keyword:

<orderN.FNAN+SNAN

1 60

2 65

3 60

4 50

..

.

orderN.FNAN+SNAN>

In this specification, the number of row should be equivalent to that of atoms. The first column is a se-

rial number corresponding to the serial number defined in the keyword ’Atoms.SpeciesAndCoordinates’,

and the second column is the number of FNAN+SNAN. Then, the first and second neighboring atoms

in each truncated cluster are determined by taking account of the distance between the central atom

and neighboring atoms so that the number of FNAN+SNAN can be equivalent to the value provided by

the second column. FNAN+SNAN may largely change when unit vectors are changed, leading to sud-

den change of the total energy as a function of lattice constant. The user definition of FNAN+SNAN

is useful to avoid such a case.

109

24 MPI parallelization

For large-scale calculations, parallel execution by MPI is supported for parallel machines with dis-

tributed memories.

24.1 O(N) calculation

When the O(N) method is employed, it is expected that one can obtain a good parallel efficiency

because of the inherent algorithm. A typical MPI execution is as follows:

% mpirun -np 4 openmx DIA512_DC.dat > dia512_dc.std &

The input file ’DIA512 DC.dat’ found in the directory ’work’ is for the SCF calculation (1 MD) of

the diamond including 512 carbon atoms using the divide-conquer (DC) method. The speed-up ratio

in comparison of the elapsed time per MD step is shown in Fig. 25 (a) as a function of the number of

processes on a CRAY-XC30 (2.6 GHz/Xeon processors). We see that the parallel efficiency decreases

as the number of processors increase, and the speed-up ratio at 128 CPUs is about 84. The decreasing

efficiency is due to the decrease of the number of atoms allocated to one processor. So, the weight

of other unparallelized parts such as disk I/O becomes significant. Moreover, it should be noted

that the efficiency is significantly reduced in non-uniform systems in terms of atomic species and

geometrical structure due to disruption of the road balance, while an algorithm is implemented to

avoid the disruption. See also the subsections ’DC-LNO method’ and ’Krylov subspace method’ for

further information on parallelization.

24.2 Cluster calculation

In the cluster calculation, a double parallelization is made for two loops: spin multiplicity and eigen-

states, where the spin multiplicity is one for the spin-unpolarized and non-collinear calculation, and

two for the spin-polarized calculation, respectively. The priority of parallelization is in order of spin

multiplicity and eigenstates. OpenMX Ver. 3.9 employs ELPA [39] to solve the eigenvalue problem in

the cluster calculation, which is a highly parallelized eigevalue solver. Either ELPA1 or ELPA2 can

be chosen by the following keyword:

scf.eigen.lib elpa1 # elpa1|elpa2, default=elpa1

The default choice is ELPA1. Our benchmark calculations suggest that ELPA1 and ELPA2 are com-

parable to each other with respect to the computational speed, while we do not show the benchmark

calculations here. Figure 25 (b) shows the speed-up ratio as a function of processors in the elapsed

time for a spin-polarized calculation of a single molecular magnet consisting of 148 atoms. The input

file ’Mn12.dat’ is found in the directory ’work’. It is found that the speed-up ratio is 11 and 17 using

32 and 64 processes, respectively.

24.3 Band calculation

In the band calculation, a triple parallelization is made for three loops: spin multiplicity, k-points, and

eigenstates, where the spin multiplicity is one for the spin-unpolarized and non-collinear calculations,

110

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

0 20 40 60
0

20

40

60

80

100

120

140

0 20 40 60
0

20

40

60

Number of processors

S
p

e
e

d
 u

p
 r

a
ti
o

S
p

e
e

d
 u

p
 r

a
ti
o

S
p

e
e

d
 u

p
 r

a
ti
o

Elapsed

Ideal

Elapsed

Ideal

Elapsed

Ideal

O(N)

Band

Cluster

(a)

(b)

(c)

Figure 25: Speed-up ratio of the elapsed time per MD step in parallel calculations using MPI on

a CRAY-XC30 (2.6 GHz Xeon processors) (a) for the carbon diamond including 512 atoms in the

supercell by the DC method, (b) for a single molecular magnet consisting of 148 atoms by the cluster

method, and (c) for the carbon diamond including 64 atoms in the super cell by the band method

with 3×3×3 k-points. For comparison, a line which corresponds to the ideal speed-up ratio is also

shown.

and two for the spin-polarized calculation, respectively. The priority of parallelization is in order

of spin multiplicity, k-points, and eigenstates. In addition, when the number of processes used in

the parallelization exceeds (spin multiplicity)×(the number of k-points), OpenMX uses an efficient

way in which finding the Fermi level and calculating the density matrix are performed by just one

diagonalization at each k-point. For the other cases, twice diagonalizations are performed at each k-

point for saving the size of used memory in which the second diagonalization is performed to calculate

the density matrix after finding the Fermi level. In Fig. 25 (c) we see a good speed-up ratio as

a function of processes in the elapsed time for a spin-unpolarized calculation of carbon diamond

consisting of 64 carbon atoms with 3×3×3 k-points. The input file ’DIA64 Band.dat’ is found in the

directory ’work’. In this case the spin multiplicity is one, and the number of k-points used for the actual

calculation is (3*3*3-1)/2+1=14, since the k-points in the half Brillouin zone is taken into account for

the collinear calculation, and the Γ-point is included when all the numbers of k-points for a-, b-, and

111

c-axes are odd. So it is found that the speed-up ratio exceeds the ideal one in the range of processes

over 14, which means the algorithm in the parallelization is changed to the efficient scheme. As well

as the cluster calculation, OpenMX Ver. 3.9 employs ELPA [39] to solve the eigenvalue problem in

the band calculation, which is a highly parallelized eigevalue solver. Either ELPA1 or ELPA2 can be

chosen by the following keyword:

scf.eigen.lib elpa1 # elpa1|elpa2, default=elpa1

The default choice is ELPA1. Our benchmark calculations suggest that ELPA1 and ELPA2 are com-

parable to each other with respect to the computational speed, while we do not show the benchmark

calculations here.

24.4 Fully three dimensional parallelization

OpenMX Ver. 3.9 supports a fully three dimensional parallelization for data distribution, while up to

and including Ver. 3.6, the parallelization is made by a simple one-dimensional domain decomposition

for a-axis of the unit cell for data distribution. Thus, users do not need to care about how unit cells are

specified to achieve good road balancing. In OpenMX Ver. 3.9, a nearly equivalent parallel efficiency

will be obtained without depending on choice of the unit cell vectors.

24.5 Maximum number of processors

Up to and including Ver. 3.6, the number of MPI processes that users can utilize for the parallel

calculations is limited up to the number of atoms in the system. OpenMX Ver. 3.9 does not have the

limitation. Even if the number of MPI processes exceeds the number of atoms, the MPI parallelization

is efficiently performed. The capability may be useful especially for a calculation where the number

of k-points is much larger than the number of atoms in the system.

112

25 MPI/OpenMP hybrid parallelization

The MPI/OpenMP hybrid parallel execution can be performed by

% mpirun -np 32 openmx DIA512-1.dat -nt 4 > dia512-1.std &

where ’-nt’ means the number of threads in each process managed by MPI. If ’-nt’ is not specified,

then the number of threads is set to 1, which corresponds to the flat MPI parallelization. Since

the parallelization of OpenMX Ver. 3.9 is largely changed from OpenMX Ver. 3.6, we do not have

enough data to validate the hybrid parallelization compared to the flat MPI with respect to efficiency

of computation and memory usage. However, our preliminary benchmark calculations imply that the

hybrid parallelization seems to be efficient as for memory usage, while the computational efficiency

seems to be comparable to each other.

113

26 Large-scale calculations

26.1 Conventional scheme

Using the conventional diagonalization method, OpenMX Ver. 3.9 is capable of performing geometry

optimization for systems consisting of 1000 atoms if several hundreds processor cores are available.

To demonstrate the capability, one can perform ’runtestL2’ as follows:

% mpirun -np 128 openmx -runtestL2 -nt 4

Then, OpenMX will run with 7 test files, and compare calculated results with the reference results

which are stored in ’work/large2 example’. The following is a result of ’runtestL2’ performed using

640 MPI processes and 1 OpenMP threads on a Xeon cluster machine.

1 large2 example/C1000.dat Elapsed time(s)= 777.60 diff Utot= 0.000000007341 diff Force= 0.000000008795

2 large2 example/Fe1000.dat Elapsed time(s)= 8181.70 diff Utot= 0.000000002241 diff Force= 0.000000011061

3 large2 example/GRA1024.dat Elapsed time(s)= 927.20 diff Utot= 0.000000012903 diff Force= 0.000000004981

4 large2 example/Ih-Ice1200.dat Elapsed time(s)= 445.88 diff Utot= 0.000000000216 diff Force= 0.000000001451

5 large2 example/Pt500.dat Elapsed time(s)= 2629.20 diff Utot= 0.000000015832 diff Force= 0.000000001879

6 large2 example/R-TiO2-1050.dat Elapsed time(s)= 844.58 diff Utot= 0.000000002263 diff Force= 0.000000001108

7 large2 example/Si1000.dat Elapsed time(s)= 658.53 diff Utot= 0.000000000404 diff Force= 0.000000000908

Total elapsed time (s) 14464.69

The quality of all the calculations is at a level of production run where double valence plus a single

polarization functions are allocated to each atom as basis functions. Except for ’Pt500.dat’, all the

systems include more than 1000 atoms, where the last number of the file name implies the number of

atoms for each system, and the elapsed time implies that geometry optimization for systems consisting

of 1000 atoms is possible if several hundreds processor cores are available. The input files used for

the calculations and the output files are found in the directory ’work/large2 example’. The following

information is compiled from the output files.

No. Input file SCF steps Elapsed time(s/SCF/spin) Dimension

1 large2 example/C1000.dat 53 14.7 13000

2 large2 example/Fe1000.dat 408 10.0 13000

3 large2 example/GRA1024.dat 72 12.9 13312

4 large2 example/Ih-Ice1200.dat 57 7.8 9200

5 large2 example/Pt500.dat 161 16.3 12500

6 large2 example/R-TiO2-1050.dat 38 22.2 15750

7 large2 example/Si1000.dat 45 14.6 13000

The dimension of the Kohn-Sham Hamiltonian is of the order of 10000, and the elapsed time per

SCF step is around 15 seconds for all the systems, implying that the difference in the total elapsed

time mainly comes from the difference in the SCF iterations to achieve the SCF convergence of 10e-10

(Hartree) for the band energy.

26.2 Combination of the O(N) and conventional schemes

Although the O(N) methods can treat large-scale systems consisting of more than 1000 atoms, a

serious problem is that information about wave functions is lost in the O(N) methods implemented

in OpenMX. A simple way of obtaining wave functions and the corresponding eigenvalues for the

large-scale systems is firstly to employ the O(N) methods to obtain a self-consistent charge density,

114

and then is to just once diagonalize using the conventional diagonalization method under the self-

consistent charge density to obtain full wave functions. As an illustration of this procedure, we show

a large-scale calculation of a multiply connected carbon nanotube (MCCN) consisting of 564 carbon

atoms. First, the SCF calculation of a MCCN was performed using the O(N) Krylov subspace method

and 16 CPU cores of a 2.6 GHz Xeon, where C5.0-s2p1 (basis function), 130 Ryd (scf.energycutoff),

1.0e-7 (scf.criterion), 6.5 Å (orderN.HoppingRanges), ’orderN.KrylovH.order=400’, and RMM-DIISK

(mixing scheme) were used. The input file is ’MCCN.dat’ in the directory ’work’. Figure 26 shows

the norm of residual charge density in Fourier space as a function of SCF steps. We see that 56 SCF

steps is enough to obtain convergent charge density for the system, where the computational time was

about seven minutes. After that, the following keywords were set in

scf.maxIter 1

scf.EigenvalueSolver Band

scf.Kgrid 1 1 1

scf.restart on

MO.fileout on

num.HOMOs 2

num.LUMOs 2

MO.Nkpoint 1

<MO.kpoint

0.0 0.0 0.0

MO.kpoint>

10 20 30 40 50 60
10

6

10
4

10
2

10
0

SCF steps

N
o
rm

 o
f
re

s
id

u
a
l
c
h
a
rg

e
 d

e
n
s
it
y
 i
n
 F

o
u
ri
e
r

s
p
a
c
e

Figure 26: Norm of residual charge density in Fourier space as a function of SCF steps for a multiply

connected carbon nanotube (MCCN) consisting of 564 carbon atoms. The input file is ’MCCN.dat’

in the directory ’work’.

115

Then we calculated the same system in order to obtain wave functions using 16 CPU cores of a 2.6

GHz Xeon machine, where the computational time was about 2 minutes. Figure 27 shows isosurface

maps of the HOMO and LUMO (Γ-point) of MCCN calculated by the above procedure. Although the

difference between the O(N) method and the conventional diagonalization scheme in the computational

time is not significant in this example, the procedure will be useful for larger system including more

than several thousands atoms.

(a)

(b)

Figure 27: Isosurface map of (a) the highest occupied molecular orbital (HOMO) and (b) the lowest

unoccupied molecular orbital (LUMO) of a multiply connected carbon nanotube (MCCN) consisting

of 564 carbon atoms, where |0.005| was used as an isovalue of the molecular orbital.

116

27 Electric field

It is possible to apply a uniform external electric field given by a sawtooth waveform during the SCF

calculation and the geometry optimization. For example, when an electric field of 1.0 GV/m (109

V/m) is applied along the a-axis, please specify the keyword ’scf.Electric.Field’ in your input file as

follows:

scf.Electric.Field 1.0 0.0 0.0 # default=0.0 0.0 0.0 (GV/m)

The sign of electric field is taken as that applied to electrons. If the uniform external electric field is ap-

plied to a periodic bulk system without vacuum region, discontinuities of the potential are introduced,

which may cause numerical instability. On the other hand, for molecular systems, the discontinuities

are located in the vacuum region, indicating that numerical instability may not be induced.

As an illustration of the electric field, changes of total charge in a nitrobenzene molecule induced

by the electric field are shown in Fig. 28. We can see that a large charge transfer takes place among

oxygens in -NO2, para-carbon atom, and para-hydrogen atom. The input file is ’Nitro Benzene.dat’

in the directory ’work’. See also Section 63 ’Analysis of difference in two Gaussian cube files’ as for

the difference charge maps shown in Fig. 28.

+10 GV/m

(a)
-10 GV/m

(b)

a-axis

Figure 28: Difference in the total charge density of a nitrobenzene molecule between the zero-bias

voltage and applied bias voltage along the a-axis of (a) 10 GV/m, and (b) -10 GV/m, where orange

and blue colors mean the increase and decrease of charge density. Tilted arrows depict the slope of

applied electric fields. The input file is ’Nitro Benzene.dat’ in the directory ’work’.

117

28 Charge doping

The following keyword is available for both the electron and hole dopings.

scf.system.charge 1.0 # default=0.0

The plus and minus signs correspond to hole and electron dopings, respectively. A partial charge

doping is also possible. The excess charge given by the keyword ’scf.system.charge’ is compensated

by a uniform background opposite charge, since FFT is used to solve Poisson’s equation in OpenMX.

Therefore, if you compare the total energy between different charged states, a careful treatment is

required, because additional electrostatic interactions induced by the background charge are included

in the total energy. Note that in Sec. 58, a proper way of treating charged and isolated systems is

discussed.

As an example, we show spin densities of hole doped, neutral, and electron doped (5,5) carbon

nanotubes with a finite length of 14 Å in Fig. 29. The neutral and electron doped nanotubes possess

the total spin moment of 1.0 and 2.2, while the total spin moment almost disappears in the hole doped

nanotube. We can see that the spin polarization takes place at the edges of the neutral and electron

doped nanotubes due to dangling bonds of edge regions.

(a)

(b) (c)

Figure 29: Spin densities of (a) four hole doped, (b) neutral, and (c) four electron doped (5,5) carbon

nanotubes with a finite length of 14 Å. The input file is ’Doped NT.dat’ in the directory ’work’.

118

29 Virtual atom with fractional nuclear charge

It is possible to treat a virtual atom with fractional nuclear charge by using a pseudopotential with the

corresponding fractional nuclear charge. The pseudopotential for the virtual atom can be generated

by ADPACK. The relevant keywords in ADPACK are given by

AtomSpecies 6.2

total.electron 6.2

valence.electron 4.2

<occupied.electrons

1 2.0

2 2.0 2.2

occupied.electrons>

The above example is for a virtual atom on the way of carbon and nitrogen atoms. Also, it is noted

that basis functions for the pseudopotential of the virtual atom must be generated for the virtual

atom with the same fractional nuclear charge, since the atomic charge density stored in *.pao is used

to make the neutral atom potential.

As an illustration, the DOS of C7.8N0.2 calculated using the method is shown in Fig. 30. The

input file is ’DIA8-VA.dat’ which can be found in the directory ’work’. In the calculation, one of eight

carbon atoms in the unit cell was replaced by a virtual atom with an effective nuclear charge of 4.2,

which corresponds to a stoichiometric compound of C7.8N0.2.

-4

-3

-2

-1

0

1

2

3

4

-10 -8 -6 -4 -2 0 2 4 6 8 10

D
O

S
 (

1/
eV

/s
pi

n)

Energy (eV)

Spin up
Spin down

Figure 30: Density of states (DOS) of C7.8N0.2 calculated with a pseudopotential of the virtual atom.

The input file used for the calculation is ’DIA8-VA.dat’ which can be found in the directory ’work’.

119

30 LCAO coefficients

It is possible to analyze LCAO coefficients in both the cluster and band calculations. In the cluster

calculation, if a keyword ’level.of.fileout’’ is set in ’2’, the LCAO coefficients are added into a file

’System.Name.out’. As an example, LCAO coefficients of ’Methane.dat’ discussed in the Section ’Test

calculation’ are shown below:

Eigenvalues (Hartree) and Eigenvectors for SCF KS-eq.

Chemical Potential (Hartree) = 0.00000000000000

HOMO = 4

LCAO coefficients for up (U) and down (D) spins

1 (U) 2 (U) 3 (U) 4 (U) 5 (U) 6 (U)

-0.69899 -0.41525 -0.41525 -0.41524 0.21215 0.21215

1 C 0 s 0.69137 -0.00000 0.00000 0.00000 0.00000 0.00000

0 px 0.00000 -0.10055 0.63544 0.00033 -0.68649 -1.00467

0 py 0.00000 0.00028 -0.00029 0.64331 0.00000 -0.00001

0 pz -0.00000 0.63544 0.10055 -0.00023 -1.00467 0.68649

2 H 0 s 0.12870 0.05604 -0.35474 -0.25425 -0.59781 -0.87489

3 H 0 s 0.12870 -0.35475 -0.05627 0.25420 -0.87488 0.59781

4 H 0 s 0.12870 0.35497 0.05604 0.25393 0.87488 -0.59781

5 H 0 s 0.12870 -0.05626 0.35497 -0.25388 0.59781 0.87488

7 (U) 8 (U)

0.21223 0.24739

1 C 0 s 0.00000 1.90847

0 px 0.00000 0.00000

0 py -1.21683 -0.00000

0 pz -0.00000 0.00000

2 H 0 s -0.74926 -0.76083

......

....

In bulk calculations, if a keyword ’MO.fileout’ is set to ’ON’, LCAO coefficients at k-points which are

specified by the keyword ’MO.kpoint’ are output into a file ’System.Name.out’. For cluster calculations,

’level.of.fileout’ should be 2 in order to output LCAO coefficients. But, for band calculations, the

relevant keyword is ’MO.fileout’ rather than ’level.of.fileout’.

120

31 Molecular orbitals

Molecuar or crystal Kohn-Sham orbitals can be output in the Gaussian cube format, and thereby

visualized by many software such as VESTA [103] and XCrySDen [105]. The relevant keywords are

given by

MO.fileout on # on|off, default=off

num.HOMOs 1 # default=2

num.LUMOs 1 # default=2

MO.Nkpoint 2 # default=1

<MO.kpoint

0.0 0.0 0.0

0.5 0.0 0.0

MO.kpoint>

When you want to generate the cube files, please swtich on the keyword ’MO.fileout’. The numbers of

the highest occupied molecular (crystal) orbitals (HOMOs) and the lowest occupied molecular (crystal)

orbitals (LUMOs) to be output can be specified by the keywords ’num.HOMOs’ and ’num.LUMOs’,

respectively. In case of a band calculation, the k-points at which the HOMOs and LUMOs are

calculated are specified by the keywords: ’MO.Nkpoint’ and ’MO.kpoint’. The keyword ’MO.Nkpoint’

gives the number of k-points at which the HOMOs and LUMOs are calculated, and by the keyword

’MO.kpoint’ you can specifiy the k-points explicitly as shown above, where the specification is made

based on the reciprocal vectors for the unit cell vectors given by ’Atoms.UnitVectors’. The output

cube files are summarized as below:

Cluster cases:

If ’MO.fileout=ON’ and ’scf.EigenvalueSolver=Cluster’, the following files are also generated:

• System.Name.homo0 0.cube, System.Name.homo0 1.cube, ...

The HOMOs are output in the Gaussian cube format. The first number below ’homo’ means

a spin state (up=0, down=1). The second number specifies the eigenstates, i.e., 0, 1, and 2

correspond to HOMO, HOMO-1, and HOMO-2, respectively, whose number is specified by the

keyword ’num.HOMOs’.

• System.Name.lumo0 0.cube, System.Name.lumo0 1.cube, ...

The LUMOs are output in the Gaussian cube format. The first number below ’lumo’ means

a spin state (up=0, down=1). The second number specifies the eigenstates, i.e., 0, 1, and 2

correspond to LUMO, LUMO+1, and LUMO+2, respectively, whose number is specified by the

keyword ’num.LUMOs’.

Bulk cases:

If ’MO.fileout=ON’ and ’scf.EigenvalueSolver=Band’, the following files are also generated:

121

• System.Name.homo0 0 0 r.cube, System.Name.homo1 0 1 r.cube, ... System.Name.homo0 0 0 i.cube,

System.Name.homo1 0 1 i.cube, ...

The HOMOs are output in the Gaussian cube format. The first number below ’homo’ means the

k-point number, which is specified by the keyword ’MO.kpoint’. The second number is a spin

state (up=0, down=1). The third number specifies the eigenstates, i.e., 0, 1, and 2 correspond

to HOMO, HOMO-1, and HOMO-2, respectively, whose number is specified by the keyword

’num.HOMOs’. The ’r’ and ’i’ mean the real and imaginary parts of the wave function.

• System.Name.lumo0 0 0 r.cube, System.Name.lumo1 0 1 r.cube, ... System.Name.lumo0 0 0 i.cube,

System.Name.lumo1 0 1 i.cube, ...

The LUMOs are output in the Gaussian cube format. The first number below ’lumo’ means the

k-point number, which is specified in the keyword ’MO.kpoint’. The second number is a spin

state (up=0, down=1). The third number specifies the eigenstates, i.e., 0, 1, and 2 correspond

to LUMO, LUMO+1, and LUMO+2, respectively, whose number is specified by the keyword

’num.LUMOs’. The ’r’ and ’i’ mean the real and imaginary parts of the wave function.

As an example, Fig. 31 show the HOMO and LUMO of a valorphin molecule.

(a) (b)

Figure 31: (a) HOMO of a valorphin molecule, and (b) LUMO of a valorphin molecule. The figures

were visualized by VESTA [103]. The input file is ’Valorphin MO.dat’ in the directory ’work’.

122

32 Charge analysis

Although it is a somewhat ambiguous issue to assign effective charge to each atom, OpenMX provides

three schemes, Mulliken charge analysis, Voronoi charge analysis, and electro-static potential (ESP)

fitting method, to analyze the charge state of each atom.

32.1 Mulliken charge

The Mulliken charges are output in ’System.Name.out’ by default as shown in Section ’Test calcu-

lation’. In addition to the Mulliken charge projected to each atom, you can also find a decomposed

Mulliken charge to each orbital in ’System.Name.out’. The result stored in ’System.Name.out’ for a

methane molecule is as follows:

Decomposed Mulliken populations

1 C Up spin Down spin Sum Diff

multiple

s 0 0.598003833 0.598003833 1.196007667 0.000000000

sum over m 0.598003833 0.598003833 1.196007667 0.000000000

sum over m+mul 0.598003833 0.598003833 1.196007667 0.000000000

px 0 0.588514081 0.588514081 1.177028163 0.000000000

py 0 0.588703212 0.588703212 1.177406424 0.000000000

pz 0 0.588514081 0.588514081 1.177028162 0.000000000

sum over m 1.765731375 1.765731375 3.531462749 0.000000000

sum over m+mul 1.765731375 1.765731375 3.531462749 0.000000000

2 H Up spin Down spin Sum Diff

multiple

s 0 0.409066346 0.409066346 0.818132693 0.000000000

sum over m 0.409066346 0.409066346 0.818132693 0.000000000

sum over m+mul 0.409066346 0.409066346 0.818132693 0.000000000

3 H Up spin Down spin Sum Diff

multiple

s 0 0.409065912 0.409065912 0.818131824 0.000000000

sum over m 0.409065912 0.409065912 0.818131824 0.000000000

sum over m+mul 0.409065912 0.409065912 0.818131824 0.000000000

.......

....

As you can see, the Mulliken charges are decomposed for all the orbitals. There are two kind of

summations in this decomposition. One of the summations is ’sum over m’ which means a summation

over magnetic quantum number for each multiple orbital. The second summation is ’sum over m+mul’

123

which means a summation over both magnetic quantum number and orbital multiplicity, where ”mul-

tiple” means a number to specify a radial wave function. Therefore, Mulliken charges are decomposed

to contributions of all the orbitals.

32.2 Voronoi charge

Voronoi charge of each atom is calculated by integrating electron and spin densities in a Voronoi

polyhedron. The Voronoi polyhedron is constructed from smeared surfaces which are defined by

a Fuzzy cell partitioning method [69]. It should be noted that this Voronoi analysis gives often

overestimated or underestimated charge, since Voronoi polyhedron is determined by only the structure

without taking account of atomic radius. If you want to calculate Voronoi charge, specify the following

keyword ’Voronoi.charge’ in your input file:

Voronoi.charge on # on|off, default = off

In case of a methane molecule, the following Voronoi charges are output to ’System.Name.out’.

Voronoi charges

Sum of Voronoi charges for up = 4.000000290723

Sum of Voronoi charges for down = 4.000000290723

Sum of Voronoi charges for total = 8.000000581446

Total spin magnetic moment (muB) by Voronoi charges = 0.000000000000

Up spin Down spin Sum Diff Voronoi Volume (Ang.^3)

Atom= 1 1.129270484 1.129270484 2.258540969 0.000000000 2.355421391

Atom= 2 0.717682452 0.717682452 1.435364903 0.000000000 62.245579466

Atom= 3 0.717682452 0.717682452 1.435364903 0.000000000 62.245579466

Atom= 4 0.717682452 0.717682452 1.435364903 0.000000000 62.245579466

Atom= 5 0.717682451 0.717682451 1.435364903 0.000000000 62.245579466

Clearly, we see that carbon atom (Atom=1) and hydrogen atoms (Atom=2-5) are charged posi-

tively and negatively, respectively, which apparently contradicts a usual chemical sense. However, the

Voronoi analysis could be a useful and complementary information for a bulk system with a closed

pack structure. Also, the Voronoi volume being a supplemental information will be useful to analyze

local structure for bulk systems.

32.3 Electro-static potential fitting

For small molecular systems, the electro-static potential (ESP) fitting method [109, 110, 111] is useful

to determine an effective charge of each atom, while the ESP fitting method cannot be applied for large

molecules and bulk systems, since there are not enough sampling points for atoms far from surface

areas in the ESP fitting method. In the ESP fitting method an effective net point charge on each atom

is determined by a least square method with constraints so that the sum of the electro-static potential

by effective point charges can reproduce electro-static potential calculated by the DFT calculation as

124

much as possible. The ESP fitting charge is calculated by the following two steps:

(1) SCF calculation

After finishing a usual SCF calculation, you have two output files:

System.Name.out

System.Name.vhart.cube

There is no additional keyword to generate the two files which are default output files by the SCF

calculation, while the keyword ’level.of.fileout’ should be 1 or 2.

(2) ESP fitting charge

Let us compile a program code for calculating the ESP fitting charge. Move to the directory ’source’

and then compile as follows:

% make esp

When the compilation is completed normally, then you can find an executable file ’esp’ in the direc-

tory ’work’. The ESP fitting charge can be calculated from two files ’System.Name.out’ and ’Sys-

tem.Name.vhart.cube’ using the program ’esp’. For example, you can calculate them for a methane

molecule shown in the Section ’Input file’ as follows:

% ./esp met -c 0 -s 1.4 2.0

Then, it is enough to specify the file name without the file extension, however, two files ’met.out’ and

’met.vhart.cube’ must exist in the directory ’work’. The options ’-c’ and ’-s’ are key parameters to

specify a constraint and scale factors. You can find the following statement in the header part of a

source code ’esp.c’:

-c constraint parameter

’-c 0’ means charge conservation

’-c 1’ means charge and dipole moment conservation

-s scale factors for vdw radius

’-s 1.4 2.0’ means that 1.4 and 2.0 are 1st and 2nd scale factors

In the ESP fitting method, we support two constraints, charge conservation and, charge and dipole

moment conservation. Although the latter can reproduce charge and dipole moment calculated by

the DFT calculation, it seems that the introduction of the dipole moment conservation gives often

physically unacceptable point charges especially for a relatively large molecule. Thus, we would like to

recommend the former constraint. The sampling points are given by the grids in real space between

two shells of the first and second scale factors times van der Waals radii [112]. In the above example,

1.4 and 2.0 correspond to the first and second scale factors. The calculated result appears in the

standard output (your display) as follows:

125

% ./esp met -c 0 -s 1.4 2.0

**

**

esp: effective charges by a ESP fitting method

Copyright (C), 2004, Taisuke Ozaki

This is free software, and you are welcome to

redistribute it under the constitution of the GNU-GPL.

**

**

Constraint: charge

Scale factors for vdw radius 1.40000 2.00000

Number of grids in a van der Waals shell = 28464

Volume per grid = 0.0235870615 (Bohr^3)

Success

Atom= 1 Fitting Effective Charge= -0.93558216739

Atom= 2 Fitting Effective Charge= 0.23389552572

Atom= 3 Fitting Effective Charge= 0.23389569182

Atom= 4 Fitting Effective Charge= 0.23389535126

Atom= 5 Fitting Effective Charge= 0.23389559858

Magnitude of dipole moment 0.0000015089 (Debye)

Component x y z 0.0000003114 -0.0000002455 -0.0000014558

RMS between the given ESP and fitting charges (Hartree/Bohr^3)= 0.096515449505

126

33 Natural population analysis

In the natural bond orbital (NBO) method developed by Weinhold [6], atomic population (or atomic

charge) is calculated based on atomically localized orbitals, natural atomic orbitals (NAO), which is

referred to as natural population (NP). OpenMX supports the NP analysis. Especially, for large-sized

calculation models, one can efficiently calculate and analyze NPs by selecting target atoms, which is

an original scheme based on a truncated cluster method [7]. In OpenMX, the NP calculation is carried

out after the SCF calculation, and results of NP analysis are shown in a standard output. The way

of NP calculation is as follows:

(a) Case of small-sized calculation (scf.EigenvalueSolver = Cluster)

The NP calculation is supported by the following keyword :

NBO.switch on1

This type of NP calculation is supported in case of ’scf.EigenvalueSolver = Cluster’, and carried out

by using a full-sized density matrix. As a sample of this type of NP calculation, users can refer to

an input and output files for an ethylene carbonate (EC) molecule including 10 atoms, ’EC NAO.dat’

and ’EC NAO.std’, which are stored in a directory ’work/nbo example’.

(b) Case of large-size calculation (scf.EigenvalueSolver = Krylov)

The NAO calculation for a large-sized model carried out with ’NBO.switch = on1’ will be sometimes

hampered by memory shortage due to the large-sized density matrix. For the NP calculation of a

large-sized model, the following option for the keyword ’NBO.switch’ is available

NBO.switch on2

The option ’on2’ has to be used with the O(N) Krylov subspace calculation (scf.EigenvalueSolver =

Krylov). After the O(N) SCF calculation, the NP calculation can be efficiently performed by selecting

a few atoms you are interested in. When a large-sized model is treated, it is not always necessary for

one to calculate NPs for all atoms, that is, in most cases, NP analysis on a few atoms in local regions

is enough to investigate important events such as chemical reactions. In OpenMX, target atoms for

the NP analysis can be selected by the following keywords:

NBO.Num.CenterAtoms 5

<NBO.CenterAtoms

269

304

323

541

574

NBO.CenterAtoms>

By the keyword ’NBO.Num.CenterAtoms’ , one designates the number of target atoms. Between

’<NBO.CenterAtoms’ and ’NBO.CenterAtoms>’, one describes serial indexes of target atoms, which

are specified by the keyword ’Atoms.SpeciesAndCoordinates’. The keyword ’NBO.CenterAtoms’ is

127

valid only if ’on2’ is chosen for ’NBO.switch’. In case of ’on1’ for the keyword ’NBO.switch’, NPs for

all atoms will be calculated regardless of the specification of the keyword ’NBO.CenterAtoms’. As a

sample of the NP calculation for a large-sized model, you can refer to an input and output files for

amorphous SiO2 bulk system (648 atoms), ’SiO2 NAO.dat’ and ’SiO2 NAO.std’, which are stored in

the directory ’work/nbo example’.

(c) Parameter for NAO calculation: NAO.threshold

The NAO calculation has a process of distinguishing occupied and Rydberg (low-occupied) NAOs.

The criterion of the distinction is given by the keyword ’NAO.threshold’, by which one designates the

number of electrons per spin orbital. The default value of this parameter is 0.85, with which most of

NAO calculations are executed normally. If the obtained number of occupied NAOs is abnormal, you

may need to adjust the value of ’NAO.threshold’ .

(d) Example

Here the result of NP calculation for the EC molecule is shown. First, NPs for all the atoms and

summation of those NPs are output in the standard output as follows:

1 O : 6.46917105

2 C : 4.09908587

3 C : 4.09909317

4 O : 6.46902031

5 C : 3.14623972

6 O : 6.50714720

7 H : 0.80250093

8 H : 0.80249967

9 H : 0.80262024

10 H : 0.80262185

Total : 34.00000000

Global atom num.: 1 (O) / NP = 6.4692

NP in NAO 0.0013 1.6803 0.0046 1.6731 0.0055 1.3000 0.0073 1.7972

Energy (Hartree) 1.2529 -0.7196 0.4452 -0.3208 0.7108 -0.2935 0.4327 -0.3005

1 s -1.8000 1.2493 -0.0776 0.1255 -0.0125 -0.0027 0.0000 0.0000

2 s 1.9201 0.0014 0.0530 -0.0030 0.0163 0.0015 -0.0000 -0.0000

1 px -0.4312 0.1031 -0.6568 1.0499 0.0431 0.0115 -0.0000 -0.0000

2 px 0.1913 -0.0062 1.7251 0.0215 -0.0500 -0.0052 0.0000 0.0000

1 py -0.1040 -0.0056 0.0371 0.0110 -2.1699 1.0361 -0.0000 -0.0000

2 py 0.0573 0.0025 -0.0493 -0.0052 3.4499 0.1576 0.0000 0.0000

1 pz 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.6206 1.0131

2 pz -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 1.7312 0.0267

...

..

After the NPs are shown for all the atoms, NPs and energy levels of NAOs on each atom are shown

in the first and second lows, respectively, and followed by LCPAO coefficients for the corresponding

NAO. In the near future, the calculation and analysis functions of NBO will be also supposed to be

implemented in OpenMX.

128

34 Non-collinear DFT

A fully unconstrained non-collinear density functional theory (DFT) is supported including the spin-

orbit coupling (SOC) [8, 9, 10, 11, 16]. When the non-collinear DFT is performed, the following option

for the keyword ’scf.SpinPolarization’ is available.

scf.SpinPolarization NC # On|Off|NC

When the option ’NC’ is specified, wave functions are expressed by a two component spinor. An initial

spin orientation of each site is given by

<Atoms.SpeciesAndCoordinates # Unit=Ang

1 Mn 0.00000 0.00000 0.00000 8.0 5.0 45.0 0.0 45.0 0.0 1 on

2 O 1.70000 0.00000 0.00000 3.0 3.0 45.0 0.0 45.0 0.0 1 on

Atoms.SpeciesAndCoordinates>

1: sequential serial number

2: species name

3: x-coordinate

4: y-coordinate

5: z-coordinate

6: initial occupation for up spin

7: initial occupation for down spin

8: Euler angle, theta, of the magnetic field for spin magnetic moment

9: Euler angle, phi, of the magnetic field for spin magnetic moment

Also, the 8th and 9th are used to generate the initial non-collinear

spin charge distribution

10: the Euler angle, theta, of the magnetic field for orbital magnetic moment

11: the Euler angle, phi, of the magnetic field for orbital magnetic moment

12: switch for the constraint schemes specified by the keywords

’scf.Constraint.NC.Spin’, ’scf.NC.Zeeman.Orbital’ and ’scf.NC.Zeeman.Orbital’.

’1’ means that the constraint is applied, and ’0’ no constraint.

13: switch for enhancement of orbital polarization in the LDA+U method,

’on’ means that the enhancement is made, ’off’ no enhancement.

The initial Euler angles, θ and ϕ, for orientation of the spin and orbital magnetic moment are given by

the 8th and 9th columns, and 10th and 11th columns, respectively. The 12th column is a switch for a

constraint scheme that a constraint (penalty or Zeeman) functional to the spin and orbital orientation

is added on each site, where ’1’ means that the constraint functional is added, and ’0’ means no

constraint. For the details of the constraint DFT for the spin orientation, see Sec. 38 ’Constraint

DFT for non-collinear spin orientation’. The final 13th column is a switch for enhancement of orbital

polarization in the LDA+U method, ’on’ means that the enhancement is made, ’off’ no enhancement.

Figure 32 shows the spin orientation in a MnO molecule calculated by the non-collinear DFT. You

can follow the calculation using an input file ’Mol MnO NC.dat’ in the directory ’work’. To visualize

the spin orientation in real space, two files are generated:

129

System.Name.nc.xsf

System.Name.ncsden.xsf

where System.Name means ’System.Name’ you specified. Two files ’System.Name.nc.xsf’ and ’Sys-

tem.Name.ncsden.xsf’ store a projected spin orientation to each atom by Mulliken analysis and the

spin orientation on real space grids in a vector file format (XSF) supported by XCrySDen. Both the

files can be visualized using ’Display→ Forces’ in XCrySDen as shown in Fig. 32.

The spin moment and Euler angles of each atom, which are calculated by Mulliken analysis, are

found in the file ’System.Name.out’ as follows:

Mulliken populations

Total spin moment (muB) 4.998503442 Angles (Deg) 44.991211196 0.000000000

Up Down Sum Diff theta phi

1 Mn 9.59803 4.76902 14.36705 4.82901 44.99208 0.00000

2 O 3.40122 3.23173 6.63295 0.16949 44.96650 -0.00000

Also it should be noted that it is difficult to achieve a self consistent field in the non-collinear DFT

more than the collinear DFT calculation, since there are many minima, having almost comparable

energy, in the spin orientation space, while the constraint DFT is useful for such a case.

In the non-collinear DFT, the inclusion of spin-orbit coupling is supported, while it is not supported

for the collinear DFT. See also the Section ’Relativistic effects’ for the issue.

(a) (b)

Figure 32: Spin orientation in (a) a projected form on each atom and (b) a real space representation

of a MnO molecule calculated by the non-collinear DFT. The figures were visualized by ’Display→
Forces’ in XCrySDen. The input file is ’Mol MnO NC.dat’ in the directory ’work’.

130

35 Relativistic effects

Relativistic effects can be incorporated by fully relativistic and scalar relativistic pseudopotentials. In

the fully relativistic treatment, the spin-orbit coupling is included in addition to kinematic relativistic

effects (Darwin and mass velocity terms). On the other hand, the spin-orbit coupling is averaged in

the scalar relativistic treatment. Although the scalar relativistic treatment can be incorporated in

both the collinear and non-collinear DFT calculations, the fully relativistic treatment is supported for

only the non-collinear DFT in OpenMX.

35.1 Fully relativistic

The fully relativistic effects including the spin-orbit coupling within the pseudopotential scheme can

be included in the non-collinear DFT calculations [12, 32, 16], while the inclusion of the spin-orbit

coupling is not supported in the collinear DFT calculation. The inclusion of fully relativistic effects is

made by the following two steps:

(1) Making of j-dependent pseudopotentials

First, you are requested to generate j-dependent pseudopotentials using ADPACK. For your conve-

nience, the j-dependent pseudopotentials are available for many elements in the database Ver. 2019

[149]. The details how to make the j-dependent pseudopotential are found in the manual of ADPACK.

(2) SCF calculation

If you specify j-dependent pseudopotentials in the specification of ’<Definition.of.Atomic.Species’, it

is possible to include spin-orbit coupling by the following keyword ’scf.SpinOrbit.Coupling’:

scf.SpinOrbit.Coupling on # On|Off, default=off

(a) (b)

Γ

-15

-10

-5

0

5

10

g X W L g X

e
V

-15

-10

-5

0

5

10

g X W L g X

e
V

L 3v
15v

Figure 33: Band structures of a bulk GaAs calculated by the non-collinear DFT (a) without and (b)

with the spin-orbit coupling. In these calculations, Ga7.0-s2p2d2 and As7.0-s2p2d2 were used as a

basis set, and Ga CA19.vps and As CA19.vps were used for pseudopotentials, which are stored in the

database Ver. 2019. For the exchange-correlation terms, LDA was used. We used 12× 12× 12 and

140 (Ryd) for scf.Kgrid and scf.energycutoff, respectively. Also the experimental value (5.65Å) was

used for the lattice constant. The input file is ’GaAs.dat’ in the directory ’work’.

131

Table 5: Calculated spin-orbit splittings (eV) at the Γ15v and the L3v of a bulk GaAs. The

other theoretical values (LMTO: Ref. [113], PP: Ref. [114]) and experimental value (Ref.[115])

are also shown for comparison. The calculation conditions are given in the caption of Fig. 33

and the input file is ’GaAs.dat’ in the directory ’work’.

Level OpenMX LMTO PP Expt.

Γ15v 0.344 0.351 0.35 0.34

L3v 0.213 0.213 0.22

Then, the spin-orbit coupling can be self-consistently incorporated within the pseudopotential scheme

rather than a perturbation scheme. Due to the spin-orbit coupling, α and β spin components in the

two component spinor can directly interact. In order to determine the absolute spin orientation in

the non-collinear DFT calculations, you have to include the spin-orbit coupling, otherwise the spin

orientation is not uniquely determined in real space. As an illustration of spin-orbit splitting, we show

band structures of a bulk GaAs calculated by the non-collinear DFT without and with spin-orbit

coupling in Fig. 33, where the input file is ’GaAs.dat’ in the directory ’work’. In Fig. 33(b) we can

see that there are spin-orbit splittings in the band dispersion, while no spin-orbit splitting is observed

in Fig. 33(a). The spin-orbit splittings at two k-points, Γ and L, are listed together with the other

calculations and experimental values in Table 5. We see a good agreement in this table.

35.2 Controling of spin-orbit coupling strength

In OpenMX Ver. 3.9, it is possible to contol the spin-orbit coupling strength using a conventional

pseudopotential stored in the database Ver. 2019 without generating a special pseudopotential with a

larger or smaller spin-orbit coupling. The scaling factors can be specified to each angular momentum

quantum number by the following keyword:

<scf.SO.factor

Ga s 1.0 p 2.0 d 1.0 f 1.0

As s 1.0 p 2.0 d 1.0 f 1.0

scf.SO.factor>

The first column is the name of species which is defined by the keyword ’Definition.of.Atomic.Species’,

and followed by the subsequent columns: a symbol for angular momentum quantum number and

a scaling factor. The ’1.0’ corresponds to the spin-orbit coupling strength in the channel with the

angular momentum quantum number in the real atom. The set of information needs to be specified

up to the f-channel for all the species in your system regardless of a kind of pseudopotentials.

35.3 Scalar relativistic treatment

A simple way to incorporate a scalar relativistic treatment is to use scalar relativistic pseudopoten-

tials which can be generated by ADPACK. The another way is to use fully relativistic j-dependent

pseudopotentials and to switch off the keyword ’scf.SpinOrbit.Coupling’ as follows:

scf.SpinOrbit.Coupling off # On|Off, default=off

132

Then, the j-dependent pseudopotentials are automatically averaged with a weight of j-degeneracy

when they are read by OpenMX, which corresponds to scalar relativistic pseudopotentials. So, once

j-dependent pseudopotentials are generated, you can utilize the pseudopotentials for both the fully

and scalar relativistic treatments. Thus, we recommend that you make a fully relativistic j-dependent

pseudopotential rather than a scalar relativistic pseudopotential, when relativistic effects are taken

into account. In fact, the calculation in Fig. 33(a) was performed using the same pseudopotential as

in Fig. 33(b) with ’scf.SpinOrbit.Coupling=off’.

133

36 Orbital magnetic moment

The orbital magnetic moment at each atomic site is calculated as default in the non-collinear DFT.

Since the orbital magnetic moment appears as a manifestation of spin-orbit coupling (SOC), the

calculated values become finite when the SOC is included [118, 119]. As an example, a non-collinear

LDA+U (U=5 eV) calculation of iron monoxide bulk is illustrated using an input file ’FeO NC.dat’ in

the directory ’work’. As for the LDA+U calculation, see the Section ’LDA+U’. The calculated orbital

and spin magnetic moments at the Fe site are listed in Table 4. Also, you can find the orientation of

the (decomposed) orbital moment in ’System.Name.out’, where ’System.Name’ means ’System.Name’

as follows:

Orbital moments

Total Orbital Moment (muB) 0.000001885 Angles (Deg) 126.954120326 185.681623854

Orbital moment (muB) theta (Deg) phi (Deg)

1 Fe 0.76440 131.30039 51.57082

2 Fe 0.76440 48.69972 231.57071

3 O 0.00000 40.68612 210.48405

4 O 0.00000 48.18387 222.72367

Decomposed Orbital Moments

1 Fe Orbital Moment(muB) Angles (Deg)

multiple

s 0 0.000000000 90.0000 0.0000

sum over m 0.000000000 90.0000 0.0000

s 1 0.000000000 90.0000 0.0000

sum over m 0.000000000 90.0000 0.0000

px 0 0.000055764 42.7669 270.0000

py 0 0.000046795 28.9750 180.0000

pz 0 0.000044132 90.0000 239.0920

sum over m 0.000120390 47.1503 239.0920

px 1 0.001838092 10.8128 -90.0000

py 1 0.001809013 3.5933 180.0000

pz 1 0.000362989 90.0000 251.7994

sum over m 0.003683170 11.3678 251.7994

d3z^2-r^2 0 0.043435663 90.0000 224.2874

dx^2-y^2 0 0.066105902 24.3591 229.7056

dxy 0 0.361874370 80.4206 50.6465

134

dxz 0 0.397108491 144.2572 -12.7324

dyz 0 0.427070801 138.9995 100.0151

sum over m 0.776513038 132.4577 51.6984

d3z^2-r^2 1 0.000144144 90.0000 196.4795

dx^2-y^2 1 0.000270422 31.2673 224.0799

dxy 1 0.003006770 85.5910 50.2117

dxz 1 0.002952926 139.3539 -4.1301

dyz 1 0.003222374 134.0513 95.9246

sum over m 0.006795789 126.2536 52.1993

f5z^2-3r^2 0 0.001903274 90.0000 33.4663

f5xz^2-xr^2 0 0.005186342 14.5594 118.0868

f5yz^2-yr^2 0 0.005258572 17.3323 -35.0807

fzx^2-zy^2 0 0.005477755 29.3372 224.9067

fxyz 0 0.004851020 10.1407 249.0607

fx^3-3*xy^2 0 0.002029489 84.1842 -81.2087

f3yx^2-y^3 0 0.001611593 82.6686 176.3172

sum over m 0.020307129 9.9551 249.3739

.....

...

As shown in Table 6, OpenMX gives a good agreement for both the spin and orbital magnetic moments

of a series of 3d-transition metal oxides with other calculation results. However, it is noted that

the absolute value of orbital magnetic moment seems to be significantly influenced by calculation

conditions such as basis functions and on-site ’U’ in the LDA+U method, while the spin magnetic

moment is relatively insensitive to the calculation conditions, and that a rather rich basis set including

polarization functions will be needed for convergent calculations of the orbital magnetic moment.

Table 6: Spin magnetic moment Ms(µB) and orbital magnetic moment Mo(µB) of transition metal

oxides, MO (M=Mn, Fe, Co, Ni). In the LDA+U scheme [20], for the first d-orbital of M, the effective

U of 3.0 (eV) for Mn, 5.0 (eV) for Fe, Co for 7.0 (eV), and Ni for 7.0 (eV) were used. For the others zero.

The local spin moment was calculated by the Voronoi decomposition discussed in the Section ’Voronoi

charge’ rather than Mulliken charge, since the Mulliken analysis tends to give a larger spin moment in

the use of multiple basis functions. The input files are ’MnO NC.dat’, ’FeO NC.dat’, ’CoO NC.dat’,

and ’NiO NC.dat’ in the directory ’work’. The other theoretical value [70] and experimental value

[70] are also shown for comparison.

Ms Mo

Compound OpenMX Other calc. OpenMX Other calc. Expt. in total

MnO 4.519 4.49 0.004 0.00 4.79,4.58

FeO 3.653 3.54 0.764 1.01 3.32

CoO 2.714 2.53 1.269 1.19 3.35,3.8

NiO 1.687 1.53 0.247 0.27 1.77,1.64,1.90

135

37 DFT+U methods

OpenMX supports various types of DFT+U methods with respect to the treatment of the occupation

number operator, the functional form, and the choice of the double counting term. The functionality is

supported for both the collinear and non-collinear calculations. To acknowledge in any publications by

using the functionality, the citation of the references [20, 21, 22] would be appreciated. The technical

details of the methods and its implementation can be found in Ref. [20, 21, 22] and technical notes

[23, 24].

37.1 Standard setting

37.1.1 Choice of DFT+U scheme; simplified or general

The general forms of DFT+U methods with different definitions of the occupation number operator,

the functional form, and the choice of the double counting term are available in OpenMX for both

collinear and noncollinear calculations [21, 22] by the following two keywords:

scf.Hubbard.U on # on|off, default=off

scf.DFTU.Type 2 # 1:Simplified(Dudarev)|2:General, default=1

scf.DFTU.Type=1 corresponds to the so-called ’simplified rotationally invariant form’ by Dudarev et

al. [25] as implemented in the previous versions of OpenMX [20], where only U (Hubbard U) plays a

role. In more general DFT+U schemes, not only U but also J (Hund’s coupling J) are used as input

parameters. Note that the keyword ’scf.SpinPolarization’ should be always switched on, meaning that

’on’ or ’nc’ has to be specified, whenever the DFT+U methods are used.

The occupation number operator [20] is specified by the following keyword:

scf.Hubbard.Occupation dual # onsite|full|dual, default=dual

Among three occupation number operators, only the dual operator satisfies a sum rule that the trace

of occupation number matrix gives the total number of electrons. For the details of the operators

onsite, full, and dual, see Ref. [20].

The U and J values in eV on each orbital of species defined by

<Definition.of.Atomic.Species

Ni Ni6.0S-s2p2d2f1 Ni_CA13S

O O5.0-s2p2d1 O_CA13

Definition.of.Atomic.Species>

are specified by

<Hubbard.U.values # eV

Ni 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 5.0 2d 0.0 1f 0.0

O 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 0.0

Hubbard.U.values>

and

136

<Hund.J.values # eV

Ni 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 0.9 2d 0.0 1f 0.0

O 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 0.0

Hund.J.values>

The beginning of the description must be <Hubbard.U.values (<Hund.J.values), and the last of the

description must be Hubbard.U.values> (Hund.J.values>) for U (J). For all the basis orbitals, you

have to give U and J values in eV as in the above format. The ’1s’ and ’2s’ mean the first and second

s-orbital, and the number behind ’1s’ is the U (or J) value for the first s-orbital. The same rule is

applied to p- and d-orbitals. When scf.DFTU.Type=1, only U values are read and thus users do not

need to specify J values.

37.1.2 Choice of the double-counting

A double-counting (dc) correction is common for any ’embedding’ methods such as DFT+U . When

using scf.DFTU.Type=2, the dc term should be specified by the following keyword:

scf.dc.Type cFLL # sFLL|sAMF|cFLL|cAMF, default=sFLL

In the above case, the ’cFLL’ dc-term is chosen. In the specification of ’sFLL’, ’sAMF’, ’cFLL’,

and ’cAMF’, ’c’ and ’s’ mean the density functional scheme within charge (spin-unpolarized) density

and spin density LDA/GGA, respectively, and ’FLL’ and ’AMF’ correspond to a fully localized limit

(FLL) and around mean-field (AMF) for the treatment of the double-counting term. For the detailed

definitions and behaviors of each scheme, please refer to Ref. [21, 22]. Users should keep in mind that

when cFLL or cAMF dc-term is chosen, spin-density exchange-correlation energy of LDA (or GGA) is not

taken into account during the SCF loop [21, 22]. scf.dc.Type=sFLL corresponds to the form proposed

by Liechtenstein et al. [26]. Note also that when using a simplified scheme (scf.DFTU.Type=1), sFLL

dc-term is implicit in its functional form.

Users can check what kinds of DFT+U scheme has been specified with the following message

before SCF loop begins in the standard output:

For scf.DFTU.Type=1,

DFT+U Type and DC

scf.DFTU.Type: 1(Simplified)

For scf.DFTU.Type=2 and scf.dc.Type=cFLL,

DFT+U Type and DC

scf.DFTU.Type: 2(General) scf.dc.Type: cFLL

As an example of the DFT+U calculation, the density of states for NiO bulk is shown in Fig. 34 for

cases with U = 5 eV and two different J values (0.5 and 1.0 eV) for d-orbitals of Ni. The input files,

137

0

1

2

3

4

5

6

7

8

-6 -4 -2 0 2 4 6

T
o

ta
l
D

O
S

 [
1

/e
V

/s
p

in
]

Energy [eV]

J=0.5 eV

J=1.0 eV

0

1

2

3

4

5

6

7

8

-6 -4 -2 0 2 4 6

T
o

ta
l
D

O
S

 [
1

/e
V

/s
p

in
]

Energy [eV]

0

1

2

3

4

5

6

7

8

-6 -4 -2 0 2 4 6

T
o

ta
l
D

O
S

 [
1

/e
V

/s
p

in
]

Energy [eV]

J=0.5 eV

J=1.0 eV
LDA(a) (b) (c)

Figure 34: The up-spin density of states of NiO by (a) LDA, (b) DFT+U with ’scf.dc.Type=cFLL’,

and (c) DFT+U with ’scf.dc.Type=sFLL’. U is fixed to 5 eV and J = 0.5 eV for blue lines and 1.0

eV for red lines.

‘NiO-cFLL.dat’ and ‘NiO-sFLL.dat’ can be found in the directory ‘work’. We can see that the gap

increases due to the introduction of U on the d-orbitals as well as the different behaviors of varying J

depending on the choice scf.dc.Type.

The occupation number for each orbital is output to the file ’System.Name.out’ in the same form as

that of decomposed Mulliken populations which starts from the title ’Occupation Number in LDA+U’,

e.g., NiO with ’scf.dc.Type=cFLL’ of U = 5 eV and J = 0.5 eV, as follows:

Occupation Number in LDA+U and Constraint DFT

Eigenvalues and eigenvectors for a matrix consisting

of occupation numbers on each site

1 Ni

spin= 0

Sum = 8.708572022602

1 2 3 4 5 6 7 8

Individual -0.0041 0.0012 0.0012 0.0022 0.0040 0.0040 0.0044 0.0064

s 0 0.1792 -0.0008 -0.0000 0.0015 -0.0000 0.0003 0.0124 -0.0000

s 1 -0.9756 0.0052 0.0000 0.0026 0.0000 -0.0041 -0.1251 0.0000

px 0 0.0006 0.0007 -0.0012 -0.0123 0.0003 0.0006 -0.0033 -0.0000

py 0 0.0006 -0.0013 -0.0000 -0.0122 0.0000 0.0000 -0.0033 0.0000

pz 0 0.0006 0.0007 0.0012 -0.0123 -0.0003 0.0006 -0.0033 0.0000

px 1 0.0091 0.0053 -0.0095 -0.0867 0.0205 0.0152 -0.0206 0.0026

138

py 1 0.0093 -0.0116 -0.0000 -0.0870 -0.0000 -0.0207 -0.0236 -0.0000

pz 1 0.0091 0.0052 0.0095 -0.0867 -0.0205 0.0152 -0.0206 -0.0026

d3z^2-r^2 0 0.0002 0.0348 0.0604 -0.0000 -0.0020 0.0012 0.0001 -0.0005

dx^2-y^2 0 0.0004 0.0604 -0.0348 -0.0000 0.0011 0.0020 0.0001 0.0003

dxy 0 -0.0001 0.0007 0.0012 0.0151 0.0367 -0.0218 0.0097 -0.0003

dxz 0 -0.0006 -0.0015 -0.0000 0.0167 0.0000 0.0417 0.0112 0.0000

dyz 0 -0.0001 0.0007 -0.0012 0.0151 -0.0367 -0.0218 0.0097 0.0003

d3z^2-r^2 1 -0.0025 -0.4966 -0.8626 -0.0006 0.0295 -0.0174 -0.0006 0.0056

dx^2-y^2 1 -0.0042 -0.8625 0.4967 -0.0010 -0.0170 -0.0301 -0.0010 -0.0033

dxy 1 0.0136 -0.0160 -0.0276 -0.5343 -0.7016 0.4220 -0.1326 0.0055

dxz 1 0.0225 0.0332 0.0000 -0.5657 -0.0000 -0.7918 -0.1607 -0.0000

dyz 1 0.0136 -0.0161 0.0275 -0.5343 0.7016 0.4219 -0.1325 -0.0055

f5z^2-3r^2 0 -0.0029 0.0032 0.0065 -0.0804 -0.0514 0.0334 -0.0282 -0.0069

f5xz^2-xr^2 0 0.0017 -0.0304 -0.0148 0.0467 -0.0113 -0.0653 0.0174 -0.4673

f5yz^2-yr^2 0 0.0013 0.0057 -0.0294 0.0479 0.0517 0.0341 0.0272 0.4428

fzx^2-zy^2 0 -0.0001 -0.0360 0.0237 -0.0031 -0.0256 -0.0567 0.0001 0.5857

fxyz 0 0.1218 -0.0003 -0.0000 0.2573 0.0000 0.0172 -0.9581 0.0000

fx^3-3*xy^2 0 -0.0023 -0.0195 -0.0197 -0.0655 0.0563 -0.0083 -0.0223 -0.3532

f3yx^2-y^3 0 0.0017 0.0072 0.0228 0.0618 -0.0401 0.0441 0.0352 -0.3430

9 10 11 12 13 14 15 16

Individual 0.0116 0.0117 0.0207 0.0207 0.0238 0.0972 0.1112 0.1114

s 0 -0.0003 -0.0000 0.0000 -0.0005 -0.0075 -0.0206 -0.0000 -0.0000

s 1 0.0001 0.0000 0.0000 -0.0013 0.0076 0.0102 0.0000 -0.0000

px 0 -0.0005 0.0006 -0.0024 0.0014 0.0043 -0.0270 0.0291 0.0170

py 0 0.0006 0.0000 0.0000 -0.0027 0.0044 -0.0279 -0.0000 -0.0338

pz 0 -0.0005 -0.0006 0.0024 0.0014 0.0043 -0.0270 -0.0291 0.0171

px 1 0.0229 -0.0402 0.1442 -0.0832 -0.1073 0.5479 -0.6901 -0.4038

py 1 -0.0437 0.0000 -0.0005 0.1632 -0.1127 0.5594 0.0003 0.7916

pz 1 0.0229 0.0402 -0.1437 -0.0841 -0.1073 0.5478 0.6898 -0.4043

d3z^2-r^2 0 0.0053 0.0093 0.0012 0.0006 -0.0001 0.0003 -0.0202 0.0115

dx^2-y^2 0 0.0092 -0.0053 -0.0007 0.0011 -0.0002 0.0006 0.0117 0.0199

dxy 0 -0.0033 -0.0056 -0.0049 -0.0032 -0.0237 0.0916 0.0095 -0.0067

dxz 0 0.0069 -0.0000 -0.0000 0.0054 -0.0236 0.0915 0.0000 0.0102

dyz 0 -0.0033 0.0056 0.0049 -0.0031 -0.0237 0.0916 -0.0095 -0.0067

d3z^2-r^2 1 -0.0241 -0.0404 -0.0230 -0.0138 0.0011 -0.0001 0.0089 -0.0052

dx^2-y^2 1 -0.0418 0.0233 0.0134 -0.0238 0.0018 -0.0002 -0.0051 -0.0090

dxy 1 0.0224 0.0367 0.0645 0.0399 0.1012 -0.0657 -0.0086 0.0058

dxz 1 -0.0489 0.0000 0.0002 -0.0737 0.1010 -0.0652 -0.0000 -0.0096

dyz 1 0.0224 -0.0367 -0.0648 0.0395 0.1011 -0.0657 0.0086 0.0058

f5z^2-3r^2 0 0.0928 0.1648 -0.6676 -0.3997 -0.5498 -0.1226 -0.1505 0.0868

f5xz^2-xr^2 0 0.4854 0.4030 -0.3328 0.3674 0.3359 0.0744 -0.0944 -0.0506

f5yz^2-yr^2 0 0.1112 0.6352 0.1497 -0.4674 0.3502 0.0772 -0.0023 0.1046

139

fzx^2-zy^2 0 0.6859 -0.3821 -0.0991 0.1577 -0.0010 -0.0008 0.0028 0.0032

fxyz 0 0.0052 0.0000 0.0000 -0.0109 0.0195 0.0064 0.0000 0.0007

fx^3-3*xy^2 0 0.4934 0.1037 0.5899 -0.2158 -0.4352 -0.0974 0.1173 0.0705

f3yx^2-y^3 0 0.1435 -0.4920 -0.1130 -0.6043 0.4520 0.0997 0.0019 0.1351

17 18 19 20 21 22 23 24

Individual 0.2342 0.9866 0.9949 0.9950 1.0070 1.0070 1.0101 1.0101

s 0 0.9835 -0.0030 -0.0001 0.0000 -0.0000 0.0001 0.0003 0.0000

s 1 0.1796 -0.0015 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000

px 0 -0.0023 -0.5138 -0.3934 -0.6753 -0.0494 -0.0317 0.1133 -0.2016

py 0 -0.0021 -0.5218 0.7787 -0.0000 -0.0000 0.0587 -0.2264 -0.0000

pz 0 -0.0023 -0.5138 -0.3933 0.6753 0.0494 -0.0317 0.1132 0.2017

px 1 0.0092 -0.0625 -0.0195 -0.0329 0.0012 0.0006 -0.0049 0.0083

py 1 0.0095 -0.0631 0.0376 -0.0000 0.0000 -0.0016 0.0097 0.0000

pz 1 0.0092 -0.0625 -0.0195 0.0329 -0.0012 0.0006 -0.0049 -0.0083

.....

...

The eigenvalues of the occupation number matrix of each atomic site correspond to the occupation

number to each local state given by the eigenvector.

37.1.3 Orbital polarization

The DFT+U functional possesses multiple minima in the degree of freedom of the orbital occupation,

leading to that the SCF calculation tends to be trapped to some local minimum. To find the ground

state with an orbital polarization, a way of enhancing explicitly the orbital polarization is available

by the following switch:

For collinear cases

<Atoms.SpeciesAndCoordinates # Unit=AU

1 Ni 0.0 0.0 0.0 10.0 6.0 on

2 Ni 3.94955 3.94955 0.0 6.0 10.0 on

3 O 3.94955 0.0 0.0 3.0 3.0 on

4 O 3.94955 3.94955 3.94955 3.0 3.0 on

Atoms.SpeciesAndCoordinates>

For noncollinear cases

<Atoms.SpeciesAndCoordinates # Unit=AU

1 Ni 0.0 0.0 0.0 10.0 6.0 40.0 10.0 0 on

2 Ni 3.94955 3.94955 0.0 6.0 10.0 40.0 10.0 0 on

3 O 3.94955 0.0 0.0 3.0 3.0 10.0 40.0 0 on

4 O 3.94955 3.94955 3.94955 3.0 3.0 10.0 40.0 0 on

Atoms.SpeciesAndCoordinates>

140

The specification of each column can be found in the section ‘Non-collinear DFT’. Since the enhance-

ment treatment for the orbital polarization is performed on each atom, you have to set the switch

for all the atoms in the specification of atomic coordinates as given above. The enhancement for the

atoms switched on is applied during the first few self-consistent (SC) steps, then no more enhancement

are required during the subsequent SC steps. It is also emphasized that the enhancement does not

always give the ground state, and that it can work badly in some case (see Ref. [20] for the details).

Also, we do not recommend turning on orbital polarization when using scf.dc.Type=cFLL and cAMF.

37.2 Additional functionalities

The standard DFT+U calculations can be performed with the keywords mentioned above. In this

Section, we present additional functionalities available in OpenMX. These functionalities are available

only for scf.DFTU.Type=2.

37.2.1 Varying the ratio of two Slater integrals (F 4/F 2)

The general DFT+U scheme by setting scf.DFTU.Type=2 requires the generation of Coulomb interac-

tion tensor using two input values, U and J . This can be done by the combinations of Slater integrals

(F 0, F 2, F 4, ...) and Racah-Wigner coefficients assuming atomic sphericity. For d-orbitals in the stan-

dard DFT+U scheme, F 4/F 2 ratio should be specified, and F 4/F 2 = 0.625 is the usual choice. This

ratio is, however, valid only in the atomic environment and deviates from it in the solid. Users can

manually choose the ratio for their own purposes by the following keyword:

scf.Slater.Ratio 0.75 # default=0.625

37.2.2 Estimation of J and F 4/F 2 from input parameter U

One can estimate J and F 4/F 2 from input U value via Yukawa-type screened Coulomb potential by

the following keyword:

scf.Yukawa on # default=off

By setting scf.Yukawa=on, only U values in <Hubbard.U.values ... Hubbard.U.values> are read

and J values in <Hund.J.values ... Hund.J.values> and scf.Slater.Ratio are ignored. Instead,

J values and F 4/F 2 will be automatically generated by estimating the Thomas-Fermi screening length

corresponding to the input U values [21, 22]. As an example, for the following orbitals defined by:

<Definition.of.Atomic.Species

Ni Ni6.0S-s2p2d2f1 Ni_CA13S

O O5.0-s2p2d1 O_CA13

Definition.of.Atomic.Species>

when scf.Yukawa=on and U values are set to:

<Hubbard.U.values # eV

Ni 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 6.4 2d 3.0 1f 0.0

O 1s 0.0 2s 0.0 1p 0.0 2p 0.0 1d 0.0

Hubbard.U.values>

141

one can see the following message in the standard output before SCF loop begins:

Calculating Thomas-Fermi screening length

<species: Ni, angular momentum= 2, multiplicity number= 0>

TF-screening-length lambda= 1.340787 1/au

Hubbard U= 6.400000 eV

Hund J= 1.154943 eV

Slater F0= 6.399932 eV

Slater F2= 9.321381 eV

Slater F4= 6.847820 eV

F4/F2= 0.734636

<species: Ni, angular momentum= 2, multiplicity number= 1>

TF-screening-length lambda= 0.271461 1/au

Hubbard U= 3.000000 eV

Hund J= 0.380184 eV

Slater F0= 3.000017 eV

Slater F2= 2.970544 eV

Slater F4= 2.352036 eV

F4/F2= 0.791786

These U , J , and F 4/F 2 values will be used for a subsequent DFT+U SCF loop. The input file,

’NiO-Yukawa.dat’ can be found in the directory ’work’.

142

38 Constraint DFT for non-collinear spin orientation

To calculate an electronic structure with an arbitrary spin orientation in the non-collinear DFT,

OpenMX Ver. 3.9 provides two kinds of constraint functionals which give a penalty unless the differ-

ence between the calculated spin orientation and the initial one is zero [13]. The constraint DFT for

the non-collinear spin orientation is available by the following keywords:

scf.Constraint.NC.Spin on # on|on2|off, default=off

scf.Constraint.NC.Spin.v 0.5 # default=0.0(eV)

You can introduce the penalty functional by either ’on’ or ’on2’ for the keyword ’scf.Constraint.NC.Spin’.

By ’on’, the spin direction is constrained at the initial orientation, but the magnitude of the spin mo-

ment can vary so that the total energy can be stabilized. On the other hand, by ’on2’, the spin

direction and the magnitude of the spin moment are constrained at the initial setting by the keyword

’Atoms.SpeciesAndCoordinates’. The keyword ’scf.Constraint.NC.Spin.v’ gives a magnitude which

determines the strength of constraint when the constraint is introduced. The constraint is applied on

each atom by specifying a flag as follows:

<Atoms.SpeciesAndCoordinates

1 Cr 0.00000 0.00000 0.00000 7.0 5.0 -20.0 0.0 0.0 0.0 1 off

2 Cr 0.00000 2.00000 0.00000 7.0 5.0 20.0 0.0 0.0 0.0 1 off

Atoms.SpeciesAndCoordinates>

0 30 60 90 120 150 180
174.57

174.56

174.55

174.54

174.53

174.52

174.51

174.5

2

3

4

Relative Angle θ()

T
o

ta
l
E

n
e

rg
y
 (

H
a

rt
re

e
) S

p
in

 M
o

m
e

n
t o

f C
r

µ
B

(
)

Figure 35: Total energy and magnetic moment of Cr atom for a chromium dimer of which bond

length is 2.0 Å. The input file is ’Cr2 CNC.dat’ in the directory ’work’.

143

The ’1’ in the 12th column means that the constraint is applied, and ’0’ no constraint. The method

constrains only the spin orientation. Therefore, the magnitude of spin can vary. Also the constraint

scheme is compatible with the DFT+U calculation explained in the Section ’DFT+U ’. As an illustra-

tion of this method, the dependence of the total energy and magnetic moment in a chromium dimer

on the relative angle between two local spins is shown in Fig. 35. You can trace the calculation using

an input file ’Cr2 CNC.dat’ in the directory ’work’.

Here we provide tips to calculate a smooth energy curve as a function of spin rotational angle

using the constraint DFT method. In many cases, local magnetic moments arises from partially filled

localized d- and/or f -orbitals such as 3d-orbitals. In this case, the occupation of electrons to the

localized orbitals may lead to multiple local minima due to the degree of freedom of the occupation.

To avoid such a local minima problem, you can start the calculation with a spin orientation along an

easy axis. Once the calculation finishes, the restart file is generated. In the next calculation, you may

rotate the spin orientation moderately, e.g., 30 degree, compared to the first calculation, and read the

restart file which was generated by the first calculation. The same procedure can be performed for all

the spin rotational angle that you want to calculate, and at each calculation the restart file generated

by the previous step should be read. The step-by-step approach is very effective to avoid the local

minima problem.

144

39 Second variational method: Magnetic Anisotropy Energy (MAE)

In the previous section, we introduced a constraint DFT method to control the spin direction. The

constraint DFT method enables us to evaluate a magnetic anisotropy energy (MAE) for magnetic

systems in a self-consistet manner based on the total energy. However, the computation tends to

become very costly, and the calculation tends to be trapped to a local minima due to the degree

of freedom of the occupation to degenerate localized states such as d-orbitals. A way to bypass

these problems is to use a second variational method that a one-shot diagonalization within the non-

colliear DFT is performed with spin-orbit coupling (SOI) and the charge density calculated by the

collinear DFT as initial guess after getting the SCF charge density within the collinear DFT. Since the

variational scheme is based on the Harris functional [14], the perturbation by the spin rotation and the

SOI is taken into account only in the band energy. The double counting term does not depend on the

spin rotation, while it looks changed in the output of OpenMX, since the energy terms are calculated

by the output density rather than the input density (please don’t be confused by the output). Using

the second variational method, we first calculate a ferromagnetic state within the collinear DFT,

resulting in the SCF charge density. Then, the one-shot diagonalization for the Hamiltonian including

SOI is performed within the non-colliear DFT using the restart file storing the SCF charge density.

The restart file can be read by the following keywords:

scf.restart.filename FePt

scf.restart c2n

Using the keyword ’scf.restart.filename’, the restart file to be read is specified. By ’c2n’ for the keyword

’scf.restart’ one can port a restart file generated by a collinear DFT calculation to a non-collinear DFT

calculation. As an example, the restart file above is generated by an input file ’FePt.dat’ available in

the directory ’work’. In the second calculation, the spin direction can be specified by the following

keywords:

scf.Restart.Spin.Angle.Theta 90.0

scf.Restart.Spin.Angle.Phi 0.0

The spin direction at all the spatial points is aligned along the direction determined by the two

keywords which specify Euler angles. Therefore, it should be noted that the evaluation of the MAE

by the second variational method is valid only for ferromagnetic systems. Let us demonstrate how

the second variational method works to evaluate the MAE. Figure 36 shows the MAE curves for the

spin rotational angle in the L10 FePt bulk. The result of ’Full SCF’ was obtained by the constraint

DFT method as explained in the section 38. The input file ’FePt-NC-SCF.dat’ is available in the

directory ’work’. At each spin rotational angle, the fully self-consistent calculation was performed

including the SOI within the non-collinear DFT, where the electronic temperature is 300 K and the

k-grid is 173. The MAE of 2.78 meV/f.u. was obtained by ’Full SCF’. Two computational results

by the second variational method are also shown in the Fig. 36. Using the restart file generated by

the collinear calculation with the input file ’FePt.dat’ in the directory ’work’, we diagonalized once

using an input file ’FePt-NC.dat’ available in the directory ’work’. One is the result where the same

electronic temperature (300K) and the same k-grid were used as for the ’Full SCF’. It is found that

the MAE is 2.89 meV/f.u. The other is the result where the electronic temperatures (the k-grid) for

the SCF calculation and the second calculation are 800 (93) and 300 K (173), respectively. The MAE

145

0 30 60 90 120 150 180
0

1

2

3

4

Angle (degree)

M
A

E
 (

m
e
V

/f
.u

.)

Full SCF (T=300K, k=17
3
)

2nd variational (T=300K, k=17
3
)

2nd variational (T=800 >300K k=9
3

>17
3
)

Figure 36: Magnetic anisotropy energy (MAE) curves for the spin rotational angle in the L10 FePt

bulk. The input file used for ’Full SCF’ is ’FePt-NC-SCF.dat’, and input files ’FePt.dat’ and ’FePt-

NC.dat’ were used for the two calculations by the second variational method. These input files are

found in the directory ’work’.

is found to be 2.90 meV/f.u. in the case. Since the two caculations by the second variational method

give almost the same result, the fact may allow us to control the electronic temperature and the k-grid

for increasing the efficiency and accuracy for both the collinear caculation to generate the SCF charge

density and non-collinear calculation to include the SOI. In the second variational method, it is very

important to notice that we should look at ’Uele’ instead of ’Utot’ in the output file. Since the second

variational scheme is based on the Harris functional, the MAE should be evaluated by ’Uele’, while

’full SCF’ relies on the total energy ’Utot’. We see that the difference between the full SCF calculation

and the second variational method in evaluating the MAE is about 0.1 meV/f.u. Thus, it might be

concluded that the second variational method is an efficient approach for the evaluation of MAE by

considering the accuracy and efficiency.

The second variational scheme might be useful for not only the evaluation of MAE, but also

calculations of band structure of large-scale systems, which may hamper direct SCF calculations by

the non-collinear DFT method, to investigate how the SOI modifies the band structure.

146

40 Zeeman terms

It is possible to apply Zeeman terms to spin and orbital magnetic moments.

40.1 Zeeman term for spin magnetic moment

The Zeeman term for spin magnetic moment is available as an interaction with a uniform magnetic

field by the following keywords:

scf.NC.Zeeman.Spin on # on|off, default=off

scf.NC.Mag.Field.Spin 100.0 # default=0.0(Tesla)

When you include the Zeeman term for spin magnetic moment, switch on the keyword ’scf.NC.Zeeman.Spin’.

The magnitude of the uniform magnetic field can be specified by the keyword ’scf.NC.Mag.Field.Spin’

in units of Tesla. Moreover, we extend the scheme as a constraint scheme in which the direc-

tion of the magnetic field can be different from each atomic site atom by atom. Then, the direc-

tion of magnetic field for spin magnetic moment can be controlled, for example, by the keyword:

’Atoms.SpeciesAndCoordinates’

<Atoms.SpeciesAndCoordinates

1 Sc 0.000 0.000 0.000 6.6 4.4 10.0 50.0 160.0 20.0 1 on

2 Sc 2.000 0.000 0.000 6.6 4.4 80.0 50.0 160.0 20.0 1 on

Atoms.SpeciesAndCoordinates>

The 8th and 9th columns give the Euler angles, θ and ϕ, in order to specify the magnetic field for spin

magnetic moment. The 12th column is a switch to the constraint. ’1’ means that the constraint is

applied, and ’0’ no constraint. Since for each atomic site a different direction of the magnetic field can

be applied, this scheme provides a way of studying non-collinear spin configuration. It is noted that

the keyword ’scf.NC.Zeeman.Spin’ and the keyword ’scf.Constraint.NC.Spin’ are mutually exclusive.

Therefore, when ’scf.NC.Zeeman.Spin’ is ’on’, the keyword ’scf.Constraint.NC.Spin’ must be switched

off as follows:

scf.Constraint.NC.Spin off # on|off, default=off

Although the Zeeman term and the constraint scheme for spin orientation can be regarded as ways

for controlling the spin orientation, it is noted that the magnitude of spin magnetic moment by the

Zeeman term tends to be enhanced unlike the constraint scheme.

40.2 Zeeman term for orbital magnetic moment

The Zeeman term for orbital magnetic moment is available as an interaction with a uniform magnetic

field by the following keywords:

scf.NC.Zeeman.Orbital on # on|off, default=off

scf.NC.Mag.Field.Orbital 100.0 # default=0.0(Tesla)

147

When you include the Zeeman term for orbital magnetic moment, switch on the keyword

’scf.NC.Zeeman.Orbital’. The magnitude of the uniform magnetic field can be specified by the keyword

’scf.NC.Mag.Field.Orbital’ in units of Tesla. Moreover, we extend the scheme as a constraint scheme

in which the direction of the magnetic field can be different from each atomic site atom by atom.

Then, the direction of magnetic field for orbital magnetic moment can be controlled, for example, by

the keyword: ’Atoms.SpeciesAndCoordinates’

<Atoms.SpeciesAndCoordinates

1 Sc 0.000 0.000 0.000 6.6 4.4 10.0 50.0 160.0 20.0 1 on

2 Sc 2.000 0.000 0.000 6.6 4.4 80.0 50.0 160.0 20.0 1 on

Atoms.SpeciesAndCoordinates>

The 10th and 11th columns give the Euler angles, θ and ϕ, in order to specify the magnetic field for

orbital magnetic moment. The 12th column is a switch to the constraint. ’1’ means that the constraint

is applied, and ’0’ no constraint. Since for each atomic site a different direction of the magnetic field

can be applied, this scheme provides a way of studying non-collinear orbital configuration. Also, it is

noted that the direction of magnetic field for orbital magnetic moment can be different from that for

spin moment.

148

41 Macroscopic polarization by Berry’s phase

The macroscopic electric polarization of a bulk system can be calculated based on the Berry phase

formalism [15]. As an example, let us illustrate a calculation of a Born effective charge of Na in a

NaCl bulk via the macroscopic polarization.

(1) SCF calculation

First, perform a conventional SCF calculation using an input file ’NaCl.dat’ in the directory ’work’.

Then, the following keyword ’HS.fileout’ should be switched on

HS.fileout on # on|off, default=off

When the calculation is completed normally, then you can find an output file ’nacl.scfout’ in the

directory ’work’.

(2) Calculation of macroscopic polarization

The macroscopic polarization is calculated by a post-processing code ’polB’ of which input data is

’nacl.scfout’. In the directory ’source’, please compile as follows:

% make polB

When the compilation is completed normally, then you can find an executable file ’polB’ in the

directory ’work’. Then, please move to the directory ’work’, and perform as follows:

% polB nacl.scfout

or

% polB nacl.scfout < in > out

In the latter case, the file ’in’ contains the following ingredients:

9 9 9

1 1 1

In the former case, you will be interactively asked from the program as follows:

**

**

polB:

code for calculating the electric polarization of bulk systems

Copyright (C), 2006-2007, Fumiyuki Ishii and Taisuke Ozaki

This is free software, and you are welcome to

redistribute it under the constitution of the GNU-GPL.

**

**

Read the scfout file (nacl.scfout)

Previous eigenvalue solver = Band

atomnum = 2

149

ChemP = -0.156250000000 (Hartree)

E_Temp = 300.000000000000 (K)

Total_SpinS = 0.000000000000 (K)

Spin treatment = collinear spin-unpolarized

r-space primitive vector (Bohr)

tv1= 0.000000 5.319579 5.319579

tv2= 5.319579 0.000000 5.319579

tv3= 5.319579 5.319579 0.000000

k-space primitive vector (Bohr^-1)

rtv1= -0.590572 0.590572 0.590572

rtv2= 0.590572 -0.590572 0.590572

rtv3= 0.590572 0.590572 -0.590572

Cell_Volume=301.065992 (Bohr^3)

Specify the number of grids to discretize reciprocal a-, b-, and c-vectors

(e.g 2 4 3)

k1 0.00000 0.11111 0.22222 0.33333 0.44444 ...

k2 0.00000 0.11111 0.22222 0.33333 0.44444 ...

k3 0.00000 0.11111 0.22222 0.33333 0.44444 ...

Specify the direction of polarization as reciprocal a-, b-, and c-vectors

(e.g 0 0 1) 1 1 1

Then, the calculation will start like this:

calculating the polarization along the a-axis

The number of strings for Berry phase : AB mesh=81

calculating the polarization along the a-axis 1/ 82

calculating the polarization along the a-axis 2/ 82

.....

...

Electric dipole (Debye) : Berry phase

Absolute dipole moment 163.93373639

Background Core Electron Total

Dx -0.00000000 94.64718996 -0.00000338 94.64718658

150

Dy -0.00000000 94.64718996 -0.00000283 94.64718713

Dz -0.00000000 94.64718996 -0.00000317 94.64718679

Electric polarization (muC/cm^2) : Berry phase

Background Core Electron Total

Px -0.00000000 707.66166752 -0.00002529 707.66164223

Py -0.00000000 707.66166752 -0.00002118 707.66164633

Pz -0.00000000 707.66166752 -0.00002371 707.66164381

Elapsed time = 77.772559 (s) for myid= 0

Since the Born effective charge Z∗
αβ is defined by a tensor:

Z∗
αβ =

Vc

|e|
∆Pα

∆uβ

where Vc is the volume of the unit cell, e the elementary charge, ∆uβ displacement along β-coordinate,

∆Pα the change of macroscopic polarization along α-coordinate, therefore we will perform the above

procedures (1) and (2) at least two or three times by varying the x, y, or z-coordinate of Na atom.

Then, for example, we have along x-coordinates

Px = 94.39497736 (Debye/unit cell) at x= -0.05 (Ang)

Px = 94.64718658 (Debye/unit cell) at x= 0.0 (Ang)

Px = 94.89939513 (Debye/unit cell) at x= 0.05 (Ang)

Thus,

Z∗
xx =

(94.89939513− 94.39497736)/(2.54174776)

0.1/0.529177

= 1.050

Table 7: Calculated Born effective charge of Na in a NaCl bulk. The input file is ’NaCl.dat’ in the

directory ’work’. Another theoretical value (FD: Ref. [116]) and experimental value (Ref. [117]) are

also shown for comparison.

OpenMX FD Expt.

Z∗ 1.05 1.09 1.12

151

Note that in the NaCl bulk the off-diagonal terms in the tensor of Born charge are zero, and Z∗
xx =

Z∗
yy = Z∗

zz. In Table 7 we see that the calculated value is in good agreement with the other calculation

[116] and an experimental result [117]. The calculation of macroscopic polarization is supported for

both the collinear and non-collinear DFT. It is also noted that the code ’polB’ has been parallelized

for large-scale systems where the number of processors can exceed the number of atoms in the system.

152

42 Exchange coupling parameter

42.1 General

The ’jx’, a post-processing code for OpenMX, provides a way to calculate exchange coupling pa-

rameters Jij between two localized spins based on Green’s function representation of Liechtenstein

formula [17]. In the standard distribution of OpenMX Ver. 3.9, the evaluation is supported for only

the collinear calculations of cluster and bulk systems. To acknowledge in any publications by using

the functionality, the citation of the references [18, 19] would be appreciated.

The program provides three ways to calculate Jij as explained below.

For cluster systems, the program computes exchange coupling constants Jij between atomic sites i

and j from the following formula:

Jij =
1

4

∑
n,n′

−fn↑ + fn′↓
εn↑ − εn′↓

×
∑
µ,ν∈i

∑
µ′,ν′∈j

Cjµ′,n↑C
∗
iν,n↑[P̂i]νµCiµ,n′↓C

∗
jν′,n′↓[P̂j]ν′µ′ (3)

P̂i ≡ Ĥi↑ − Ĥi↓, (4)

where εnσ and Cnσ represent the corresponding eigenvalue and eigenvector, respectively, indexed by

n and σ for the Kohn–Sham equation at the wave number k; and [P̂i]νµ and [P̂j]ν′µ′ represent the

partial matrices of the potential difference operator at the sites i and j, respectively.

For bulk systems, the program computes exchange coupling constants Ji0,jR between individual

sites i and j located at cells 0 and R, respectively, from the following formula:

Ji0,jR =
1

2

NP∑
p=1

R̃p

∑
µ,ν∈i

∑
µ′,ν′∈j

Re
{
[P̂i]νµG

+
iµ,jν′(↓, z̃p,R)[P̂j]ν′µ′G+

jµ′,iν(↑, z̃p,−R)
}
. (5)

where z̃p and R̃p are the positive poles and corresponding residues of approximated Fermi functions,

i and j are atom indices in a unit cell, R is a cell index of the second atom, The Green’s functions

G+
jµ′,iν(↑, ε,−R) and G+

iµ,jν′(↓, ε,R) are defined as the following equations:

G+
jµ′,iν(↑, ε,−R) ≡

∫
d3

(
ka

2π

)
eik·R

∑
n

Cjµ′,n↑(k)Ciµ,n↑(k)

ε+ iη − εn↑(k)
(6)

G+
iµ,jν′(↓, ε,R) ≡

∫
d3

(
ka

2π

)
e−ik·R ∑

n′

Ciµ,n′↓(k)Cjν′,n′↓(k)

ε+ iη − εn′↓(k)
. (7)

Alternatively, it is also possible to compute the summation of exchange coupling Jij over R by the

following formula:

Jij =
∑
R

Ji0,jR

=
1

4

∫
d3

(
ka

2π

)∑
n,n′

−fn↑(k) + fn′↓(k)

εn↑(k)− εn′↓(k)

×
∑
µ,ν∈i

∑
µ′,ν′∈j

Cjµ′,n↑(k)C
∗
iν,n↑(k)[P̂i]νµCiµ,n′↓(k)C

∗
jν′,n′↓(k)[P̂j]ν′µ′ . (8)

153

R = 0 R = 1 R = 2R = −1R = −2

i

j

ii

R = 0 R = 1 R = 2

jj

i

j

i

j

i

j

R = −1R = −2

(a) Interaction between individual sites i and j located at specific cells.

(b) Interaction between periodic images of sites i and j.

Figure 37: Schematic of exchange coupling constant between individual sites and that between periodic

images.

For the details of Eqs. (3), (5), and (8), see Ref. [18, 19].

For users, it might be helpful to explain the difference between Eqs. (5) and (8) by schematics

shown in Fig. 37. Figure 37 (a) shows a schematic of interaction between individual sites, which

corresponds to Eq. (5). Figure 37 (b) shows a schematic of interaction between periodic images,

which corresponds to Eq. (8). When executing, this option can be specified by Flag.PeriodicSum, as

explained in the latter subsection.

42.2 Compilation of jx

To compile ’jx’ which is a post-processing code calculating Jij from the OpenMX output, please move

to the directory ’source’, and type as follows:

% make jx

When the compilation is completed normally, then you can find an executable file ’jx’ in the directory

’work’.

42.3 OpenMX calculation to generate jx input

In advance of the Jij calculation, it is necessary to perform a collinear DFT calculation to generate a

scfout file. To generate the scfout file, you can add the following keyword ’HS.fileout’ in the OpenMX

input file as follows:

HS.fileout on # on|off, default=off

Note that it might be necessary to take a relatively small number of orbitals in the OpenMX calculation

for the jx execution, because the pseudo-atomic orbitals have to be localized well in the current

implementation. For example, s2p2d2 for Fe and s2p1d1 for Nd should be optimal setting for the

atomic orbital specification.

154

42.4 Preparation of config file for jx

For the execution of ’jx’ in OpenMX 3.9 implementation, it is necessary to specify a couple of param-

eters in a configuration file, which should be written in the same format to that of OpenMX input

files.

An example of ’jx.config’ is shown below:

Flag.PeriodicSum off # default - off

Num.Poles 60

Num.Kgrid 27 27 27

Num.ij.pairs 236

Bunch.ij.pairs 236

<ijpairs.cellid

1 1 -2 -2 -2

1 1 -2 -2 -1

1 1 -2 -2 0

...

...

2 2 0 -1 2

2 2 0 0 -2

2 2 0 0 -1

ijpairs.cellid>

Each keyword is explained below:

Flag.PeriodicSum off # default - off

This flag determines how you calculate the exchange couplings. When ’on’ for periodic systems, the

program derives the Jij based on Eq. (8). When ’off’ for periodic systems, the program derives the

Ji0,jR based on Eq. (5). This flag has no role in cluster calculations. For cluster calculations, the

program calculates Jij by Eq. (3).

Num.Poles 60

This keyword specifies the number of poles NP for the finite pole approximation of Fermi function [74],

appearing in Eq. (5). The computation becomes more accurate as increasing the number of poles at

the cost of execution time. The most appropriate value depends on the system, and for bcc-Fe a proper

value is evaluated as about 60 to attain the accuracy of 0.05 meV. For the electronic temperature of

300 K, the 60 poles might be enough in most cases. However, you can take larger value so as to attain

further computational accuracy, because the computational times to construct each exchange coupling

were proven much smaller than that of eigenvalue calculation.

Num.Kgrid 27 27 27

This keyword specifies the number of k-grids. These values should be same or a bit larger than those

in OpenMX calculation. No role in cluster calculations.

155

Num.ij.pairs 236 # NOTE: Number of ij pairs.

This keyword specifies how many exchange coupling constants to be calculated. The value must be

same as the number of rows between the keywords <ijpairs.cellid and ijpairs.cellid>.

<ijpairs.cellid

1 1 -2 -2 -2

1 1 -2 -2 -1

1 1 -2 -2 0

...

...

2 2 0 -1 2

2 2 0 0 -2

2 2 0 0 -1

ijpairs.cellid>

This field specifies the sites i, j, and cell vector R = l1a1 + l2a2 + l3a3 of Ji0,jR, where a1, a2 and a3
are unit lattice vectors in the OpenMX input. The data order of this field is as follows: i j l1 l2 l3. In

the case of cluster or periodic image calculations, you should use alternative field as follows:

<ijpairs.nocellid

1 1

1 2

ijpairs.nocellid>

because they do not use cell vectors in Jij calculations.

Bunch.ij.pairs 236 # default=Num.ij.pairs

This is an optional keyword to use when the memory consumption is too large at the default setting.

This value should be same to or smaller than Num.ij.pairs. The smaller Bunch.ij.pairs results in

smaller memory consumption with larger calculation time.

42.5 Execution of jx and MPI parallelization

To execute the program ’jx’, it is necessary to type the command in the following orders.

% ./jx fe2.scfout jx.config > jx.log

The first argument should be a scfout file generated by OpenMX. The second argument is the

configuration file explained above.

Also, ’jx’ supports the MPI parallelization for periodic calculations.

% mpirun -np 2 ./jx fe2.scfout jx.config > jx.log

Note that MPI parallelization of ‘jx’ is supported only for the eigenvalue solver ‘band’ and not for

‘cluster’. We also have to note that the parallelization is done only for the k vector, and when the

parallelization number becomes larger than the total number of k-points it would result in unnecessary

consumption of computational resources.

156

42.6 Examples

As an example of the cluster case, using an input file ’Fe Cluster jx.dat’ which is stored in the

directory ’work’, you can first perform a conventional calculation using ’openmx’ as

% mpirun -np 2 ./openmx Fe_Cluster_jx.dat

The input file ’Fe Cluster jx.dat’ is for the SCF calculation of a iron dimer. After finishing the

calculation normally, you can obtain a scfout file ’Fe Cluster jx.scfout’. Then the calculation by ’jx’

is performed as

% ./jx Fe_Cluster_jx.scfout jx_cluster.config

where ’jx cluster.config’ is also available in the directory ’work’. Then, you may see the following

message on your screen.

**

**

jx: code for calculating an effective exchange coupling constant J

Copyright (C), 2003, Myung Joon Han, Jaejun Yu, and Taisuke Ozaki

2019, Asako Terasawa and Taisuke Ozaki

This is free software, and you are welcome to

redistribute it under the constitution of the GNU-GPL.

**

**

Read the scfout file (Fe_Cluster_jx.scfout)

The file format of the SCFOUT file: 3

And it supports the following functions:

- jx

- polB

- kSpin

- Z2FH

- calB

Previous eigenvalue solver = Cluster

atomnum = 2

ChemP = -0.089740215968 (Hartree)

E_Temp = 300.000000000000 (K)

Evaluation of J based on cluster calculation

i j J [meV] J [mRy]

1 1 1591.520791120630 116.974621661729

157

1 2 106.511867492210 7.828477938772

2 2 1591.520746009061 116.974618346089

Elapsed time = 0.036225 (s)

The exchange coupling constant J12 between atoms 1 and 2 is calculated to be 106.5 meV.

As an example of the bulk case, you can perform a conventional calculation using ’openmx’ and

an input file ’Fe Bulk jx.dat’ available in the directory ’work’ as

% mpirun -np 28 ./openmx Fe_Bulk_jx.dat

The input file ’Fe Bulk jx.dat’ is for the SCF calculation of a BCC iron. After finishing the calculation

normally, you can obtain a scfout file ’Fe Bulk jx.scfout’. Then the calculation by ’jx’ is performed as

% mpirun -np 112 ./jx Fe_Bulk_jx.scfout Fe_Bulk_jx.config | tee jx.log

where ’Fe Bulk jx.config’ is available in the directory ’work’. Then, you may see the following message

on your screen.

**

**

jx: code for calculating an effective exchange coupling constant J

Copyright (C), 2003, Myung Joon Han, Jaejun Yu, and Taisuke Ozaki

2019, Asako Terasawa and Taisuke Ozaki

This is free software, and you are welcome to

redistribute it under the constitution of the GNU-GPL.

**

**

Read the scfout file (Fe_Bulk_jx.scfout)

The file format of the SCFOUT file: 3

And it supports the following functions:

- jx

- polB

- kSpin

- Z2FH

- calB

Previous eigenvalue solver = Band

atomnum = 2

ChemP = -0.205912787451 (Hartree)

E_Temp = 300.000000000000 (K)

Jij calculation for a periodic structure

Number of k-grids: 27 27 27

158

flag_periodic_sum = 0: coupling between site i at cell 0 and site j at cell R

Number of poles of Fermi-Dirac continued fraction (PRB.75.035123): 60

i j c1 c2 c3 J [meV] J [mRy] time_eig [s] ...

-- ...

1 1 -2 -2 -2 -0.845809571401 -0.062165857439 0.51534 ...

1 1 -2 -2 -1 0.274300677331 0.020160728111 0.00000 ...

1 1 -2 -2 0 0.036006012552 0.002646393135 0.00000 ...

1 1 -2 -2 1 0.274300705154 0.020160730156 0.00000 ...

1 1 -2 -2 2 -0.845809596417 -0.062165859278 0.00000 ...

1 1 -2 -1 -2 0.274300737539 0.020160732536 0.00000 ...

1 1 -2 -1 -1 -0.206315672897 -0.015163922403 0.00000 ...

1 1 -2 -1 0 0.149714301525 0.011003798302 0.00000 ...

1 1 -2 -1 1 -0.206315540488 -0.015163912672 0.00000 ...

1 1 -2 -1 2 0.274300804604 0.020160737465 0.00000 ...

...

..

2 2 0 -1 2 0.149714016159 0.011003777328 0.00000 ...

2 2 0 0 -2 0.401809366424 0.029532443987 0.00000 ...

2 2 0 0 -1 11.452192349598 0.841720620155 0.00000 ...

Elapsed time = 340.817975 (s)

In Fig. 38 (a), the obtained exchange coupling constant J for the bcc Fe is plotted as a function of

distance as well as cases of (b) hcp Co, (c) fcc Ni, and (d) Fe dimer. In all the calculations, basis sets

of A6.0H-s2p2d2 (A=Fe, Ni, Co), exchange correlation functions of GGA-PBE, and ferromagnetic

spin configurations are adopted. The input files used for the calculations are Fe Bulk jx.(dat,config),

Co Bulk jx.(dat,config), Ni Bulk jx.(dat,config), and Fe Cluster jx.(dat,config) which are all available

in the directory ’work’. The details of the calculations can be found in Ref. [19].

It is also possible to calculate the Curie temperature of periodic systems from calculated exchange

coupling constants and the mean field approximation. That is, the Curie temperature TC of general

periodic system can be obtained as the maximum eigenvalue of the following eigenvalue equation:

T ⟨s⃗i⟩z =
2

3kB

∑
j

J̃ij⟨s⃗j⟩z (9)

J̃ij ≡ Jij − Ji0,j0δij . (10)

Here, the definitions of Jij and Ji0,j0 are found in Eqs. (5) and (8), respectively. Table 8 shows

the calculated Curie temperature by Eq. (9) for the bcc Fe, hcp Co, and fcc Ni together with the

experimental values.

159

(a) bcc Fe, k-grid = 27×27×27

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 3 4 5 6 7 8 9 10

J
ij

[m
eV

]

rij [Å]

2.866 Å

(c) fcc Ni, k-grid = 24×24×24

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 3 4 5 6 7 8 9 10

J
ij

[m
eV

]

rij [Å]

3.530 Å

(b) hcp Co, k-grid = 32×32×20

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 3 4 5 6 7 8 9 10

J
ij

[m
eV

]

rij [Å]

4.070 Å

2.507 Å

(d) Fe cluster2

 0

 20

 40

 60

 80

 100

 120

 140

 2 2.2 2.4 2.6 2.8 3 3.2

J
12

 [
m

eV
]

r12 [Å]

r12

1 2

Figure 38: Calculated exchange coupling constants J for (a) bcc Fe, (b) hcp Co, (c) fcc Ni, and (d) Fe

dimer as a function of distance. The input files used for the calculations are Fe Bulk jx.(dat,config),

Co Bulk jx.(dat,config), Ni Bulk jx.(dat,config), and Fe Cluster jx.(dat,config) which are all available

in the directory ’work’.

TC [K]

System calculated experimental

bcc Fe 1321 1040

hcp Co 1640 1131

fcc Ni 445 627

Table 8: The calculated Curie temperature from exchange coupling constants and mean field approx-

imation for bcc Fe, hcp Co and fcc Ni together with their experimental values.

160

43 Electric transport calculations

43.1 General

Electronic transport properties of molecules, nano-wires, and bulks such as superlattice structures can

be calculated based on a non-equilibrium Green function (NEGF) method within the collinear and

non-collinear DFT methods. The features and capabilities are listed below:

• SCF calculation of system with two leads under zero and finite bias voltage

• SCF calculation under gate bias voltage

• Compatible with the DFT+U method

• Spin-dependent transmission and current

• k-resolved transmission and current along perpendicular to the current axis

• Calculation of current-voltage curve

• Accurate and efficient contour integration scheme

• Interpolation of the effect by the bias voltage

• Quick calculation for periodic systems under zero bias

• The eigen-channel analysis [141]

• The real-space charge and spin current [139]

The details of the implementation can be found in Ref. [73]. First the usage of the functionalities

for the collinear case is explained in the following subsections. After that, the non-collinear case will

be discussed.

System we consider

In the current implementation of OpenMX Ver. 3.9, a system shown in Fig. 39(a) is treated by the

NEGF method. The system consists of a central region connected with infinite left and right leads,

and the two dimensional periodicity spreads over the bc-plane. Considering the two dimensional

periodicity, the system can be cast into an one-dimensional problem depending on the Bloch wave

vector k shown in Fig. 39(b). Also, the Green function of the region C(≡ L0|C0|R0) is self-consistently

determined in order to take account of relaxation of electronic structure around the interface between

the central region C0 and the region L0(R0). It should be noted that the electronic transport is

assumed to be along the a-axis in the current implementation. Thus, users have to keep in mind

the specification when the geometrical structure is constructed. See also the subsection ’Step 1: The

calculations for leads’.

Computational flow

The NEGF calculation is performed by the following three steps:

161

C0 R0L0 R1L1

a-axis

b-axis
c-axis

CL1 R1 R2L2

(a) (b)

Figure 39: (a) Configuration of the system, treated by the NEGF method, with the infinite left and

right leads along the a-axis under a two dimensional periodic boundary condition on the bc-plane.

(b) One dimensional system compacted from the configuration of (a) by considering the periodicity

on the bc-plane, where the region C is an extended central region consisting of C0, L0, and R0.

Step 1 → Step 2 → Step 3

Each step consists of

• Step 1

The band structure calculations are performed for the left and right leads using a program code

’openmx’. The calculated results will be used to represent the Hamiltonian of the leads in the

NEGF calculation of the step 2.

• Step 2

The NEGF calculation is performed for the structure shown in Fig. 39 under zero or a finite bias

voltage using a program code ’openmx’, where the result in the step 1 is used for the construction

of the leads.

• Step 3

By making use of the result of the step 2, the transmission, charge/spin current density, and the

eigenchannel are calculated by a program code ’openmx’.

An example: carbon chain

As a first trial, let us illustrate the three steps by employing a carbon chain.

Step 1

%./openmx Lead-Chain.dat | tee lead-chain.std

A file ’negf-chain.hks’ is generated by the step 1.

Step 2

162

−10 −5 0 5 10
0

1

2

3

Energy (eV)

T
ra

n
s
m

is
s
io

n
 (

1
/s

p
in

)

Figure 40: Transmission of a carbon chain as a function of energy. The origin of energy is set to the

chemical potential of the left lead.

%./openmx NEGF-Chain.dat | tee negf-chain.std

A file ’negf-chain.tranb’ is generated by the step 2.

Step 3

openmx starts the step 3 immediately after it finishes the step 2. If we perform separately the step

2 and the step 3, we run openmx as follows:

%./openmx NEGF-Chain.dat | tee negf-chain.std

In the step 3, openmx reads a file ’negf-chain.tranb’ and, calculates the transmission, current, and

eigen channels. After the calculation, the following files:

negf-chain.conductance negf-chain.tranec0_0_0_2_r.cube

negf-chain.current negf-chain.tranec0_0_0_3_i.cube

negf-chain.tran0_0 negf-chain.tranec0_0_0_3_r.cube

negf-chain.tranec0_0_0_0_i.cube negf-chain.tranec0_0_0_4_i.cube

negf-chain.tranec0_0_0_0_r.cube negf-chain.tranec0_0_0_4_r.cube

negf-chain.tranec0_0_0_1_i.cube negf-chain.traneval0_0_0

negf-chain.tranec0_0_0_1_r.cube negf-chain.tranevec0_0_0

negf-chain.tranec0_0_0_2_i.cube

are generated by the step 3.

The calculations can be traced by using the input files stored in a directory of ’work/negf example’.

By plotting the sixth column in ’negf-chain.tran0 0’ as a function of the fourth column, you can see a

transmission curve as shown in Fig. 40.

163

43.2 Step 1: The calculations for leads

The calculation of the step 1 is the conventional band structure calculation to construct information of

the lead except for adding the following two keywords ’NEGF.output hks’ and ’NEGF.filename.hks’:

NEGF.output_hks on

NEGF.filename.hks lead-chain.hks

The calculated results such as Hamiltonian matrix elements, charge distribution, and difference Hartree

potential are stored in a file specified by the keyword ’NEGF.filename.hks’. In this case, a file ’lead-

chain.hks’ is generated. The file ’NEGF.filename.hks’ is used in the calculation of the step 2. Since

the electronic transport is assumed to be along the a-axis in the current implementation, you have

to set the a-axis for the direction of electronic transport in the band structure calculation. However,

you do not need rotate your structure. All you have to do is to change the specification of the lattice

vectors. For example, if you want to specify a vector (0.0, 0.0, 10.0) as the a-axis in the following

lattice vectors:

<Atoms.UnitVectors

3.0 0.0 0.0

0.0 3.0 0.0

0.0 0.0 10.0

Atoms.UnitVectors>

you only have to specify as follows:

<Atoms.UnitVectors

0.0 0.0 10.0

3.0 0.0 0.0

0.0 3.0 0.0

Atoms.UnitVectors>

Then, the direction of (0.0, 0.0, 10.0) becomes the direction of electronic transport. As shown in the

above example, when you change the order of the lattice vectors, please make sure that the keyword

’scf.Kgrid’ has to be changed as well.

In the calculation of the step 2, the semi-infiniteness of the leads is taken into account by using

the surface Green function which allows us to treat the semi-infiniteness without introducing any

discretization. Thus, it would be better to use a large number of k-points along the a-axis to keep the

consistency between the steps 1 and 2 with respect to treatment of the semi-infiniteness of the a-axis.

Also it is noted that the number of k-points for the bc-plane should be consistent in the steps 1 and

2.

43.3 Step 2: The NEGF calculation

A. Setting up Lead|Device|Lead

You can set up the regions L0, C0, and R0 in the structural configuration shown in Fig. 39 in the

following way:

The geometrical structure of the central region C0 is specified by the following keywords ’Atoms.Number’

and ’Atoms.SpeciesAndCoordinates’:

164

Atoms.Number 18

<Atoms.SpeciesAndCoordinates

1 C 3.000 0.000 0.000 2.0 2.0

.....

18 C 28.500 0.000 0.000 2.0 2.0

Atoms.SpeciesAndCoordinates>

The geometrical structure of the left lead region L0 is specified by the following keywords ’Left-

LeadAtoms.Number’ and ’LeftLeadAtoms.SpeciesAndCoordinates’:

LeftLeadAtoms.Number 3

<LeftLeadAtoms.SpeciesAndCoordinates

1 C -1.500 0.000 0.000 2.0 2.0

2 C 0.000 0.000 0.000 2.0 2.0

3 C 1.500 0.000 0.000 2.0 2.0

LeftLeadAtoms.SpeciesAndCoordinates>

The geometrical structure of the right lead region R0 is specified by the following keywords

’RightLeadAtoms.Number’ and ’RightLeadAtoms.SpeciesAndCoordinates’

RightLeadAtoms.Number 3

<RightLeadAtoms.SpeciesAndCoordinates

1 C 30.000 0.000 0.000 2.0 2.0

2 C 31.500 0.000 0.000 2.0 2.0

3 C 33.000 0.000 0.000 2.0 2.0

RightLeadAtoms.SpeciesAndCoordinates>

This is the case of carbon chain which is demonstrated in the previous subsection. The central region

C0 is formed by 18 carbon atoms, and the left and right regions L0 and R0 contains three carbon

atoms, respectively, where every bond length is 1.5 Å. Following the geometrical specification of device

and leads, OpenMX will construct an extended central region C(≡ L0|C0|R0) as shown in Fig. 39.

The Green function for the extended central region C is self-consistently determined in order to take

account of relaxation of electronic structure around the interface between the central region C0 and

the region L0(R0). In addition, we impose two conditions so that the central Green function can be

calculated in the NEGF method [73]:

1. The localized basis orbitals ϕ in the region C0 overlap with those in the regions L0 and R0, but

do not overlap with those in the regions L1 and R1.

2. The localized basis orbitals ϕ in the Li (Ri) region has no overlap with basis orbitals in the cells

beyond the nearest neighboring cells Li−1 (Ri−1) and Li+1 (Ri+1).

In our implementation the basis functions are strictly localized in real space because of the generation

of basis orbitals by a confinement scheme [41, 42]. Therefore, once the localized basis orbitals with

specific cutoff radii are chosen for each region, the two conditions can be always satisfied by just

adjusting the size of the unit cells for Li and Ri.

165

Although the specification of unit cells for the regions L0, C0, and R0 is not required, it should

be noted that some periodicity is implicitly assumed. The construction of infinite leads is made by

employing the unit cells used in the band structure calculations by the step 1, and the informations

are stored in a file ’NEGF.filename.hks’. Also, due to the structural configuration shown in Fig. 39,

the unit vectors on the bc-plane for the left and right leads should be consistent. Thus, the unit

vector on the bc-plane for the extended central region C is implicitly assumed to be same as that of

the leads. Within the structural limitation, you can set up the structural configuration.

The unit in the specification of the geometrical structure can be given by

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU

In the NEGF calculation, either ’Ang’ or ’AU’ for ’Atoms.SpeciesAndCoordinates.Unit’ is supported,

but ’FRAC’ is not.

How OpenMX analyzes the geometrical structure can be confirmed by the standard output as

shown below:

<TRAN_Calc_GridBound>

The extended cell consists of Left0-Center-Right0.

The cells of left and right reads are connected as.

...|Left2|Left1|Left0-Center-Right0|Right1|Right2...

Each atom in the extended cell is assigned as follows:

where ’12’ and ’2’ mean that they are in ’Left0’, and

’12’ has overlap with atoms in the Left1,

and ’13’ and ’3’ mean that they are in ’Right0’, and

’13’ has overlap with atoms in the ’Right1’, and also

’1’ means atom in the ’Center’.

**

Atom1 = 12 Atom2 = 2 Atom3 = 1 Atom4 = 1 Atom5 = 1 Atom6 = 1 Atom7 = 1

Atom8 = 1 Atom9 = 1 Atom10 = 1 Atom11 = 1 Atom12 = 1 Atom13 = 1 Atom14 = 1

Atom15 = 1 Atom16 = 1 Atom17 = 1 Atom18 = 1 Atom19 = 1 Atom20 = 1 Atom21 = 3

Atom22 = 13

The atoms in the extended cell consisting of L0|C0|R0 are assigned by the numbers, where ’12’ and

’2’ mean that they are in L0, and ’12’ has overlap with atoms in L1, and ’13’ and ’3’ mean that they

are in R0, and ’13’ has overlap with atoms in R1, and also ’1’ means atom in C0. By checking the

analysis you may confirm whether the structure is properly constructed or not.

B. Keywords

The NEGF calculation of the step 2 is performed by the keyword ’scf.EigenvalueSolver’:

scf.EigenvalueSolver NEGF

166

For the NEGF calculation the following keywords are newly added.

NEGF.filename.hks.l lead-chain.hks

NEGF.filename.hks.r lead-chain.hks

NEGF.Num.Poles 100 # defalut=150

NEGF.scf.Kgrid 1 1 # defalut=1 1

NEGF.bias.voltage 0.0 # default=0.0 (eV)

NEGF.bias.neq.im.energy 0.01 # default=0.01 (eV)

NEGF.bias.neq.energy.step 0.02 # default=0.02 (eV)

An explanation for each keyword is given below.

NEGF.filename.hks.l lead-chain.hks

NEGF.filename.hks.r lead-chain.hks

The files containing information of leads are specified by the above two keywords, where ’NEGF.filename.hks.l’

and ’NEGF.filename.hks.r’ are for the left and right leads, respectively.

NEGF.Num.Poles 100 # defalut=150

The equilibrium density matrix is evaluated by a contour integration method [73, 74]. The number of

poles used in the method is specified by the keyword ’NEGF.Num.Poles’.

NEGF.scf.Kgrid 1 1 # defalut=1 1

The numbers of k-points to discretize the reciprocal vectors b̃ and c̃ are specified by the keyword

’NEGF.scf.Kgrid’. Since no periodicity is assumed along the a-axis, you do not need to specify that

for the a-axis.

NEGF.scf.Iter.Band 6 # defalut=6

It would be better to use the conventional diagonalization method for a few SCF steps in the initial

SCF iterations by assuming a periodicity along the a-axis as well as b- and c-axes. The procedure is

effective to avoid an erratic charge distribution which is a serious problem in the self-consistent NEGF

method. The number of first SCF steps for which the conventional diagonalization method is applied

is controlled by the keyword ’NEGF.scf.Iter.Band’. Up to and including the SCF steps specified by

’NEGF.scf.Iter.Band’, the conventional diagonalization method is used and then onward, the solver is

switched from the conventional method to the NEGF method. The default is 6.

NEGF.bias.voltage 0.0 # default=0.0 (eV)

The source-drain bias voltage applied to the left and right leads is specified by the keyword ’NEGF.bias.voltage’

in units of eV, corresponding to Volt. Noting that only the difference between applied bias voltages

has physical meaning, you only have to give a single value as the source-drain bias voltage.

167

NEGF.bias.neq.im.energy 0.01 # default=0.01 (eV)

NEGF.bias.neq.energy.step 0.02 # default=0.02 (eV)

When a finite source-drain bias voltage is applied, a part of the density matrix is contributed by the

non-equilibrium Green function. Since the non-equilibrium Green function is not analytic in general

in the complex plane, the contour integration method used for the equilibrium Green function cannot

be applied. Thus, in the current implementation the non-equilibrium Green function is evaluated on

the real axis with a small imaginary part using a simple rectangular quadrature scheme. Then, the

imaginary part is given by the keyword ’NEGF.bias.neq.im.energy’ and the step width is given by the

keyword ’NEGF.bias.neq.energy.step’ in units of eV. In most cases, the default values are sufficient,

while the detailed analysis of the convergence property can be found in Ref. [73]. How many energy

points on the real axis are used for the evaluation of the non-equilibrium Green function can be

confirmed in the standard output and the file ’System.Name.out’. In case of ’NEGF-Chain.dat’, if the

bias voltage of 0.5 V is applied, you will see in the standard output that the energy points of 120 are

allocated for the calculation as follows:

Intrinsic chemical potential (eV) of the leads

Left lead: -7.752843837400

Right lead: -7.752843837400

add voltage = 0.0000 (eV) to the left lead: new ChemP (eV): -7.7528

add voltage = 0.5000 (eV) to the right lead: new ChemP (eV): -7.2528

Parameters for the integration of the non-equilibrium part

lower bound: -8.706843837400 (eV)

upper bound: -6.298843837400 (eV)

energy step: 0.020000000000 (eV)

number of steps: 120

The total number of energy points where the Green function is evaluated is given by the sum of

the number of poles and the number of energy points on the real axis determined by the two key-

words ’NEGF.bias.neq.im.energy’ and ’NEGF.bias.neq.energy.step’, and you should notice that the

computational time is proportional to the total number of energy points.

NEGF.Poisson.Solver FD # FD|FFT, default=FD

In the NEGF method, the electrostatic potential is calculated by either a finite difference plus two

dimensional FFT (FD) [73] or three dimensional FFT (FFT) [75]. The choice of the Poisson solver

is specified by the keyword ’NEGF.Poisson.Solver’. Both the methods provide similar electrostatic

potentials for non-polar systems, while the difference can be large for polar systems. The former is a

proper choice in a sense that the eletrostatic potential at the boundaries between the leads and the

central region should be the same as that in the calculations of the step 1 for the leads, while the SCF

convergence seems to be rather easily obtained by the latter. The default is FD.

C. SCF criterion

168

In the NEGF method, the SCF criterion given by the keyword ’scf.criterion’ is applied to the

residual norm between the input and output charge densities ’NormRD’, while in the other cases

’dUele’ is monitored. See also the keyword ’NEGF.scf.Iter.Band’.

D. Gate bias voltage

In our implementation, the gate voltage Vg(x) is treated by adding an electric potential defined by

Vg(x) = V (0)
g exp

[
−

(
x− xc

d

)8
]
,

where V
(0)
g is a constant value corresponding to the gate voltage, and is specified by the keyword

’NEGF.gate.voltage’ as follows:

NEGF.gate.voltage 1.0 # default=0.0 (in eV)

xc the center of the region C0, and d the length of the unit vector along a-axis for the region C0. Due

to the form of the equation, the applied gate voltage affects mainly the region C0 in the central region

C. The electric potential may resemble the potential produced by the image charges [76].

E. Density of States (DOS)

In the NEGF calculation, the density of states can be calculated by setting the following keywords:

Dos.fileout on # on|off, default=off

NEGF.Dos.energyrange -15.0 25.0 5.0e-3 #default=-10.0 10.0 5.0e-3 (eV)

NEGF.Dos.energy.div 200 # default=200

NEGF.Dos.Kgrid 1 1 # default=1 1

When you want to calculate DOS, the keyword ’Dos.fileout’ should be set to ’on’ as usual. Also,

the energy range where DOS is calculated is given by the keyword ’NEGF.Dos.energyrange’, where

the first and second numbers correspond to the lower and upper bounds, and the third number is an

imaginary number used for smearing out DOS. The energy range specified by ’NEGF.Dos.energyrange’

is divided by the number specified by the keyword ’NEGF.Dos.energy.div’. The numbers of k-points

to discretize the reciprocal vectors b̃ and c̃ are specified by the keyword ’NEGF.Dos.Kgrid’. The set

of numbers given by ’NEGF.Dos.Kgrid’ can be set larger than that by ’NEGF.scf.Kgrid’ to increase

computational accuracy. After the NEGF calculation with these parameters, you will find two files

’System.Name.Dos.val’ and ’System.Name.Dos.vec’, and can analyze those by the same procedure as

usual. Also, it should be noted that the origin of energy is set to the chemical potential of the left

lead.

43.4 Step 3: The transmission, current (density), and eigenchannel

After the calculations of the steps 2 and 3, you can proceed the calculations of transmission, current

(density), and eigenchannel.

169

43.4.1 Transmission, total current, and conductance

At first, openmx calculates the transmission, the total current, and the conductance. The relevant

keywords for the calculation are as follows:

NEGF.tran.Analysis on # default on

NEGF.tran.CurrentDensity on # default on

NEGF.tran.energyrange -10 10 1.0e-3 # default=-10.0 10.0 1.0e-3 (eV)

NEGF.tran.energydiv 200 # default=200

NEGF.tran.Kgrid 1 1 # default= 1 1

• NEGF.tran.Analysis, NEGF.tran.Channel, NEGF.tran.CurrentDensity

If NEGF.tran.Analysis is set to on, the transmission, the total current, and the conductance

are calculated.

• NEGF.tran.energyrange, NEGF.tran.energydiv

The energy range where the transmission is calculated is given by the keyword ’NEGF.tran.energyrange’,

where the first and second numbers correspond to the lower and upper bounds, and the third

number is an imaginary number used for smearing out the transmission. The energy range speci-

fied by ’NEGF.tran.energyrange’ is divided by the number specified by the keyword ’NEGF.tran.energydiv’.

• NEGF.tran.Kgrid

The numbers of k-points to discretize the reciprocal vectors b̃ and c̃ are specified by the keyword

’NEGF.tran.Kgrid’. The set of numbers given by ’NEGF.tran.Kgrid’ can be different and tends

to be larger than that by ’NEGF.scf.Kgrid’ to take account of the computational efficiency.

In the calculations of the transmission, the current, and the conductance, following messages are

printed in the standard output.

Welcome to TRAN_Main_Analysis.

This is a post-processing code of OpenMX to analyze

transport properties such as electronic transmission,

current, eigen channel, and current distribution in

real space based on NEGF.

Copyright (C), 2002-2015, H. Kino and T. Ozaki

TRAN_Main_Analysis comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to

redistribute it under the constitution of the GNU-GPL.

170

Chemical potentials used in the SCF calculation

Left lead: -5.125617225230 (eV)

Right lead: -5.125617225230 (eV)

NEGF.current.energy.step 1.0000e-02 seems to be large for the calculation of current ...

The recommended Tran.current.energy.step is 0.0000e+00 (eV).

TRAN_Channel_kpoint 0 0.000000 0.000000

TRAN_Channel_energy 0 0.000000 eV

TRAN_Channel_Num 5

Parameters for the calculation of the current

lower bound: -5.125617225230 (eV)

upper bound: -5.125617225230 (eV)

energy step: 0.010000000000 (eV)

imaginary energy 0.001000000000 (eV)

number of steps: 0

calculating...

myid0= 0 i2= 0 i3= 0 k2= 0.0000 k3= -0.0000

myid0= 1 i2= 0 i3= 0 k2= 0.0000 k3= -0.0000

Transmission: files

./negf-chain.tran0_0

Current: file

./negf-chain.current

Conductance: file

./negf-chain.conductance

After the calculations, in this case you will obtain three files negf-chain.tran0_0, negf-chain.current,

negf-chain.conductance:

• System.Name.tran# %

The file stores transmissions for up- and down-spin states. The fourth column is the energy rela-

tive to the chemical potential of the left lead, and the sixth and eighth columns are transmission

for up- and down-spin states, respectively. When you employ a lot of k-points which is given by

’NEGF.tran.Kgrid’, a file with a different set of ’#’ and ’%’ in the file extension is generated for

each k-point. The correspondence between the numbers and the k-points can be found in the

file.

171

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

kb

kc

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

kb

kc

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

kb

kc

T
ra

n
s
m

is
s
io

n
T
ra

n
s
m

is
s
io

n
T
ra

n
s
m

is
s
io

n

(a)

(b)

(c)

Figure 41: k-resolved transmission at the chemical potential for (a) the majority spin state of the

parallel configuration, (b) the minority spin state of the parallel configuration, and (c) a spin state of

the antiparallel configuration of Fe|MgO|Fe, respectively. For the calculations k-points of 120 × 120

were used.

• System.Name.current

The file stores k-resolved currents and its average for up- and down-spin states in units of ampere.

• System.Name.conductance

The file stores k-resolved conductance and its average for up- and down-spin states in units of

quantum conductance (G0 ≡ e2

h). Thus, the conductance G is proportional to the transmission

T at the chemical potential of the left lead, µL, as follows:

G =
e2

h
T (µL)

As an example, the k-resolved transmission drawn by using the file ’System.Name.conductance’ is

shown in Fig. 41.

172

43.4.2 Real-space charge/spin current density

In the step 3, real-space charge/spin current density is calculated optionally. The relevant keyword

for the calculation is as follows:

NEGF.tran.CurrentDensity on # default on

• NEGF.tran.CurrentDensity

If NEGF.tran.CurrentDensity is set to on, the real-space current density is calculated.

In the calculation of the current density, openmx makes the following standard output:

Start Calculation of the currentdensity

Spin #0

Sum of current in real space [a.u.]

Left(ideal) : -9.10585e-06

Right(ideal): -9.10583e-06

Left(truncated): -8.66971e-06

Right(truncated): -8.69926e-06

Spin #1

Sum of current in real space [a.u.]

Left(ideal) : -4.54540e-08

Right(ideal): -4.54544e-08

Left(truncated): -4.19469e-08

Right(truncated): -4.27460e-08

Output: Currentdensity

Charge-current density along a-axis: ./negf-8zgnr-0.3.curden1.cube

Spin-current density along a-axis: ./negf-8zgnr-0.3.scurden1.cube

Charge-current density: ./negf-8zgnr-0.3.curden.xsf

Spin-current density: ./negf-8zgnr-0.3.scurden.xsf

Voronoi Charge-current density: ./negf-8zgnr-0.3.curden_atom.xsf

Voronoi Spin-current density: ./negf-8zgnr-0.3.scurden_atom.xsf

In this case, 6 files:

negf-8zgnr-0.3.curden.xsf, negf-8zgnr-0.3.scurden.xsf,

negf-8zgnr-0.3.curden1.cube, negf-8zgnr-0.3.scurden1.cube,

negf-8zgnr-0.3.curden_atom.xsf, negf-8zgnr-0.3.scurden_atom.xsf,

are generated. These files contain the following quantities:

• System.Name.curden.xsf, System.Name.scurden.xsf

These files contain the charge and the spin current densities, respectively, on the real space grid.

They can be visualized using ’Display→Forces’ in XCrySDen.

173

• System.Name.curden1.cube, System.Name.scurden1.cube

These files contain the a-component of the charge and the spin current densities, respectively,

on real space grid. They can be visualized using VESTA, XCrySDen, and so on.

• System.Name.curden_atom.xsf, System.Name.scurden_atom.xsf

These files contain the charge and the spin current density respectively averaged in Voronoi

polyhedra of each atom. They can be visualized using ’Display→Forces’ in XCrySDen.

(Experimentally) When you set

NEGF.OffDiagonalCurrent on # default off

in an input file for the calculation with the non-collinear magnetism, the following files are outputted.

• System.Name.odcurden_r.xsf, System.Name.odcurden_i.xsf

• System.Name.odcurden1_r.cube, System.Name.odcurden1_i.cube

• System.Name.odcurden_atom_r.xsf, System.Name.odcurden_atom_i.xsf

These files contain the spin off-diagonal component of the current density. Since this quantity becomes

generally a complex number, the real part and the imaginary part of that is output separately. As

an example, we show in Fig. 42 the currentdensity in the 8-zigzag graphene nanoribbon with an

antiferromagnetic junction under a finite bias voltage of 0.3 V. In the vicinity of boundaries, that

shows an unphysical behavior because the basis set is not treated correctly in these regions. If you

want to calculate more precisely the current density in these regions, please make a supercell larger.

(a) (b)

Figure 42: (a) The current density in the 8-zigzag graphene nanoribbon with an antiferromagnetic junction

under a finite bias voltage of 0.3 V. (b) Isosurfaces of the a-compontent of that.

174

43.4.3 Eigenchannel analysis

In the step 3, transmission eigenchannels are calculated optionally. The relevant keywords for this

calculation are as follows:

NEGF.tran.Channel on # default on

NEGF.Channel.Nkpoint 1 # default=1

<NEGF.Channel.kpoint

0.0 0.0

NEGF.Channel.kpoint>

default 0.0 0.0

NEGF.Channel.Nenergy 1 # default=1

<NEGF.Channel.energy

0.0

NEGF.Channel.energy>

default 0.0

NEGF.Channel.Num 5 # defualt=5(for collinear), 10(for Non-collinear)

• NEGF.tran.Channel

If NEGF.tran.Channel is set to on, the eigenchannel is calculated.

• NEGF.Channel.Nkpoint, <NEGF.Channel.kpoint, NEGF.Channel.kpoint>

These keywords specify the k point, at which eigenchannels are calculated. Please write a

k points per one line between <NEGF.Channel.kpointand NEGF.Channel.kpoint>; the total

number of k is NEGF.Channel.Nkpoint. The coordinate of the k is two dimensional fractional

coordinate; k should be specified as coefficients of two reciprocal lattice vector perpendicular to

the transmittion direction.

• NEGF.Channel.Nenergy, <NEGF.Channel.energy, NEGF.Channel.energy>

These keywords specify the energy, at which eigenchannels are calculated. Please write a energy

per one line between <NEGF.Channel.energy and NEGF.Channel.energy>; the total number of

energies is NEGF.Channel.Nenergy. The unit should be [eV] and the energy should be measured

from the electrochemical potential of the left lead.

• NEGF.Channel.Num

It specifies the number of eigenchannels that are printed in the real space representation. In

each k, energy, spin, NEGF.Channel.Num eigenchannels in descending order about transmission

eigenvalues are printed in the Gaussian cube format; the real and imaginary part is printed

separately.

In the calculation of eigenchannels, openmx makes the following standard output:

**

Calculation of transmission eigenchannels starts

**

175

File index : negf-8zgnr-0.3.traneval#k_#E_#spin negf-8zgnr-0.3.tranevec#k_#E_#spin

myid0 = 0, #k : 0, N_{ort} / N_{nonort} : 380 / 380

PE 0 generates ./negf-8zgnr-0.3.traneval0_0_0 . Sum(eigenval) : 0.031643

PE 0 generates ./negf-8zgnr-0.3.traneval0_0_1 . Sum(eigenval) : 0.000508

Eigenchannel calculation finished

They are written in plottable files.

File index : negf-8zgnr-0.3.tranec#k_#E_#spin_#branch_r.cube(.bin)

negf-8zgnr-0.3.tranec#k_#E_#spin_#branch_i.cube(.bin)

./negf-8zgnr-0.3.tranec0_0_0_0_r.cube ./negf-8zgnr-0.3.tranec0_0_0_0_i.cube

./negf-8zgnr-0.3.tranec0_0_0_1_r.cube ./negf-8zgnr-0.3.tranec0_0_0_1_i.cube

./negf-8zgnr-0.3.tranec0_0_0_2_r.cube ./negf-8zgnr-0.3.tranec0_0_0_2_i.cube

./negf-8zgnr-0.3.tranec0_0_0_3_r.cube ./negf-8zgnr-0.3.tranec0_0_0_3_i.cube

./negf-8zgnr-0.3.tranec0_0_0_4_r.cube ./negf-8zgnr-0.3.tranec0_0_0_4_i.cube

./negf-8zgnr-0.3.tranec0_0_1_0_r.cube ./negf-8zgnr-0.3.tranec0_0_1_0_i.cube

./negf-8zgnr-0.3.tranec0_0_1_1_r.cube ./negf-8zgnr-0.3.tranec0_0_1_1_i.cube

./negf-8zgnr-0.3.tranec0_0_1_2_r.cube ./negf-8zgnr-0.3.tranec0_0_1_2_i.cube

./negf-8zgnr-0.3.tranec0_0_1_3_r.cube ./negf-8zgnr-0.3.tranec0_0_1_3_i.cube

./negf-8zgnr-0.3.tranec0_0_1_4_r.cube ./negf-8zgnr-0.3.tranec0_0_1_4_i.cube

In this case, 22 files, negf-8zgnr-0.3.treval0_0_0, negf-8zgnr-0.3.tranevec0_0_0,

negf-8zgnr-0.3.tranec0_0_0_0_r.cube - negf-8zgnr-0.3.tranec0_0_1_4_r.cube,

negf-8zgnr-0.3.tranec0_0_0_0_i.cube - negf-8zgnr-0.3.tranec0_0_1_4_i.cube, are generated.

• System.Name.traneval{#k}_{#E}_{#s}

This file contains transmission eigenvalues of all eigenchannels in the {#k}th k, {#E}th energy,

and {#s}th spin.

• System.Name.tranevec{#k}_{#E}_{#s}

This file contains LCAO components of all eigenchannels in the {#k}th k, {#E}th energy, and

{#s}th spin.

e. g. / negf-chain.tranevec0_0_0

Eigenvalues and LCAO coefficients

at the k-points specified in the input file.

of k-point = 0

k2= 0.00000 k3= 0.00000

176

of Energy = 0

e= 0.00000

Spin = Up

Real (Re) and imaginary (Im) parts of LCAO coefficients

1 2 3 4

0.9778 0.0000 0.0000 0.0000

Re Im Re Im Re Im Re Im

1 C 0 s -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000

1 s -0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000

0 px -0.63002 -1.49377 -0.14466 0.00019 0.01644 -0.00032 -0.07885 0.00095

0 py 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000

0 pz 0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000

2 C 0 s -0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000

1 s 0.00000 0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000

0 px 0.18040 -0.03816 -0.00452 0.00009 -0.00545 -0.00010 -0.01970 -0.00004

0 py -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0 pz 0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000

3 C 0 s 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000

1 s -0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 -0.00000

0 px 2.06634 0.40490 0.11067 0.00023 -0.06068 0.00009 -0.06690 -0.00042

0 py 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000

0 pz 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000

4 C 0 s 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000

1 s -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000

• System.Name.tranec{#k}_{#E}_{#s}_{#c}_r.cube,

System.Name.tranec{#k}_{#E}_{#s}_{#c}_i.cube

This file contains the real or the imaginary part of the eigenchannel in the Gaussian cube format.

We can display isosurfaces from this files by using VESTA, XCrysDen, and so on. As an example,

we show in Fig. 43 eigenchannels in the 8-zigzag graphene nanoribbon with an antiferromagnetic

junction under a finite bias voltage of 0.3 V.

43.5 Running again the step 3 only

We can skip the NEGF calculation if it is finished in the previous openmx execution. In this case,

please specify the following keyword:

NEGF.tran.SCF.skip on

openmx reads a file System.Name.tranb generated in the previous step 2 calculation, and calculates

the transmission, eigenchannels, and so on.

On the other hand, if we intend to stop openmx after it finishes the step 2 calculation, the following

keywords should be set as follows:

NEGF.tran.SCF.skip off

177

0

1

2

3

4

5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

T
ra

n
sm

is
si

o
n

Energy [eV]

Up spin :

Down spin :

0

1

2

3

4

5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

T
ra

n
sm

is
si

o
n

Energy [eV]

Up spin :

Down spin :

Right

0.3 V

Left

0 V - 0.3 V

RightLeft

0 V

Left

0 V

Right

0.3 V

Left

0 V - 0.3 V

Right

(a) (b)

(c) (d)

(e) (f)

Figure 43: (a) Spin dependent transmission under a bias voltage of 0.3 V, (b) spin dependent transmission

under a bias voltage of -0.3 V, (c) an eigenchannel at an energy of 0 eV, spin ↑, and 0.3 V as a bias voltage, (d)

an eigenchannel at an energy of 0 eV, spin ↑, and - 0.3 V as a bias voltage, (e) an eigenchannel at an energy

of 0 eV, spin ↓, and 0.3 V as a bias voltage, and (f) an eigenchannel at an energy of 0 eV, spin ↓, and - 0.3 V

as a bias voltage in 8-zigzag graphene nanoribbon with an antiferromagnetic junction (The spin is ↑ in the left

region and it is ↓ in the right region.) are depicted. The level of isosurfaces are identical in these figures; when

the transmission is small, the eigenchannel itself is also small.

178

NEGF.tran.Analysis off

NEGF.tran.Channel off

43.6 Periodic system under zero bias

When the transmission of a system with the periodicity along the a-axis as well as the periodicity

of the bc-plane is evaluated under zero bias voltage, it can be easily obtained by making use of the

Hamiltonian calculated by the conventional band structure calculation without employing the Green

function method. This scheme enables us to explore transport properties for a wide variety of possible

geometric and magnetic structures with a low computational cost, and thereby can be very useful for

many materials such as superlattice structures. The calculation is performed by adding a keyword

’NEGF.Output.for.TranMain’:

NEGF.Output.for.TranMain on

in the band structure calculation of the step 1. Then, after the calculation of the step 1, you will

obtain a file ’System.Name.tranb’ which can be used in the calculation of the step 3, which means

that you can skip the calculation of the step 2.

43.7 Interpolation of the effect by the bias voltage

Since for large-scale systems it is very time-consuming to perform the SCF calculation at each bias

voltage, an interpolation scheme is available to reduce the computational cost in the calculations by the

NEGF method. The interpolation scheme is performed in the following way: (i) the SCF calculations

are performed for a few bias voltages which are selected in the regime of the bias voltage of interest.

(ii) when the transmission and current are calculated, linear interpolation is made for the Hamiltonian

block elements, H
(k)
σ,C and H

(k)
σ,R, of the central scattering region and the right lead, and the chemical

potential, µR, of the right lead by

H
(k)
σ,C = λH

(k,1)
σ,C + (1− λ)H

(k,2)
σ,C ,

H
(k)
σ,R = λH

(k,1)
σ,R + (1− λ)H

(k,2)
σ,R ,

µR = λµ
(1)
R + (1− λ)µ

(2)
R ,

where the indices 1 and 2 in the superscript mean that the quantities are calculated or used at the

corresponding bias voltages where the SCF calculations are performed beforehand. In general, λ

should range from 0 to 1 for the moderate interpolation.

In the calculation of the step 3, the interpolation is made by adding the following keywords in the

input file:

NEGF.tran.interpolate on # default=off, on|off

NEGF.tran.interpolate.file1 c1-negf-0.5.tranb

NEGF.tran.interpolate.file2 c1-negf-1.0.tranb

NEGF.tran.interpolate.coes 0.7 0.3 # default=1.0 0.0

When you perform the interpolation, the keyword ’NEGF.tran.interpolate’ should be ’on’. In this case,

files ’c1-negf-0.5.tranb’ and ’c1-negf-1.0.tranb’ specified by the keywords ’NEGF.tran.interpolate.file1’

and ’NEGF.tran.interpolate.file2’ are the results under bias voltages of 0.5 and 1.0 V, respectively, and

179

0 0.2 0.4 0.6 0.8 1
0

40

80

120

160

Vb (V)

I
(

µ
A

)
SCF

Interpolation

(a)

-8 -6 -4 -2 0 2 4 6 8
0

1

2

3

4

Energy (eV)

SCF

Interpolation

(b)

T
ra

n
s
m

is
s
io

n
 p

e
r

s
p
in

Figure 44: (a) Currents of the linear carbon chain calculated by the SCF calculations (solid line)

and the interpolation scheme (dotted line). (b) Transmission of the linear carbon chain under a bias

voltage of 0.3 V, calculated by the SCF calculations (solid line) and the interpolation scheme (dotted

line). The imaginary part of 0.01 eV and the grid spacing of 0.01 eV are used for the integration of

the nonequilibrium term in the density matrix.

the transmission and current at V = 0.7 ∗ 0.5 + 0.3 ∗ 1.0 = 0.65[V] are evaluated by the interpolation

scheme, where the weights of 0.7 and 0.3 are specified by the keyword ’NEGF.tran.interpolate.coes’.

A comparison between the fully self consistent and the interpolated results is shown with respect

to the current and transmission in the linear carbon chain in Figs. 44(a) and (b). In this case, the

SCF calculations at three bias voltages of 0, 0.5, and 1.0 V are performed, and the results at the other

bias voltages are obtained by the interpolation scheme. For comparison we also calculate the currents

via the SCF calculations at all the bias voltages. It is confirmed that the simple interpolation scheme

gives notably accurate results for both the calculations of the current and transmission. Although

the proper selection of bias voltages used for the SCF calculations may depend on systems, the result

suggests that the simple scheme is very useful to interpolate the effect of the bias voltage while keeping

the accuracy of the calculations.

43.8 Parallelization of NEGF

In the current implementation the NEGF calculation is parallelized by MPI. In addition to the MPI

parallelization, if you use MKL, the matrix multiplication and the inverse calculation of matrix in the

evaluation of the Green function are also parallelized by OpenMP. In this case, you can perform a

hybrid parallelization by MPI/OpenMP which may lead to shorter computational time. The way for

the parallelization is completely same as before.

In Fig. 45 we show the speed-up ratio in the elapsed time for the evaluation of the density matrix

of 8-zigzag graphene nanoribbon (ZGNR) under a finite bias voltage of 0.5 eV. The energy points of

197 (101 and 96 for the equilibrium and nonequilibrium terms, respectively) are used for the evaluation

of the density matrix. Only the Γ point is employed for the k-point sampling, and the spin polarized

calculation is performed. Thus, the combination of 394 for the three indices are parallelized by MPI. It

is found that the speed-up ratio of the flat MPI parallelization, corresponding to 1 thread, reasonably

scales up to 64 processes. Furthermore, it can be seen that the hybrid parallelization, corresponding

to 2 and 4 threads, largely improves the speed-up ratio. By fully using 64 quad core processors,

180

0 20 40 60
0

40

80

120

160

Number of Processes

S
p

e
e

d
 u

p
 r

a
ti
o

1 thread

2 threads

4 threads

Figure 45: Speed-up ratio in the parallel computation of the calculation of the density matrix for the

FM junction of 8-zigzag graphene nanoribbon (ZGNR) by a hybrid scheme using MPI and OpenMP.

The speed-up ratio is defined by T1/Tp, where T1 and Tp are the elapsed times by a single core and a

parallel calculations. The cores used in the MPI and OpenMP parallelizations are called process and

thread, respectively. The parallel calculations were performed on a CRAY-XT5 machine consisting of

AMD opteron quad core processors (2.3GHz). In the benchmark calculations, the number of processes

is taken to be equivalent to that of processors. Therefore, in the parallelization using 1 or 2 threads,

3 or 2 cores are idle in a quad core processor.

corresponding to 64 processes and 4 threads, the speed-up ratio is about 140, demonstrating the good

scalability of the NEGF method. For the details see also Ref. [73]. It should be also noted that the

number of processes in the MPI parallelization can exceed the number of atoms in OpenMX Ver. 3.9.

43.9 NEGF method for the non-collinear DFT

OpenMX Ver. 3.9 supports the NEGF method coupled with the non-collinear DFT method, which

can be regarded as a full implementation of NEGF within NC-DFT. The spin-orbit coupling, the

DFT+U method, and the constraint schemes to control direction of spin and orbital magnetic moments

supported for NC-DFT are all compatible with the implementation of the NEGF method. Thus, it is

expected that a wide variety of problems can be treated, such as transport through magnetic domains

with spiral magnetic structure. The usage of the functionality is the same as that for the collinear

DFT case.

As an example, we show a result for zigzag graphene nanoribbon calculated by the NEGF method

coupled with NC-DFT in Fig. 46. It is assumed that spin moments at the zigzag edges align upward

and rightward in the left and right leads, respectively. Those calculations were performed by the

conventional NC band structure method with the constraint scheme as the step 1. Then, any constraint

was not applied in the calculation of the step 2. After getting the SCF convergence in the step 2,

it is found that the spin direction gradually rotates in the central region as shown in Fig. 46(a).

181

The calculations can be traced by input files ’Lead-L-8ZGNR-NC.dat’, ’Lead-R-8ZGNR-NC.dat’, and

’NEGF-8ZGNR-NC.dat’ stored in the directory ’work/negf example’. Also, you will find another

example for input files of a gold chain in the same directory.

L RC

(a) (b)

-4 -2 0 2 4
0

2

4

6

8

10

12

14

16

Energy (eV)

T
ra

n
s
m

is
s
io

n

Figure 46: (a) Zigzag graphene nanoribbon with non-collinear spin direction represented by arrow.

The length of the arrow corresponds to magnitude of the spin moment. In the calculations of the

step 1, the constraint scheme to control spin direction was applied so that spin moments at the zigzag

edges can align upward and rightward in the left and right leads, respectively. (b) Transmission of

electron through the channel region C shown in Fig. 46(a).

43.10 Examples

For user’s convenience, input files for five examples can be found in ’work/negf example’ as follows:

• Carbon chain under zero bias voltage

Step 1: Lead-Chain.dat

Step 2: NEGF-Chain.dat

• Graphene sheet under zero bias voltage

Step 1: Lead-Graphene.dat

Step 2: NEGF-Graphene.dat

• 8-zigzag graphene nanoribbon with an antiferromagnetic junction under a finite bias voltage of

0.3 V

Step 1: Lead-L-8ZGNR.dat, Lead-R-8ZGNR.dat

Step 2: NEGF-8ZGNR-0.3.dat

• 8-zigzag graphene nanoribbon with a non-collinear magnetic junction under zero bias

Step 1: Lead-L-8ZGNR-NC.dat, Lead-R-8ZGNR-NC.dat

Step 2: NEGF-8ZGNR-NC.dat

182

• Gold chain by NEGF coupled with NC-DFT under zero bias

Step 1: Lead-Au-Chain-NC.dat

Step 2: NEGF-Au-Chain-NC.dat

43.11 Automatic running test of NEGF

To check whether the NEGF calculation part is properly installed or not, an automatic running test

for the NEGF calculation can be performed by

For the MPI parallel running

% mpirun -np 16 openmx -runtestNEGF

For the MPI/OpenMP parallel running

% mpirun -np 8 openmx -runtestNEGF -nt 2

Then, OpenMX will run with five test cases including calculations of the steps 1 and 2, and compare

calculated results with the reference results which are stored in ’work/negf example’. The comparison

(absolute difference in the total energy, force, the averaged current density, the sum of the eigen

transmission) is stored in a file ’runtestNEGF.result’ in the directory ’work’. The reference results

were calculated using 16 MPI processes of a 2.6GHz Xeon machine. If the difference is within last

seven digits, we may consider that the installation is successful.

183

44 Maximally Localized Wannier Function

44.1 General

The following are descriptions on how to use OpenMX to generate maximally localized Wannier

function (MLWF) [122, 123]. Keywords and settings for controlling the calculations are explained.

The style of keywords are closely following those originally in OpenMX. Throughout the section, a

couple of results for silicon in the diamond structure will be shown for convenience. The calculation

can be traced by openmx code with an input file ’Si.dat’ in ’work/wf example’. There is no additional

post processing code. After users may get the convergent result for the conventional SCF process

for the electronic structure calculation, the following procedure explained below will be repeated by

changing a couple of parameters with the restart file until desired MLWFs are obtained.

To acknowledge in any publications by using the functionality, the citation of the reference [77]

would be appreciated:

Switching on generating MLWFs

To switch on the calculation, a keyword ’Wannier.Func.Calc’ should be explicitly set as ’on’. Its

default value is ’off’.

Wannier.Func.Calc on #default off

Setting the number of target MLWFs

The number of target MLWFs should be given explicitly by setting a keyword ’Wannier.Func.Num’

and no default value for it.

Wannier.Func.Num 4 #no default

Energy window for selecting Bloch states

The MLWFs will be generated from a set of Bloch states, which are selected by defining an

energy window covering the eigenenergies of them. Following Ref. [123], two energy windows are

introduced. One is so-called outer window, defined by two keywords, ’Wannier.Outer.Window.Bottom’

and ’Wannier.Outer.Window.Top’, indicating the lower and upper boundaries, respectively. The other

one is inner window, which is specified by two similar key words, ’Wannier.Inner.Window.Bottom’ and

’Wannier.Inner.Window.Top’. All these four values are given in the unit of eV relative to the Fermi

level. The inner window should be fully inside of the outer window. If the two boundaries of inner

window are equal to each other, it means inner window is not defined and not used in calculation.

There is no default values for the outer window, while 0.0 is the default value for two boundaries of

inner window. One example is as following:

Wannier.Outer.Window.Bottom -14.0 #lower boundary of outer window, no default value

Wannier.Outer.Window.Top 0.0 #upper boundary of outer window, no default value

Wannier.Inner.Window.Bottom 0.0 #lower boundary of inner window, default value 0.0

Wannier.Inner.Window.Top 0.0 #upper boundary of outer window, default value 0.0

184

To set these two windows covering interested bands, it is usually to plot band structure and/or density

of states before the calculation of MLWFs. If you want to restart the minimization of MLWFs by

reading the overlap matrix elements from files, the outer window should not be larger than that used

for calculating the stored overlap matrix. Either equal or smaller is allowed. The inner window

can be varied within the outer window as you like when the restart calculation is performed. This

would benefit the restarting calculation or checking the dependence of MLWFs on the size of both the

windows. For the restarting calculation, please see also the section (7) ’Restart optimization without

calculating overlap matrix’.

Initial guess of MLWFs

User can choose whether to use initial guess of target MLWFs or not by setting the keyword

’Wannier.Initial.Guess’ as ’on’ or ’off’. Default value is ’on’, which means we recommend user to use

an initial guess to improve the convergence or avoid local minima during the minimization of spread

function.

If the initial guess is required, a set of local functions with the same number of target MLWFs

should be defined. Bloch wave functions inside the outer window will be projected on to them.

Therefore, these local functions are also called as projectors. The following steps are required to

specify a projector.

A. Define local functions for projectors

Since the pseudo-atomic orbitals are used for projectors, the specification of them is the same as

for the basis functions. An example setting, for silicon in diamond structure, is as following:

Species.Number 2

<Definition.of.Atomic.Species

Si Si7.0-s2p2d1 Si_CA19

proj1 Si5.5-s1p1d1f1 Si_CA19

Definition.of.Atomic.Species>

In this example, since we employ PAOs from Si as projectors, an additional specie ’proj1’ is defined as

shown above. Inside the pair keywords ’<Definition.of.Atomic.Species’ and ’Definition.of.Atomic.Species>’,

in addition to the first line used for Si atoms, one species for the projectors is defined. Its name is

’proj1’ defined by ’Si5.5-s1p1d1f1’ and the pseudopotential ’Si CA19’. In fact, the pseudopotential

defined in this line will not be used. It is given just for keeping the consistency of inputting data

structure. One can use any PAO as projector. Also the use of only a single basis set is allowed for

each l-component. We strongly recommend user to specify ’s1p1d1f1’ in all cases to avoid possible

errors.

B. Specify the orbital, central position and orientation of a projector

Pair keywords ’<Wannier.Initial.Projectos’ and ’Wannier.Initial.Projectos>’ will be used to specify

185

the projector name, local orbital function, center of local orbital, and the local z-axis and x-axis for

the orbital orientation.

An example setting is shown here:

<Wannier.Initial.Projectors

proj1-sp3 0.250 0.250 0.250 -1.0 0.0 0.0 0.0 0.0 -1.0

proj1-sp3 0.000 0.000 0.000 0.0 0.0 1.0 1.0 0.0 0.0

Wannier.Initial.Projectors>

Each line contains the following items. For example, in the first line, the species name, ’proj1’, is de-

fined in pairing keywords ’Definition.of.Atomic.Species’. ’-’ is used to connect the projector name and

the selected orbitals. ’sp3’ means that the sp3 hybridized orbitals of this species is used as the initial

guess of four target Wannier functions (see also Table 6 for all the possible orbitals and their hybrids).

The projectors consisting of hybridized orbitals are centered at the position given by the following 3

numbers, ’0.25 0.25 0.25’, which are given in unit defined by keyword ’Wannier.Initial.Projectors.Unit’

(to be explained below). The next two sets of three numbers define the z-axis and x-axis of the local

coordinate system, respectively, where each axis is specified by the vector defined by three components

in xyz-coordinate. In this example, in the first line the local z-axis defined by ’-1.0 0.0 0.0’ points

to the opposite direction to the original x-axis, while the local x-axis defined by ’0.0 0.0 -1.0’ points

to the opposite direction to the original z-axis. In the second line the local axes are the same as the

original coordinate system.

The orbital used as projector can be the original PAOs or any hybrid of them. One must be aware

that the total number of projectors defined by ’sp3’ is 4. Similarly, ’sp’ and ’sp2’ contain 2 and 3

projectors, respectively. A list of supported PAOs and hybridizations among them can be found in

Table 9. Any name other than those listed is not allowed.

The projector can be centered anywhere inside the unit cell. To specify its location, we can use

the fractional (FRAC) coordinates relative to the unit cell vectors or Cartesian coordinates in atomic

unit (AU) or in angstrom (ANG). The corresponding keyword is ’Wannier.Initial.Projectors.Unit’.

Wannier.Initial.Projectors.Unit FRAC #AU, ANG or FRAC

K grid mesh and b vectors connecting neighboring k-points

The Monkhorst-Pack k grid mesh is defined by the keyword ’Wannier.Kgrid’. There is no default

setting for it. To use finite difference approach for calculating k-space differentials, b vectors connecting

neighboring k points are searched shell by shell according to the distance from a central k point. The

maximum number of searched shells is defined by keyword ’Wannier.MaxShells’. The default value is

12 and it should be increased if failure in finding a set of proper b vectors. The problem may happen

in case of a system having a large aspect ratio among unit vectors, and in this case you will see an

error message, while the value 12 works well in most cases. A proper setting of ’Wannier.Kgrid’ will

also help to find b vectors, where the grid spacing by the discretization for each reciprocal lattice

vector should be nearly equivalent to each other.

Wannier.MaxShells 12 # default value is 12.

Wannier.Kgrid 8 8 8 # no default value

186

Table 9: Orbitals and hybrids used as projector. The hybridization is done within the new coordinate

system defined by z- and x-axes.

Orbital name Number of included

projector

Description

s 1 s orbital from PAOs

p 3 px, py, pz from PAOs

px 1 px from PAOs

py 1 py from PAOs

pz 1 pz from PAOs

d 5 dz2 , dx2−y2 , dxy, dxz, dyz from PAOs

dz2 1 dz2 from PAOs

dx2-y2 1 dx2−y2 from PAOs

dxy 1 dxy from PAOs

dxz 1 dxy from PAOs

dyz 1 dxy from PAOs

f 7 fz3 , fxz2 , fyz2 , fzx2 , fxyz, fx3−3xy2 , f3yx2−y3 from

PAOs

fz3 1 fz3 from PAOs

fxz2 1 fxz2 from PAOs

fyz2 1 fyz2 from PAOs

fzx2 1 fzx2 from PAOs

fxyz 1 fxyz from PAOs

fx3-3xy2 1 fx3−3xy2 from PAOs

f3yx2-y3 1 f3yx2−y3 from PAOs

sp 2 Hybridization between s and px orbitals, including
1√
2
(s+ px) and

1√
2
(s− px)

sp2 3 Hybridization among s, px, and py orbitals, including
1√
3
s− 1√

6
px+

1√
2
py,

1√
3
s− 1√

6
px− 1√

2
py and

1√
3
s+ 2√

6
px

sp3 4 Hybridization among s, px, py and pz orbitals:
1√
2
(s+ px + py + pz),

1√
2
(s+ px − py − pz)

1√
2
(s− px + py − pz),

1√
2
(s− px − py + pz)

sp3dz2 5 Hybridization among s, px, py, pz and dz2 orbitals:
1√
3
s− 1√

6
px +

1√
2
py,

1√
3
s− 1√

6
px +

1√
2
py,

1√
3
s− 2√

6
px

1√
2
pz +

1√
2
dz2 ,− 1√

2
pz +

1√
2
dz2

sp3deg 6 Hybridization among s, px, py, pz and dz2 , dx2−y2 or-

bitals: 1√
6
s− 1√

2
px − 1√

12
dz2 +

1
2dx2−y2 ,

1√
6
s+ 1√

2
px − 1√

12
dz2 +

1
2dx2−y2 ,

1√
6
s− 1√

2
py − 1√

12
dz2 − 1

2dx2−y2 ,
1√
6
s+ 1√

2
py − 1√

12
dz2 − 1

2dx2−y2 ,
1√
6
s− 1√

2
pz +

1√
3
dz2 ,

1√
6
s+ 1√

2
pz +

1√
3
dz2

187

Minimizing spread of WF

For entangled band case [123], two steps are needed to find the MLWFs. The first step is to

minimize the gauge invariant part of spread function by disentangling the non-isolated bands. The

second step is the same as isolated band case [122]. The gauge dependent part is optimized by

unitary transformation of the selected Bloch wave functions according to the gradient of spread func-

tion. For the first step, three parameters are used to control the self-consistence loop. They are

’Wannier.Dis.SCF.Max.Steps’, ’Wannier.Dis.Conv.Criterion’, and ’Wannier.Dis.Mixing.Para’. They

are the maximum number of SCF loops, the convergence criterion, and the parameter to control the

mixing of input and output subspace projectors, respectively.

Wannier.Dis.SCF.Max.Steps 2000 # default 200

Wannier.Dis.Conv.Criterion 1e-12 # default 1e-8

Wannier.Dis.Mixing.Para 0.5 # default value is 0.5

For the second step, three minimization methods are available. One is a steepest decent (SD)

method, and the second one is a conjugate gradient (CG) method. The third one is a hybrid

method which uses the SD method firstly and then switches to the CG method. The keyword ’Wan-

nier.Minimizing.Scheme’ indicates which method to be used. ’0’, ’1’, and ’2’ mean the simple SD

method, the CG method, and hybrid method, respectively. The step length for the SD method

is set by the keyword ’Wannier.Minimizing.StepLength’. In the CG method, a secant method is

used to determine the optimized step length. The maximum secant steps and initial step length

is specified by ’Wannier.Minimizing.Secant.Steps’ and ’Wannier.Minimizing.Secant.StepLength’, re-

spectively. The maximum number of minimization step and convergence criterion are controlled by

’Wannier.Minimizing.Max.Steps’ and ’Wannier.Minimizing.Conv.Criterion’, respectively.

Wannier.Minimizing.Scheme 2 # default 0, 0=SD 1=CG 2=hybrid

Wannier.Minimizing.StepLength 2.0 # default 2.0

Wannier.Minimizing.Secant.Steps 5 # default 5

Wannier.Minimizing.Secant.StepLength 2.0 # default 2.0

Wannier.Minimizing.Conv.Criterion 1e-12 # default 1e-8

Wannier.Minimizing.Max.Steps 200 # default 200

In the hybrid minimization scheme, SD and CG have the same number of maximum minimization

steps as specified by ’Wannier.Minimizing.Max.Steps’.

Restarting optimization without calculating overlap matrix

If the overlap matrix M
(k,b)
mn has been calculated and stored in a disk file, the keyword ’Wan-

nier.Readin.Overlap.Matrix’ can be set as ’on’ to restart generating MLWF without calculating M
(k,b)
mn

again.

Wannier.Readin.Overlap.Matrix off # default is on

This can save the computational time since the calculation of overlap matrix is time consuming. The

code will read the overlap matrix as well as the eigenenergies and states from the disk file. One should

keep in mind that the outer window and k grid should be the same as those used for calculating

188

(a) (b)

-10

-5

0

5

10

L G X K G

e
V

Figure 47: (a) The interpolated band structure (symbolic line) of Si in diamond structure is compared

with the original band structure (solid line). (b) One of the eight converged MLWFs from four valence

states and four conduction states near Fermi level of Si in diamond structure. It is obtained with an

initial guess of sp3 hybrid.

the stored overlap matrix and eigenvalues. The consistency will be checked in the code. The inner

window, initial guess of MLWF as well as the convergence criteria can be adjusted for restarting

optimization. If ’Wannier.Readin.Overlap.Matrix’ is set as ’off’, the overlap matrix will be calculated

and automatically stored into a disk file. The file name is defined by ’System.Name’ with an file

extension ’.mmn’. The eigenenergies and states are also stored in the disk file with extension ’.eigen’.

44.2 Analysis

Plotting interpolated band structure

To plot the interpolated band structure, set ’Wannier.Interpolated.Bands’ to be ’on’.

Wannier.Interpolated.Bands on # on|off, default=off

Other necessary settings, like k-path and sampling density along each path, are borrowed from those

for plotting band dispersion in OpenMX. Therefore, the keyword ’Band.dispersion’ should be set as

’on’ in order to draw interpolated band structure. After convergence, interpolated band dispersion

data will be found in a file with the extension name ’.Wannier Band’, which has the same format

as ’.Band’ file. As an example, the interpolated band structure of Si in diamond structure is shown

together with its original band structure in Fig. 47(a).

189

Plotting MLWF

To plot the converged MLWFs, please change the keyword ’Wannier.Function.Plot’ to be ’on’. The

default value of it is ’off’.

Wannier.Function.Plot on # default off

Wannier.Function.Plot.SuperCells 1 1 1 # default=0 0 0

If it is turned on, all the MLWFs will be plotted. They are written in the Gaussian cube file format

with the file extension such as ’.mlwf1 4 r.cube’. The file is named in the same style as HOMO

or LUMO molecular orbitals files. The first number after ’.mlwf’ indicates the spin index and the

following one are index of MLWFs and the last letter ’r’ or ’i’ means the real or imaginary part

of the MLWF. Users can set the supercell size for plotting MLWF. It is defined by the keyword

’Wannier.Function.Plot.SuperCells’. ’1 1 1’ in the above example means that the unit cell is extended

by one in both the plus and minus directions along the a-, b-, and c-axes by putting the home

unit cell at the center, and therefore the MLWFs are plotted in an extended cell consisting of 27 (=

(1∗2+1)∗(1∗2+1)∗(1∗2+1)) cells in this case. Figure 47(b) shows one of the eight converged MLWFs

from four valence states and four conduction states near Fermi level of Si in diamond structure.

44.3 Monitoring optimization of spread function

The output during optimization steps is printed to the standard output. To monitor the opti-

mization progress, the following method may be helpful. For convenient, we assume the standard

output is stored in a file ’stdout.std’. The following example is for Si.dat which can be found in

openmx*.*/work/wf example, and each user can trace the same calculation.

DISE

Monitor the self-consistent loops for disentangling progress (the first step of optimization):

% grep "DISE" stdout.std

| Iter | Omega_I (Angs^2) | Delta_I (Angs^2) | ---> DISE

| 1 | 18.371525257652| 18.371525257652| ---> DISE

| 2 | 17.955767336391| -0.415757921261| ---> DISE

| 3 | 17.659503060694| -0.296264275698| ---> DISE

| 4 | 17.454033576174| -0.205469484520| ---> DISE

| 5 | 17.311180447271| -0.142853128902| ---> DISE

| 6 | 17.210945408916| -0.100235038355| ---> DISE

| 7 | 17.139778800398| -0.071166608519| ---> DISE

| 8 | 17.088603102826| -0.051175697572| ---> DISE

| 9 | 17.051329329614| -0.037273773211| ---> DISE

| 10 | 17.023842837298| -0.027486492316| ---> DISE

........

.....

190

...

.

where ’Iter’, ’Omega I’, and ’Delta I’ mean the iteration number, the gauge invariant part of the

spread function, and its difference between two neighboring steps. The criterion given by the keyword

’Wannier.Dis.Conv.Criterion’ is applied to ’Delta I’.

CONV

Monitor the optimization of the gauge dependent part of the spread function (the second step of

optimization):

% grep "CONV" stdout.std

Opt Step |Mode of Gradient|d_Omega_in_steps| d_Omega | (in Angs^2) ---> CONV

| SD 1 | 6.52434844E-01 | 5.41612774E-04 |-5.41340331E-04| ---> CONV

| SD 2 | 6.51123660E-01 | 5.40524307E-04 |-5.40253165E-04| ---> CONV

.....

.....

| SD 200 | 4.77499752E-01 | 3.96392019E-04 |-3.96271308E-04| ---> CONV

|Opt Step |Mode of Gradient| d_Omega | (Angs^2) ---> CONV

| CG 1 | 8.61043764E-01 | -3.24716990E-01| ---> CONV

.....

.....

| CG 58 | 1.67083857E-12 | -5.37225101E-13| ---> CONV

| CG 59 | 5.44431651E-13 | -1.98972260E-13| ---> CONV

*** ---> CONV

CONVERGENCE ACHIEVED ! ---> CONV

*** ---> CONV

CONVERGENCE ACHIEVED ! ---> SPRD

where ’Opt Step’ and ’Modu.of Gradient’ are the optimization step in either ’SD’ or ’CG’ method

and the modulus of gradient of the spread function. The difference between two neighboring steps

in the gauge dependent spread functions is calculated in two different way in the SD method, giving

’d Omega in steps’ and ’d Omega’. ’d Omega in steps’ is given by

dΩ = ϵ
∑
k

||G(k)||2,

where ϵ is the step length, G(k) is the gradient of the spread function. The details of the equation can

be found in Ref. [122]. On the other hand, ’d Omega’ is given by

dΩ = Ω(n+1) − Ω(n),

where n is the iteration number. In the CG method, only ’d Omega’ is evaluated. The criterion given

by the keyword ’Wannier.Minimizing.Conv.Criterion’ is applied to ’Modu.of Gradient’.

191

SPRD

Monitor the variation of spread of the Wannier functions:

% grep "SPRD" stdout.std

|Opt Step | Omega_I | Omega_D | Omega_OD | Tot_Omega | (in Angs^2) ---> SPRD

| SD 1 | 16.93053479 | 0.13727387 | 6.57748455 | 23.64529321 | ---> SPRD

| SD 2 | 16.93053479 | 0.13724827 | 6.57696989 | 23.64475295 | ---> SPRD

| SD 3 | 16.93053479 | 0.13722279 | 6.57645620 | 23.64421378 | ---> SPRD

| SD 4 | 16.93053479 | 0.13719743 | 6.57594347 | 23.64367569 | ---> SPRD

.....

.....

| SD 199 | 16.93053479 | 0.13399285 | 6.48989479 | 23.55442243 | ---> SPRD

| SD 200 | 16.93053479 | 0.13398326 | 6.48950811 | 23.55402616 | ---> SPRD

|Opt Step | Omega_I | Omega_D | Omega_OD | Tot_Omega | (Angs^2) ---> SPRD

| CG 1 | 16.93053479 | 0.15480701 | 6.14396737 | 23.22930917 | ---> SPRD

| CG 2 | 16.93053479 | 0.17172507 | 5.87830203 | 22.98056189 | ---> SPRD

| CG 3 | 16.93053479 | 0.17012089 | 5.78940789 | 22.89006357 | ---> SPRD

.....

.....

| CG 57 | 16.93053479 | 0.16557875 | 5.73752928 | 22.83364282 | ---> SPRD

| CG 58 | 16.93053479 | 0.16557876 | 5.73752928 | 22.83364282 | ---> SPRD

| CG 59 | 16.93053479 | 0.16557876 | 5.73752928 | 22.83364282 | ---> SPRD

*** ---> SPRD

CONVERGENCE ACHIEVED ! ---> SPRD

*** ---> SPRD

where ’Opt Step’ is the optimization step in either ’SD’ or ’CG’ method. ’Omega I’ is the gauge

invariant part of spread function. ’Omega D’ and ’Omega OD’ are the gauge dependent diagonal and

off-diagonal contribution, respectively. ’Tot Omega’ is the sum up of all the above three components

of the spread function.

CENT

Monitor the variation of Wannier function center:

% grep "CENT" stdout.std

WF 1 (1.14164289, 1.14164298, 1.14164266) | 2.95573380 --->CENT

WF 2 (1.55716251, 1.55716342, 1.14164203) | 2.95572597 --->CENT

WF 3 (1.55716191, 1.14164295, 1.55716190) | 2.95572978 --->CENT

WF 4 (1.14164389, 1.55716087, 1.55716055) | 2.95572957 --->CENT

WF 5 (0.20775982, 0.20775967, 0.20775893) | 2.95572677 --->CENT

WF 6 (0.20776045,-0.20775959,-0.20775914) | 2.95572605 --->CENT

WF 7 (-0.20775851, 0.20775981,-0.20775888) | 2.95572925 --->CENT

WF 8 (-0.20775787,-0.20775767, 0.20775933) | 2.95573335 --->CENT

Total Center (5.39761509, 5.39761243, 5.39760738) sum_spread 23.64583455 --->CENT

SD 1 --> CENT

WF 1 (1.14164582, 1.14164592, 1.14164559) | 2.95566613 --->CENT

WF 2 (1.55715957, 1.55716049, 1.14164497) | 2.95565831 --->CENT

WF 3 (1.55715897, 1.14164588, 1.55715897) | 2.95566211 --->CENT

WF 4 (1.14164683, 1.55715794, 1.55715761) | 2.95566190 --->CENT

192

WF 5 (0.20775689, 0.20775673, 0.20775599) | 2.95565910 --->CENT

WF 6 (0.20775752,-0.20775666,-0.20775620) | 2.95565838 --->CENT

WF 7 (-0.20775558, 0.20775687,-0.20775594) | 2.95566158 --->CENT

WF 8 (-0.20775493,-0.20775474, 0.20775639) | 2.95566569 --->CENT

Total Center (5.39761509, 5.39761243, 5.39760738) sum_spread 23.64529321 --->CENT

SD 2 --> CENT

.....

.....

CG 59 --> CENT

WF 1 (1.14585349, 1.14584696, 1.14584386) | 2.85421846 --->CENT

WF 2 (1.55295615, 1.55294970, 1.14584792) | 2.85422167 --->CENT

WF 3 (1.55296133, 1.14584610, 1.55295139) | 2.85421070 --->CENT

WF 4 (1.14584053, 1.55296761, 1.55296391) | 2.85417080 --->CENT

WF 5 (0.20356211, 0.20355857, 0.20355600) | 2.85418933 --->CENT

WF 6 (0.20355119,-0.20355008,-0.20355192) | 2.85422458 --->CENT

WF 7 (-0.20355306, 0.20355395,-0.20355905) | 2.85420611 --->CENT

WF 8 (-0.20355603,-0.20356000, 0.20355520) | 2.85420117 --->CENT

Total Center (5.39761571, 5.39761281, 5.39760730) sum_spread 22.83364282 --->CENT

where the optimization method and step are indicated by starting with ’SD’ or ’CG’. Lines starting

with ’WF’ show the center of each Wannier function with (x, y, z) coordinates in Å unit. and its

spread in Å2. The sum up of all the Wannier functions center and spread are given in the line starting

with ’Total Center’.

44.4 Examples for generating MLWFs

Examples for different materials are prepared in the installation directory: work/wf example.

• Benzene.dat

for generating six pz-orbital like Wannier functions from benzene’s six π molecular orbitals.

• GaAs.dat

for generating maximally localized Wannier functions from four valence bands of GaAs.

• Si.dat

for generating eight Wannier functions by including both valence and conduction bands of Si.

The initial guess is sp3 hybrids.

• symGra.dat

for generating the Wannier function for graphene sheet. The initial guess is sp2 hybrids and pz
orbitals on carbon atoms.

• pmCVO.dat

for generating t2g-like Wannier functions for cubic perovskite CaVO3 without spin polarization

calculation.

• NC CVO.dat

similar to the case of pmCVO.dat except for the inclusion of spin-orbit coupling.

193

• GaAs NC.dat

similar to the case of GaAs.dat but spin-orbit coupling is included.

• VBz.dat

for generating Wannier functions for Vanadium-Benzene infinite chain, which is studied in Ref.

[77].

44.5 Output files

Additional four files generated by the calculation are explained below. They have different extension

names. ’.mmn’ file is for storing the overlap matrix elements M
(k,b)
mn . ’.amn’ is for the initial guess

projection matrix element A
(k)
mn. ’.eigen’ is for the eigenenergies and eigenstates at each k point.

The ’.HWR’ file is for the hopping integrals among MLWFs on a set of lattice vectors which lies

in the Wigner-Seitz supercells conjugated with the sampled k grids. For restarting the optimization

calculation, ’.mmn’ file will be read instead of written. More detailed information of the four files will

be given below.

A. File format of ’.mmn’ file

This file structure is closely following that in Wannier90 [145]. The first line of this file is the description

of the numbers in the second line. The numbers from left to right in the second line are the number

(Nwin) of included bands within the outer window, the number of k points, the number of b vectors,

the number of spin component, respectively. The next lines are data blocks of M
(k,b)
mn . The most outer

loop is for spin component. The next is the loop of k points and then b vectors. The most inner loops

are the band index n and m, respectively. In each block, the first line are 5 numbers. The first two

numbers are the index of present k point and the index of neighboring point k+b, respectively. The

next three numbers indicates in which unit cell k+b point lies. From the second line are the real and

imaginary part of each matrix element. In each block, there are Nwin ×Nwin complex numbers. An

example file, generated by the input file ’Si.dat’, is shown here:

Mmn_zero(k,b). band_num, kpt_num, bvector num, spinsize

10 512 8 1

1 512 0 0 0

0.571090282808 -0.819911068319

0.000031357498 -0.000045367307

-0.000149292597 0.000215591228

-0.003821911756 0.005522040495

0.028616452988 0.019804944108

0.003677357735 0.002544970842

-0.006610037555 -0.004574771451

-0.000950861169 -0.000658076633

-0.000000008855 0.000000005272

........

.....

...

194

.

B. File format of ’.amn’ file

This file structure is closely following that in Wannier90 [145]. The first line of the file is the description
of the whole file. Obviously, the four numbers in the second line are the number (Nwin) of bands
within the outer window, the number of k points, the number of target MLWFs and the number of
spin component, respectively. Similarly, the data blocks are written in loops. The most outer loop
is spin component and then k points, target MLWFs and number of bands. As described in the first
line of this file. In each block, the first three integers are the band index, the index of MLWFs and
index of k points, respectively. The next are real and imaginary of that matrix element. An example
file, generated by the input file ’Si.dat’, is shown here:

Amn. Fist line BANDNUM, KPTNUM, WANNUM, spinsize. Next is m n k...

10 512 8 1

1 1 1 0.053943539299 0.000161703961

2 1 1 -0.000525446164 -0.000000008885

3 1 1 0.002498021589 0.000000084311

... ...

... ...

10 1 1 -0.000000023582 -0.000000000069

1 2 1 0.053943534952 0.000161703965

2 2 1 0.033382665372 0.000000493665

3 2 1 -0.051189536188 -0.000001480360

........

.....

...

.

C. File format of ’.eigen’ file

This file contains the eigenenergies and eigenstates at each k point. The first line is the Fermi level of

system. The number of bands is indicated in the second line of the file. The next data are mainly in

two parts. The first part is the eigenenergies and the second one is the corresponding eigenstates. In

each part, the loop of spin component is the most outer one. The next loop is k points, followed by

band index. For eigenstates, there is one more inner loop for the basis set. An example file, generated

by the input file ’Si.dat’, is shown here:

Fermi level -0.112747

Number of bands 10

1 1 -0.566228100179

2 1 -0.122518136808

3 1 -0.122518129040

4 1 -0.122518115949

5 1 -0.026598417854

... ...

... ...

WF kpt 1 (0.00000000,0.00000000,0.00000000)

1 1 0.4790338281 -0.0014359768

1 2 0.0440709749 -0.0001321095

195

1 3 -0.0000003333 -0.0000000000

........

.....

...

.

D. File format of ’.HWR’ file

This file contains the hopping integrals between the mth MLWF, |m,0⟩, in the home unit cell and the

nth MLWF, |n,R⟩, in the unit cell at R. The matrix element ⟨m,0|Ĥ|n,R⟩ is written in the following

way. In ’.HWR’ file, the first line is just a description. The number of MLWFs, number of lattice

vectors inside of Wigner-Seitz supercell are in the second and third lines, respectively. The unit cell

vectors are given in the fifth, sixth, and seventh lines. Spin polarization, whether it is a non-spin

polarized calculation or a spin polarized one with collinear or noncollinear magnetic configuration, is

given in the eighth line. The ninth line gives the Fermi level. From the tenth line, the block data

starts. The outer most loop is spin component. The next loop is for R and the last two are loops of

m and n, respectively. Each R is written at the first line of each block together with its degeneracy.

The index of m and n is printed and followed by the real and imaginary parts of hopping integrals in

each line. An example file, generated by the input file ’Si.dat’, is shown here:

Real-space Hamiltonian in Wannier Gauge on Wigner-Seitz supercell.

Number of Wannier Function 8

Number of Wigner-Seitz supercell 617

Lattice vector (in Bohr)

5.10000 0.00000 5.10000

0.00000 5.10000 5.10000

5.10000 5.10000 0.00000

collinear calculation spinsize 1

Fermi level -0.112747

R (-6 2 2) 4

1 1 -0.000078903162 -0.000000003750

1 2 0.000024237763 -0.000000000148

1 3 0.000024237691 -0.000000000341

1 4 0.000024238375 0.000000004117

1 5 0.000072656918 -0.000000000196

1 6 -0.000022470544 -0.000000000859

1 7 -0.000022481557 0.000000000750

1 8 -0.000022492706 0.000000000148

2 1 0.000024238091 0.000000000049

2 2 -0.000078901874 -0.000000000011

2 3 0.000024234912 -0.000000000023

........

.....

...

.

196

44.6 Automatic running test of MLWF

To check whether the MLWF calculation part is properly installed or not, an automatic running test

for the MLWF calculation can be performed by

For the MPI parallel running

% mpirun -np 16 openmx -runtestWF

For the MPI/OpenMP parallel running

% mpirun -np 8 openmx -runtestWF -nt 2

Then, OpenMX will run with eight test cases, and compare calculated results with the reference

results which are stored in ’work/wf example’. The comparison (absolute difference in the spread and

Ω functions) is stored in a file ’runtestWF.result’ in the directory ’work’. The reference results were

calculated using a Xeon cluster machine. If the difference is within last seven digits, we may consider

that the installation is successful.

197

45 Interface with Wannier90

OpenMX is interfaced with Wannier90 [145] which constructs maximally localized Wannier functions,

and calculates physical properties such as Wannier projected DOS and bandstructure, Fermi surface,

Berry phase related properties (anomalous Hall conductivity and optical conductivity), and thermo-

electric properties. For the calculations, you need to set two keywords as follows:

Wannier.Func.Calc on # on|off, default=off

Wannier90.fileout on # on|off, default=off

Once you run a job by an input file with the parameter settings shown above, you will see that the

job will finish with the following message:

The input files for Wannier90,

System.Name.amn

System.Name.mmn

System.Name.eig

System.Name.win

are successfully generated.

After finishing the calculation, you will obtain the four files listed above. The first three files will

be read by ’wannier90.x’ of Wannier90, and the last file ’System.Name.win’ is an input file to han-

dle the calculation of ’wannier90.x’. The schematic computational flow is shown in Fig. 48. With

the overlap matrix ’System.Name.mmn’, the projection matrix ’System.Name.amn’, and eigenvalues

’System.Name.eig’, maximally localized Wannier functions are calculated by using ’wannier90.x’. Af-

ter getting the maximally localized Wannier functions, by using ’postw90.x’ of Wannier90 you can

calculate a variety of physical properties such as Berry phase related properties (anomalous Hall con-

ductivity and optical conductivity) and thermoelectric properties. In the file ’System.Name.win’ the

default setting is for the calculation of optical conductivity as

berry_task kubo

By changing the option for the keyword ’berry task’ properly, you may be able to calculate other

physical quantities. Some of the options for the keyword are listed below:

berry_task kubo # optical conductivity

berry_task ahc # anomalous Hall conductivity

As for the more details of Wannier90, please refer to the website of Wannier90 [145].

As examples, Figures 49 and 50 show Seebeck coefficient of silicon in the diamond structure and

optical conductivity of SrVO3, respectively, calculated by interfacing OpenMX with Wannier90 with

the above mentioned scheme. The input files ’Si-Wannier90.dat’ and ’SrVO3-Wannier90.dat’ can be

found in the directory ’work’.

198

���������	
���	��������

��� �������	
�������
����������
���

����
�� ����	
����
	�����
����

����������	
��������
���������	
��

��������	
���������	
�
	�

��������	�����

��������	���	�

��������	������

��������	����

�	

������
���	�� �

���������	
����� ��

�
�������	

�����

����������
��	�������������
���
���������������	

������

������� ��������
��!���
������������"��
#$

������ �������	
���
	�!���"#

�$��������	
�����������������%��	
��

��	�
����
	�!���"#

����������	
��������	�� ����������	
�������		�����

��������	�����

��������	���	�

��������	������

��������	����
 �
�������	

�����

�����������	

������%��
��	

������

��	�
���������	

Figure 48: Schematic computational flow for the interface of OpenMX with Wannier90.

-15

-10

-5

 0

 5

 W L Γ X U/K Γ

E
n

e
rg

y
 [
e

V
]

-1000

-800

-600

-400

-200

 0

 200

 400

 600

 800

 1000

-3.4 -3.3 -3.2 -3.1 -3 -2.9 -2.8 -2.7

S
e
e
b
e

c
k
 c

o
e

ff
.

[µ
V

/K
]

Chemical potential [eV]

S<0 �

��������	���
������

S>0 �

���	���
������

����
�	��	���

� �	������� ���
�

����������
	����	OpenMX ���������	

���	Wannier90

� ������� �����������	��	T=300K

��������
	����	��	�	������� ���
�

���

���

Figure 49: (a) Band structure of silicon in the diamond structure, calculated by 8 Wannier orbitals

constructed from OpenMX and Wannier90 calculations, and (b) Seebeck coefficient at T=300K esti-

mated from the 8 Wannier bands. The input file used for the OpenMX calculation is ’Si-Wannier90.dat’

which is found in the directory ’work’.

199

���

��������	
�	���

���
���

���	
������

���

Figure 50: (a) Band structure of SrVO3, (b) optical conductivity of SrVO3 calculated by interfacing

OpenMX with Wannier90, which is well compared to an experimental optical conductivity in Ref.

[147]. The input file used for the OpenMX calculation is ’SrVO3-Wannier90.dat’ which is found in

the directory ’work’.

200

46 Numerically exact low-order scaling method for diagonalization

A numerically exact low-order scaling method is supported for large-scale calculations [124]. The

computational effort of the method scales as O(N(logN)2), O(N2), and O(N7/3) for one, two, and three

dimensional systems, respectively, where N is the number of basis functions. Unlike O(N) methods

developed so far the approach is a numerically exact alternative to conventional O(N3) diagonalization

schemes in spite of the low-order scaling, and can be applicable to not only insulating but also metallic

systems in a single framework. The well separated data structure is suitable for the massively parallel

computation as shown in Fig. 47. However, the advantage of the method can be obtained only when

a large number of CPU cores are used for parallelization, since the prefactor of computational efforts

can be large. When you calculate low-dimensional large-scale systems using a large number of CPU

cores, the method can be a proper choice. To choose the method for diagonzalization, you can specify

the keyword ’scf.EigenvalueSolver’ as

scf.EigenvalueSolver cluster2

The method is supported only for colliear DFT calculations of cluster systems or periodic systems

with the Γ point for the Brillouin zone sampling. As well as the total energy calculation, the force

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

Number of Processes

S
p

e
e

d

�

u
p

 R
a
ti
o

1 thread

2 threads

4 threads

Conventional (1 thread)

3.76 sec.

7.09 sec.

Figure 51: Speed-up ratio in the parallel computation of the diagonalization in the SCF calculation

for DNA by a hybrid scheme using MPI and OpenMP. The speed-up ratio is defined by 2T2/Tp, where

T2 and Tp are the elapsed times obtained by two MPI processes and by the corresponding number of

processes and threads. The parallel calculations were performed on a CRAY-XT5 machine consisting

of AMD opteron quad core processors (2.3 GHz). The electric temperature of 700 K and 80 poles for

the contour integration are used. For comparison, the speed-up ratio for the parallel computation of

the conventional scheme using Householder and QR methods is also shown for the case with a single

thread. The elapsed time at cases pointed by arrow is also shown for both the low-order scaling and

conventional methods.

201

Table 10: Total energy of a C60 molecule calculated by the numerically exact low-order scaling

method and conventional method, and its computational time (sec.) for the diagonalization

using 8 processes in the MPI parallelization. The input file is ’C60 LO.dat’ in the directory

’work’.

Method Total energy (Hartree) Computational time (sec.)

Low-order -343.896238929370 69.759

Conventional -343.896238929326 2.784

calculation by the low-order scaling method is supported. Thus, it is possible to perform geometry

optimization. However, calculations of density of states and wave functions are not supported yet.

The number of poles in the contour integration [74] is controlled by a keyword:

scf.Npoles.ON2 90

The number of poles to achieve convergence does not depend on the size of system [124], but depends

on the spectrum radius of system. If the electronic temperature more 300 K is used, the use of 100

poles is enough to get sufficient convergence for the total energy and forces. As an illustration, we

show a calculation by the numerically exact low-order scaling method using an input file ’C60 LO.dat’

stored in the directory ’work’.

% mpirun -np 8 openmx C60_LO.dat

As shown in Table 10, the total energy by the low-order scaling method is equivalent to that by

the conventional method within double precision, while the computational time is much longer than

that of the conventional method for such a small system. We expect that the crossing point between

the low-order scaling and the conventional methods with respect to computational time is located at

around 300 atoms when using more than 100 cores for the parallel computation, although it depends

on the dimensionality of system.

202

47 Effective screening medium method

47.1 General

The effective screening medium (ESM) method is a first-principles computational method for charged

or biased systems consisting of a slab [125, 126, 127, 128]. In this method, a 2-dimensional periodic

and 1-dimensional optional boundary conditions are imposed on a model cell (Fig. 52(a)), and the

Poisson’s equation is solved under those set of boundary conditions by using the Green’s function

method. An isolated slab, charged slab, and a slab under a uniform electric field can be treated by

introducing the following combinations of semi-infinite media (ESMs).

(a) Isolated slab: vacuum (relative permittivity ε = 1) + vacuum

(b) Charged slab: vacuum + ideal metal (relative permittivity ε = ∞)

(c) Slab under an electric filed: ideal metal + ideal metal

Here slab means a system consisting of molecules spaced out 2-dimensionally as well as a slab generally

used as a surface model. An isolated slab model can be used for investigations of a polarized substrate,

and charged slab model is applicable to a simulation of an electrode surface. A slab model under an

electric filed sandwiched between two ideal-metal media would be appropriate for a material located

in a metal capacitor. In OpenMX, a unit cell used in an ESM-method calculation is constructed as

follows (see Fig. 52(a)):

(a) (b)

Figure 52: (a) Schematic view of a slab with semi-infinite media (ESMs). ESM (I) and (II) are placed

at cell-boundaries, x = 0 and a (a: the length of the cell along x-axis), respectively. (b) An example of

a unit cell for a MD calculation of solid surface-liquid interface model system with the ESM method.

The slab and ESMs are placed parallel to the y-z plane.

203

1. The a-axis of the cell is perpendicular to the b-c plane and is parallel to the x-axis.

2. Two periodic boundary conditions are set in y- and z-axis directions

3. ESMs are placed at the cell-boundaries (x = 0 and a).

4. The origin of the x-axis is set at the cell boundary.

5. A fractional coordinate for x-axis is designated between 0 and 1.

A calculation based on the ESM-method can be performed by the following keyword:

ESM.switch on3 # off, on1=v|v|v, on2=m|v|m, on3=v|v|m, on4=on2+EF

ESM.buffer.range 4.5 # default=10.0 (ang),

where on1, on2, on3, and on4 represent combinations of ESMs, ’vacuum + vacuum’, ’ideal metal +

ideal metal’, ’vacuum + ideal metal’, and ’ideal metal + ideal metal under an electric field’, respec-

tively. The keyword ’ESM.buffer.range’ indicates the width of an exclusive region for atoms with ESM

(unit is Å), which is necessary in order to prevent overlaps between wave functions and ESM.

1. ESM.switch = on1:

Both ESM (I) and (II) are semi-infinite vacuum media. In this case, note that the total charge

of a calculation system should be neutral. The keyword ’scf.system.charge’ should be set to zero.

2. ESM.switch = on2:

Both ESM (I) and (II) are semi-infinite ideal-metal media. One can deal with charged systems.

The keyword ’scf.system.charge’ can be set to a finite value.

3. ESM.switch = on3:

ESM (I) and (II) are a semi-infinite vacuum and ideal metal medium, respectively. One can deal

with charged systems. The keyword ’scf.system.charge’ can be set to be a finite value.

4. ESM.switch = on4:

An electric field is imposed on the system with the same combination of ESMs to ’on2’. By

using the following keyword, one can impose a uniform electric field on a calculation system;

ESM.potential.diff 1.0 # default=0.0 (eV),

where you can specify a potential difference between two semi-infinite ideal-metal media with

reference to the bottom ideal metal (unit is eV). The electric filed is determined by the length

of the cell, a, and the potential difference.

5. In case of MD calculations with the ESM method:

One can perform MD calculations of solid surface-liquid interface systems with any combinations

of ESMs. A surface-model slab and a liquid region should be located as shown in Fig. 52(b).

In order to restrict liquid molecules within a given region, an cubic barrier potential can be

introduced by using the following keyword (see Fig. 52(b)):

204

ESM.wall.position 6.0 # default=10.0 (ang)

ESM.wall.height 100.0 # default=100.0 (eV),

where ’ESM.wall.position’ denotes the distance between the upper edge of the cell and the origin

of the barrier potential, a − xb, and ’ESM.wall.height’ is the height of the potential (value of

potential energy) at x = xb + 1.0 (Å). It is also recommended to fix positions of atoms on the

bottom of a surface-model slab during the MD run.

6. Choice of the axis to be treated by ESM method

As shown in Fig. 52(a), we assume in the manual that the treatment by the ESM method is

applied to the x-axis. However, the choice of the axis to be treated by ESM method can be

changed by the keyword ’ESM.direction’ as

ESM.direction x # x|y|z, default=x

The default direction is the x-axis as shown in Fig. 52(a).

47.2 Example of test calculation

Let us show effects of ESMs on the electronic structure of a system. As a demonstration calculation,

the distribution of excess charge ρex in a 1×1 Al-terminated Si(111) slab under the boundary condition,

’vacuum + ideal metal’ (ESM.switch = on3), is presented in Fig. 53(a) (the input file of this test

calculation ’Al-Si111 ESM.dat’ is found in the directory ’work’). It can be seen that segregation

of the doped charge in the slab happened due to the attractive interaction between the doped and

the corresponding mirror charges. Figure 53(b) indicates the change of the Hartree potential ∆VH

corresponding to each condition as shown in Fig. 53(a), where the potential inside the Al-Si(111) slab

and the electric field between the slab and the ideal-metal medium change according to the amount

of the doped charge.

205

Figure 53: Al-Si(111) slab model with vacuum and ideal-metal ESMs; (a) Distributions of excess

charge in Al-Si(111) slab, ρex; (b) Bias-induced changes of Hartree potentials of Al-Si(111) slab, ∆VH.

The number of doped charge is -0.01, -0.005, +0.005, and +0.01 e. Each plot is obtained as a difference

in difference charge or difference Hartree potential with reference to a neutral slab with the same ESMs.

206

48 Calculations of work functions

Using cube files of either System.Name.v0.cube or System.Name.v1.cube, one can calculate work

functions of metals. The work function is defined by

Φ = (ϕ∞ + E[N − 1])− E[N],

= ϕ∞ − µ, (11)

where E[N] and E[N − 1] are the total energies of the N -electron and (N − 1)-electron systems,

respectively, and ϕ∞ and µ are the potential at the infinite distance from the surface and the chemical

potential, respectively. The second line of Eq. (11) can be obtained by the Janak theorem [89] as

E[N − 1]−E[N] =
∫
dn∂E/∂n = −µ, where n is an occupation number of an one-particle eigenstate

on the Fermi surface, dn = −ds/S defined with the area of the Fermi surface S and an infinitesimal

area ds, and the surface integral is performed over the Fermi surface. Since the work function is a

quantity associated to a surface, we need to introduce a slab model as shown in Fig. 54(a). As an

example, we consider an aluminum slab, where the layer thickness is 5 and the vacuum of about 60 Å is

taken into account along the x-axis together with the effective screening medium (ESM) method in

Sec. 47, where ’ESM.switch=on1’ is used, to avoid the interaction between the periodic slabs. The

SCF calculation can be performed using an input file ’Al111 WorkFunc 0E.dat’ as follows:

% mpirun -np 28 ./openmx Al111_WorkFunc_0E.dat

After the calculation is completed normally, you obtain a cube file of ’Al111 WorkFunc 0E.v0.cube’.

To analyze the cube file, you can utilize a post-processing code of ’gcube2oned.c’ in the directory

’source’, which can be compiled as

% gcc gcube2oned.c -lm -o gcube2oned

After copying the executable code ’gcube2oned’ to your working directory, you can transform the data

of 3D cube data to an 1D data along a chosen direction, in this case ’1’ corresponding to the a-axis,

by integrating over the remaining 2D (bc-plane) as follows:

Figure 54: (a) A slab model consisting of Al atoms, where the layer thickness is 5 and the vacuum

of 60 Å is taken into account along the x-axis. (b) A slab model consisting of Al atoms, where the

layer thickness is 5 and the vacuum of 60 Å is taken into account along the x-axis. In addtion to the

Al layers, the 6 layers consisting of empty atoms are introduced for both the surfaces so that the tail

of wave function towards the vacuum region can be accurately described.

207

% gcube2oned Al111_WorkFunc_0E.v0.cube 1 > 1d_pot.txt

In the obtained file ’1d pot.txt’, the first, second, and third columns correspond to the serian number

of grid, the position (Å) along the a-axis, and a 1D potential (Hartree) averaged over the bc-plane. In

case of the 1D potential along the b or c-axis, you can specify ’2’ or ’3’ as an argument of ’gcube2oned’.

In Fig. 55 we show the 1D potentials for the Al(111) surface along the a-axis which is perpendicular to

the surface. The number of layers consisting of empty atoms is systematically changed from 0 to 7 for

both the surfaces. As shown in Fig. 54, the layers consisting of empty atoms are taken into account

so that the tail of wave function towards the vacuum region can be accurately described. The input

files used for the calculations are ’Al111 WorkFunc %E.dat’, where % varies from 0 to 7, which are all

available in the directory ’work’. The potential ϕ∞ in Eq. (11) can be obtained from that at around

70 Å, while the chemical potential µ can be found from the out file. Since the potential at around

70 Å is almost zero, the work function is basically determined by the chemical potential in the cases.

Then, the calculated values using Eq. (11) are plotted as a function of the number of empty layers in

Fig. 56. One can see that the work function of the Al(111) surface reaches to the convergence at the

2 empty layers, implying adding the 2 empty layers is sufficient to obtain the convergent result.

0 10 20 30 40 50 60 70

0.4

0.3

0.2

0.1

0

0.1

x (Ang.)

v
0

 (
H

a
rt

re
e

)

Al(111) with 0 empty layer

Al(111) with 1 empty layer

Al(111) with 2 empty layers

Al(111) with 3 empty layers

Al(111) with 4 empty layers

Al(111) with 5 empty layers

Al(111) with 6 empty layers

Al(111) with 7 empty layers

Figure 55: 1D potentials (Hartree) along the a-axis averaged over the bc-plane, which are obtained

from the v0.cube files. The number of layers consisting of empty atoms is systematically changed from

0 to 7. The input files used for the calculations are ’Al111 WorkFunc %E.dat’, where % varies from

0 to 7, which are all available in the directory ’work’.

208

0 1 2 3 4 5 6 7 8

3.7

3.8

3.9

4

4.1

4.2

4.3

Number of empty layers

W
o

rk
 f

u
n

c
ti
o

n
 (

e
V

)

Figure 56: Work function (eV) of the Al(111) surface as a function of the number of empty layers.

The values can be obtained based on Eq. (11) and the calculations shown in Fig. 55.

In Table 11 we show the calculated results of work function for five metals and the correspond-

ing experimental values. In all the calculations the 7 empty layers were introduced. It is found

that the calculated values are well compared to the experimental values. The input files used for

the calculations are ’Al111 WorkFunc 7E.dat’, ’Cu111 WorkFunc 7E.dat’, ’Ag111 WorkFunc 7E.dat’,

’Au111 WorkFunc 7E.dat’, and ’Pd111 WorkFunc 7E.dat’, which are all available in the directory

’work’.

As for gapped systems Eq. (11) may not be valid in a rigorous sense. However, you may be able

to use Eq. (11) as an approximate treatment. Especially for gapped systems with polar surfaces, you

need to use the ESM method in Sec. 47 to avoid the interaction between the periodic slabs.

Table 11: Calculated work functions (eV) for five metals and the corresponding experimental values.

We note that the reported experimental values seem to vary in literatures, and we show one of them

in the table.

OpenMX Expt.

Al(111) 4.19 4.26±0.03 [129]

Cu(111) 4.74 4.94±0.03 [130]

Ag(111) 4.51 4.46±0.02 [131]

Au(111) 5.33 5.26±0.04 [132]

Pd(111) 5.40 5.55±0.01 [133]

209

49 Nudged elastic band (NEB) method

49.1 General

To search a minimum energy path (MEP) in geometrical phase space connecting two stable structures,

a nudged elastic band (NEB) method based on Ref. [134] is supported in OpenMX Ver. 3.9. The

detail of the implementation is summarized as follows:

• Calculation of tangents based on Eqs. (8)-(11) in Ref. [134]

• Calculation of perpendicular forces based on Eq. (4) in Ref. [134]

• Calculation of parallel forces based on Eq. (12) in Ref. [134]

• Optimization method based on a hybrid DIIS+BFGS optimizer

In order to minimize user’s efforts in using it, the functionality of NEB has been realized as one of

geometry optimizers with the following features:

• Easy to use

• Hybrid MPI/OpenMP parallelization

• Initial path by the straight line or user’s definition

• Only three routines added

49.2 How to perform

The NEB calculation is performed by the following three steps:

1. Geometry optimization of a precursor

2. Geometry optimization of a product

3. Optimization of a minimum energy path (MEP) connecting the precursor and product

where in the three calculations users have to keep the same computational parameters such as unit

cell, cutoff energy, basis functions, pseudopotentials, and electronic temperatures to avoid numerical

inconsistency. After the calculations 1 and 2, files ’System.Name.dat#’ are generated. By using the

atomic coordinates in the files ’System.Name.dat#’, one can easily construct an input file for the

calculation 3. Once you have an input file for the calculation 3, the execution of the NEB calculation

is the same as for the conventional OpenMX calculation such as

% mpirun -np 32 openmx input.dat -nt 4

210

49.3 Examples and keywords

Two input files are provided as example:

• C2H4 NEB.dat

Cycloaddition reaction of two ethylene molecules to cyclobutane

• Si8 NEB.dat

Diffusion of an interstitial hydrogen atom in the diamond Si

The input file ’C2H4 NEB.dat’ will be used to illustrate the NEB calculation in the proceeding expla-

nation.

Providing two terminal structures

The atomic coordinates of the precursor are specified in the input file by

<Atoms.SpeciesAndCoordinates

1 C -0.66829065594143 0.00000000101783 -2.19961193219289 2.0 2.0

2 C 0.66817412917689 -0.00000000316062 -2.19961215251205 2.0 2.0

3 H 1.24159214112072 -0.92942544650857 -2.19953308980064 0.5 0.5

4 H 1.24159212192367 0.92942544733979 -2.19953308820323 0.5 0.5

5 H -1.24165800644131 -0.92944748269232 -2.19953309891389 0.5 0.5

6 H -1.24165801380425 0.92944749402510 -2.19953309747076 0.5 0.5

7 C -0.66829065113509 0.00000000341499 2.19961191775648 2.0 2.0

8 C 0.66817411530651 -0.00000000006073 2.19961215383949 2.0 2.0

9 H 1.24159211310925 -0.92942539308841 2.19953308889301 0.5 0.5

10 H 1.24159212332935 0.92942539212392 2.19953308816332 0.5 0.5

11 H -1.24165799549343 -0.92944744948986 2.19953310195071 0.5 0.5

12 H -1.24165801426648 0.92944744880542 2.19953310162389 0.5 0.5

Atoms.SpeciesAndCoordinates>

The atomic coordinates of the product are specified in the input file by

<NEB.Atoms.SpeciesAndCoordinates

1 C -0.77755846408657 -0.00000003553856 -0.77730141035137 2.0 2.0

2 C 0.77681707294741 -0.00000002413166 -0.77729608216595 2.0 2.0

3 H 1.23451821718817 -0.88763832172374 -1.23464057728123 0.5 0.5

4 H 1.23451823170776 0.88763828275851 -1.23464059022330 0.5 0.5

5 H -1.23506432458023 -0.88767426830774 -1.23470899088096 0.5 0.5

6 H -1.23506425800395 0.88767424658723 -1.23470896874564 0.5 0.5

7 C -0.77755854665393 0.00000000908006 0.77730136931056 2.0 2.0

8 C 0.77681705017323 -0.00000000970885 0.77729611199476 2.0 2.0

9 H 1.23451826851556 -0.88763828740000 1.23464060936812 0.5 0.5

10 H 1.23451821324627 0.88763830875131 1.23464061208483 0.5 0.5

11 H -1.23506431230451 -0.88767430754577 1.23470894717613 0.5 0.5

12 H -1.23506433587007 0.88767428525317 1.23470902573029 0.5 0.5

NEB.Atoms.SpeciesAndCoordinates>

Keywords for the NEB calculation

The NEB calculation can be performed by setting the keyword ’MD.Type’ as

211

MD.Type NEB

The number of images in the path is given by

MD.NEB.Number.Images 8 # default=10

where the two terminals are excluded from the number of images.

The spring constant is given by

MD.NEB.Spring.Const 0.1 # default=0.1(hartee/borh^2)

In most cases, the obtained path does not largely depend on the value.

The optimization of MEP is performed by a hybrid DIIS+BFGS scheme which is controlled by the

following keywords:

MD.Opt.DIIS.History 4 # default=7

MD.Opt.StartDIIS 10 # default=5

MD.maxIter 100 # default=1

MD.Opt.criterion 1.0e-4 # default=1.0e-4 (Hartree/Bohr)

The specification of these keywords are the same as for the geometry optimization. So, see the section

’Geometry optimization’ in the manual for the details. Also, it is also possible to fix the atomic

position by the keyword ’MD.Fixed.XYZ’.

Execution of the NEB calculation

One can perform the NEB calculation with the input file ’C2H4 NEB.dat’ by

% mpirun np 16 openmx C2H4_NEB.dat

If the calculation is successfully completed, more than 24 files will be generated. Some of them are

listed below:

c2h4.neb.opt history of optimization for finding MEP

c2h4.neb.ene total energy of each image

c2h4.neb.xyz atomic coordinates of each image in XYZ format

C2H4_NEB.dat# input file for restarting.

C2H4_NBE.dat_0 input file for the precursor

C2H4_NBE.dat_1 input file for the image 1

C2H4_NBE.dat_2 input file for the image 2

C2H4_NBE.dat_3 input file for the image 3

C2H4_NBE.dat_4 input file for the image 4

C2H4_NBE.dat_5 input file for the image 5

C2H4_NBE.dat_6 input file for the image 6

C2H4_NBE.dat_7 input file for the image 7

C2H4_NBE.dat_8 input file for the image 8

C2H4_NBE.dat_9 input file for the product

c2h4_0.out output file for the precursor

c2h4_1.out output file for the image 1

212

c2h4_2.out output file for the image 2

c2h4_3.out output file for the image 3

c2h4_4.out output file for the image 4

c2h4_5.out output file for the image 5

c2h4_6.out output file for the image 6

c2h4_7.out output file for the image 7

c2h4_8.out output file for the image 8

c2h4_9.out output file for the product

’c2h4.neb.opt’ contains history of optimization for finding MEP as shown in Fig. 53(a). One can see
the details at the header of the file as follows:

History of optimization by the NEB method

iter SD_scaling |Maximum force| Maximum step Norm Sum of Total Energy of Images

(Hartree/Bohr) (Ang) (Hartree/Bohr) (Hartree)

1 0.37794520 0.12552539 0.04583072 0.49503563 -223.77727271

2 0.37794520 0.08684953 0.03163814 0.35379139 -223.85742175

3 0.37794520 0.05494411 0.01922344 0.25668987 -223.89831309

4 0.37794520 0.03790970 0.01234783 0.20282699 -223.92042217

5 0.45353424 0.02936250 0.01326992 0.17349184 -223.93482686

6 0.45353424 0.02588308 0.01169327 0.15249816 -223.94772371

7 0.45353424 0.02303223 0.01039732 0.13836350 -223.95785384

.....

...

.

Also, ’c2h4.neb.ene’ and ’c2h4.neb.xyz’ can be used to analyze the change of total energy as a function

of the distance (Bohr) from the precursor and the structural change as shown in Fig. 57(b). The

content of ’c2h4.neb.ene’ is as follows:

#

1st column: index of images, where 0 and MD.NEB.Number.Images+1 are the terminals

2nd column: Total energy (Hartree) of each image

3rd column: distance (Bohr) between neighbors

4th column: distance (Bohr) from the image of the index 0

#

0 -28.02185123 0.00000000 0.00000000 1.33646479

1 -28.02178507 0.82118927 0.82118927 1.33567761

2 -28.02140083 0.82112464 1.64231391 1.33523542

3 -28.02029258 0.82111520 2.46342911 1.33463918

4 -28.01779519 0.82113225 3.28456136 1.33375873

5 -28.01261498 0.82135735 4.10591871 1.33262670

6 -27.98761576 0.82169347 4.92761218 1.34184319

213

0 10 20 30

10
�4

10
�3

10
�2

10
�1

�2 0 2 4 6 8

�28.1

�28.05

�28

�27.95

�27.9

�27.85

Optimization Step

M
a
x
im

u
m

 F
o
rc

e
 (

h
a
rt

re
e
/b

o
h
r)

(a)

T
o
ta

l
E

n
e
rg

y
 (

h
a
rt

re
e
)

Distance from the precursor (bohr)

(b)

Figure 57: (a) History of optimization (c2h4.neb.opt) for the NEB calculation for a cycloaddition

reaction of two ethylene molecules to a cyclobutane molecule, (b) change of total energy (c2h4.neb.ene)

of two ethylene molecules as a function of the distance (Bohr) from the precursor and the corresponding

geometrical structures (c2h4.neb.xyz) of images on the minimum energy path. The input file used for

the NEB calculation is ’C2H4 NEB.dat’ in the directory ’work’.

7 -27.91797754 0.82218705 5.74979923 1.51281867

8 -28.02565242 0.82256542 6.57236464 1.55582513

9 -28.06263668 0.82263897 7.39500361 1.55437554

where the first column is a serial number of image, while 0 and 9 correspond to the precursor and

product, respectively. The second column is the total energy of each image. The third and fourth

columns are interval (Bohr) between two neighboring images and the distance (Bohr) from the precur-

sor in geometrical phase space. A file ’System.Name.dat #’, where ’System.Name’ is ’System.Name’

and ’#’ is a serial number for each image, is also generated, since each calculation for each image is

basically done as an independent OpenMX calculation with a different input file. A corresponding

output file ’System.Name #.out’ is also generated, which may be useful to analyze how the electronic

structure changes on MEP.

As well as the case of ’C2H4 NEB.dat’, one can perform the NEB calculation by ’Si8 NEB.dat’.

After the successful calculation, you may get the history of optimization and change of total energy

along MEP as shown in Fig. 58.

49.4 Restarting the NEB calculation

It often happens that the convergence is not achieved even after the maximum optimization step. In

such a case, one has to continue the optimization as a new job starting from the last optimization step

214

0 10 20 30 40 50

10
�4

10
�3

10
�2

10
�1

�2 0 2 4 6
�33.387

�33.386

�33.385

�33.384

�33.383

�33.382

Optimization Step

M
a
x
im

u
m

 F
o
rc

e
 (

h
a
rt

re
e
/b

o
h
r)

(a)

T
o
ta

l
E

n
e
rg

y
 (

h
a
rt

re
e
)

Distance from the precursor (bohr)

(b)

Figure 58: (a) History of optimization (si8 neb.neb.opt) for the NEB calculation for diffusion of

an interstitial hydrogen atom in the diamond Si, (b) change of total energy (si8 neb.neb.ene) as

a function of the distance (Bohr) from the precursor and the corresponding geometrical structures

(si8 neb.neb.xyz) of images on the minimum energy path. The input file used for the NEB calculation

is ’Si8 NEB.dat’ in the directory ’work’.

in the previous job. A file ’System.Name.dat#’ is generated after every optimization step. The file

contains a series of atomic coordinates for images in the last step. One can restart the optimization

using a file ’System.Name.dat#’.

49.5 User defined initial path

As default, the initial path connecting the precursor and the product is a straight line connecting

them. However, in some cases the geometrical structure of images generated on the straight line can

be very erratic so that distance between atoms can be too close to each other. In this case, one should

explicitly provide the atomic coordinates of images. The user defined initial path can be provided by

the same way as for the restarting. Then, one has to provide atomic coordinates for each image by

the following keywords:

<NEB1.Atoms.SpeciesAndCoordinates

1 Si -0.12960866043083 0.13490502997627 -0.12924862991035 2.0 2.0

2 Si -0.40252421446808 5.19664433048606 4.91248322056082 2.0 2.0

...

NEB1.Atoms.SpeciesAndCoordinates>

<NEB2.Atoms.SpeciesAndCoordinates

1 Si -0.08436294149342 -0.02173837971883 -0.08374099211565 2.0 2.0

215

2 Si -0.33677725120015 5.10216241168093 5.01087499461541 2.0 2.0

...

NEB2.Atoms.SpeciesAndCoordinates>

For all the images of which number is given by ’MD.NEB.Number.Images’, the atomic coordinates

need to be provided. Also, it is required for a keyword to be switched on as

scf.restart on

49.6 Monitoring the NEB calculation

In the NEB calculation, the standard output will display only that for the image 1, and those for the

other images will not be displayed. However, there is no guarantee that the SCF iteration converges

for all the images. In order to monitor the SCF convergence for all the images, temporary files can

be checked by users. In the NEB calculation, an input file is generated for each image, whose name

is ’System.Name.dat #’, where ’#’ runs from 0 to MD.NEB.Number.Images+1, and ‘system.name’ is

modified as the original system.name #. So, one can check the SCF convergence by monitoring a file

’system.name #.DFTSCF’, whether it converges or not.

49.7 Parallel calculation

In the NEB calculation, the setting for the parallelization will be automatically done depending on

the number of processes and threads. However, it would be better to provide a proper number

of processes for the MPI parallelization which can be divisible by the number of images given by

’MD.NEB.Number.Images’, in order to achieve a good load balance in the MPI parallelization. It is

noted that the number of processes for the MPI parallelization can exceed the number of atoms. The

hybrid parallelization by MPI/OpenMP is also supported.

Although the default parallelization scheme works well in most cases, a memory shortage can be

a serious problem when a small number of the MPI processes is used for large-scale systems. In the

default MPI parallelization, the images are preferentially parallelized at first. When the number of MPI

processes exceeds the number of images, the calculation of each image starts to be parallelized, where

the memory usage starts to be parallelized as well. In this case, users may encounter a segmentation

fault due to the memory shortage if many CPU cores are not available. To avoid such a situation, the

following keyword is available.

MD.NEB.Parallel.Number 3

In this example, the calculations of every three images are parallelized at once where the MPI processes

are classified to three groups and utilized for the parallelization of each image among the three images.

In order to complete the calculations of all the images, the grouped calculations are repeated by

floor[(the number of images)/(MD.NEB.Parallel.Number)] times. The scheme may be useful for the

NEB calculation of a large-scale system. If the keyword is not specified in your input file, the default

parallelization scheme is employed.

49.8 Other tips

It would be better to provide atomic coordinates for bulk systems in Ang or AU instead of FRAC,

since the atomic position tends to be translated in FRAC to keep the fractional coordinate within 0

to 1. The translation tends to generate a confusing movie in the visualization of the result.

216

Only three routines are added to implement the NEB functionality. They are ’neb.c’, ’neb run.c’,

and ’neb check.c’. The main routine is ’neb.c’. It may be easy to implement related methods in

’neb.c’.

217

50 STM image by the Tersoff-Hamann scheme

Scanning tunneling microscope (STM) image can be obtained by the Tersoff-Hamann scheme [71].

The method is nothing but calculation of partial charge density in an energy window measured from

the chemical potential. The calculation of the partial charge density is performed by the following

keywords:

partial.charge on # on|off, default=off

partial.charge.energy.window 0.0 # in eV

where the second keyword defines an energy window (in eV) measured from the chemical potential (a

plus value means conduction band and negative valence). Since the calculation of the partial charge

density is performed during calculation of the density of states (DOS), the following keywords have

to be specified as well:

Dos.fileout on # on|off, default=off

Dos.Erange -20.0 20.0 # default = -20 20

Dos.Kgrid 5 5 5 # default = Kgrid1 Kgrid2 Kgrid3

After the calculation with the keywords, you will get ’System.Name.pden.cube’ which can be used for

the STM simulation within the Tersoff-Hamman approximation. As an example, a simulated STM

image of a graphene layer is shown in Fig. 59.

Figure 59: Simulated STM image of a graphene layer, where ’partial.charge.energy.window’ of 2 eV

was used in the calculation, and the input file is ’Graphene STM.dat’ in the directory ’work’. The

cube file ’Graphene STM.pden.cube’ was visualized with an isovalue of 0.0001 by a software WSxM

[153].

218

51 DFT-D2 and DFT-D3 for vdW interaction

The DFT-D2 method [135] and the DFT-D3 method [136, 137] by Grimme et al. are supported to

include a vdW interaction. In the following subsections we will explain how to use them.

51.1 DFT-D2 method

The following keywords are relevant to the DFT-D2 method.

scf.dftD on # on|off, default=off

DFTD.Unit Ang # Ang|AU

DFTD.rcut_dftD 100.0 # default=100 (DFTD.Unit)

DFTD.d 20.0 # default=20

DFTD.scale6 0.75 # default=0.75

DFTD.IntDirection 1 1 1 # default=1 1 1 (1:on 0:off)

When you include the vdW correction, switch on ’scf.dftD’. The cutoff radius for the pairwise interac-

tion is given by ’DFTD.rcut dftD’, where the unit is given by ’DFTD.Unit’. The ’d’ value in Eq. (12)

in Grimme’s paper [135] is given by ’DFTD.d’, while the default value is 20. The scaling factor in

Eq. (11) in Grimme’s papar [135] is given by ’DFTD.scale6’, while the default value for the PBE func-

tional is 0.75. Also, the interaction can be cut along the a-, b-, and c-axes by ’DFTD.IntDirection’,

where 1 means that the interaction is included, and 0 not. Also, the periodicity for each atom can be

controlled by

<DFTD.periodicity

1 1

2 1

3 1

4 1

....

DFTD.periodicity>

where the first column is a serial number which is the same as in the ’Atoms.SpeciesAndCoordinates’,

and the second column is a flag which means that 1 is periodic, and 0 is non-periodic for the cor-

responding atom. By considering the periodicity or non-periodicity of each atom, the interaction is

automatically cut when they are non-periodic.

The main modifications are placed at only two routines: DFTDvdW init.c and Calc EdftD() of

Total Energy.c. In DFTDvdW init.c, you can easily change the parameters for the vdW correction,

and in Calc EdftD() of Total Energy.c you can confirm how they are calculated.

Since OpenMX uses localized orbitals as basis function, it is very important to take account of

basis set superposition error (BSSE) when we investigate an effect of a weak interaction such as vdW

interaction. To estimate BSSE, the counterpoise (CP) method [46, 47] can be used. As for the CP

method, see the Section ’Empty atom scheme’.

51.2 DFT-D3 method

The DFT-D3 method of Grimme et al. [136, 137] is supported to include a vdW interaction with

default parameters for the GGA-PBE functional. The following keywords are relevant for the DFT-

219

D3 method.

scf.dftD on # on|off, default=off

version.dftD 3 # 2|3, default=2

DFTD3.damp bj # zero|bj, default=bj

DFTD.Unit AU # Ang|AU

DFTD.rcut_dftD 100.0 # default=100 (DFTD.Unit)

DFTD.cncut_dftD 40 # default=40 (DFTD.Unit)

DFTD.IntDirection 1 1 1 # default=1 1 1 (1:on 0:off)

When you include the DFT-D2 or DFT-D3 calculation, turn on ’scf.dftD’. For DFT-D2 use ver-

sion.dftD=2 and for DFT-D3 version.dftD=3. The DFT-D3 implemented here supports both zero

and Becke-Johnson (BJ) damping functions [137]. The cutoff radius for the interaction is given by

’DFTD.rcut dftD’ and for the coordination number calculation ’DFTD.cncut dftD’. The units are

given by ’DFTD.Unit’ and the suggested defaults for both cutoff values are in AU. Also, the interac-

tion for image atoms can be cut along the a-, b-, and c-axes by ’DFTD.IntDirection’, where 1 means

that the interaction is included, and 0 not. Also, the periodicity for each atom can be controlled as in

the case of the DFT-D2 method by

<DFTD.periodicity

1 1

2 1

3 1

4 1

....

DFTD.periodicity>

where the first column is a serial number which is the same as in the ’Atoms.SpeciesAndCoordinates’,

and the second column is a flag which means that 1 is periodic, and 0 is non-periodic for the cor-

responding atom. By considering the periodicity or non-periodicity of each atom, the interaction is

automatically cut when they are non-periodic.

The main modifications are placed at only two routines: DFTD3vdW init.c and Calc EdftD() of

Total Energy.c. In DFTD3vdW init.c, you can easily change the parameters for the vdW correction,

and in Calc EdftD3() of Total Energy.c you can confirm how they are calculated.

Parameters for other functionals may be set through the following keywords:

DFTD.scale6 1 # default=0.75|1.0 (for DFT-D2|DFT-D3)

DFTD.scale8 0.7875 # default=0.722|0.7875 (for PBE with zero|bj damping)

DFTD.sr6 1.217 # default=1.217 (for PBE)

DFTD.a1 0.4289 # default=0.4289 (for PBE)

DFTD.a2 4.4407 # default=4.4407 (for PBE)

The ’s6’ and ’s8’ global scaling value of Eq. (3) in Grimme’s paper [136] is given by ’DFTD.scale6’

and ’DFTD.scale8’. The global scaling parameters are functional and damping-function dependent.

The parameter ’sr6’ of Eq. (6) in [136] needs to be set when using the zero damping function while

the parameters ’a1’ and ’a2’ of Eq. (6) in [137] need to be set when choosing BJ damping.
As an example for the DFT-D3 calculation, the interaction energy between two benzene molecules

in a parallel structure with D6h symmetry is shown as a function of the inter-distance in Fig. 60. All
the input files for the calculations can be found in a directory ’work/DFT-D3/’, and they are

220

Dimer-Ben-10.0.dat Dimer-Ben-3.88.dat Dimer-Ben-4.5.dat Mono-Ben-1.dat

Dimer-Ben-3.3.dat Dimer-Ben-3.89.dat Dimer-Ben-5.0.dat Mono-Ben-2.dat

Dimer-Ben-3.4.dat Dimer-Ben-3.8.dat Dimer-Ben-6.0.dat Mono-Ben.dat

Dimer-Ben-3.6.dat Dimer-Ben-3.9.dat Dimer-Ben-7.0.dat

Dimer-Ben-3.86.dat Dimer-Ben-4.0.dat Dimer-Ben-8.0.dat

Dimer-Ben-3.87.dat Dimer-Ben-4.2.dat Dimer-Ben-9.0.dat

After optimizing the monomer using ’Mono-Ben.dat’, the total energy of dimer in a variety of

inter-distance was calculated using ’Dimer-Ben-#.dat’ (#=3.3-9.0), where the structure of the benzene

molecule is the same as the structure of monomer obtained by the first calculation. The monomer

calculations with a counterpoise correction were performed by ’Mono-Ben-1.dat’ and ’Mono-Ben-

2.dat’. The optimum inter-distance is found to be 3.87 Å, which is well compared with a reported

value (3.89 Å) computed with density fitted local second-order Møller-Plesset perturbation theory

(DF-LMP2) [138]. The counterpoise corrected interaction energy is 1.73 kcal/mol being in good

agreement with a reported value (1.7 kcal/mol) [138], while the basis set superposition error is found

to be large.

3 4 5 6 7 8 9 10

3

2

1

0

Distace between benzene molecules (Ang.)

In
te

ra
c
ti
o
n
 e

n
e
rg

y
 (

k
c
a
l/
m

o
l)

Interaction energy

Counterpoise correction

Figure 60: The interaction energy of between two benzene molecules in a parallel structure with D6h

symmetry. The counterpoise corrected interaction energy is shown by the triangle. All the input files

for the calculations can be found in a directory ’work/DFT-D3/.

221

52 Unfolding method for band structures

When the band structure of a system with imperfection such as surfaces, impurities, vacancies, and

structural distortion calculated by the supercell approach is compared to spectrum measured by Angle-

Resolved Photoemission Spectroscopy (ARPES), the experimentally measured periodicity of the sys-

tem is generally different from that of the supercell we introduced for the calculation. In such a case,

the band structure obtained by the supercell calculation should be represented for the Brillouin zone

of a proper unit cell so that the periodicity of calculated band structure can be consistent with the

measured one. Though the choice of the proper unit cell is not obvious in general cases, OpenMX

provides a method for unfolding the band structure of the supercell into the Brillouin zone of a refer-

ence unit cell that a user specifies in the input file [142]. The functionality is supported for not only

collinear, but also non-collinear DFT calculations. Even in case that you are not interested in com-

parison between calculations and experiments by unfolding the band structrue, the method would be

useful to analyze how each band consists of pseudo-atomic orbitals, providing information for physical

nature of bands, and how each band is pertubed by the introduced imperfection.

In the following subsequent subsections we explain how these functionalities can be utilized by

demonstrating a series of calculations.

52.1 Analysis of band structures

First, let us analyze how each band can be decomposed into each contribution of pseudo-atomic orbital

in a band structure calculation for a primitive cell of SiC in a two-dimensional honeycomb structure

without imperfection. Note that unfolding bands is not performed in this case. The SCF calculation

for the primitive cell of the two-dimensional SiC can be performed as

% mpirun -np 16 openmx SiC_Primitive.dat > sic_primitive.std &

The input file ’SiC Primitive.dat’ can be found in the directory ’work/unfolding example’, and the

basis functions and geometrical structure are specified as

Species.Number 3

<Definition.of.Atomic.Species

C C7.0-s2p2d1 C_PBE19

Si Si7.0-s2p2d1 Si_PBE19

Te Te11.0-s2p2d2f1 E

Definition.of.Atomic.Species>

Atoms.Number 3

Atoms.SpeciesAndCoordinates.Unit FRAC # Ang|AU

<Atoms.SpeciesAndCoordinates

1 C 0.33333333 0.66666666 0.50000000 2.0 2.0

2 Si 0.66666666 0.33333333 0.50000000 2.0 2.0

3 Te 0.00000000 0.00000000 0.50000000 0.0 0.0

Atoms.SpeciesAndCoordinates>

Atoms.UnitVectors.Unit Ang # Ang|AU

222

<Atoms.UnitVectors

3.0690 0.0000000000 0.000

-1.5345 2.6578319641 0.000

0.0000 0.0000000000 10.000

Atoms.UnitVectors>

where an empty atom having basis functions with a long tail is allocated at the center of the hexagon
in order to improve description of conduction bands. Since the keyword ’Band.dispersion’ is switched
on as

Band.dispersion on # on|off, default=off

Band.Nkpath 3

<Band.kpath

60 0.33333333333 0.33333333333 0.00000000000 0.00000000000 0.00000000000 0.00000000000 K G

52 0.00000000000 0.00000000000 0.00000000000 0.50000000000 0.00000000000 0.00000000000 G M

30 0.50000000000 0.00000000000 0.00000000000 0.33333333333 0.33333333333 0.00000000000 M K

Band.kpath>

you might be able to plot the band dispersion using ’sic primitive.BANDDAT1’ as the solid line shown

in Fig. 61(a). As for plotting the band dispersion, please refer the section ’Band dispersion’.

Keywords relevant to analysis of band structure

For the calculation, the following keywords are also given as well

Unfolding.Electronic.Band on # on|off, default=off

Unfolding.LowerBound -10.0 # default=-10 eV

Unfolding.UpperBound 6.0 # default= 10 eV

Unfolding.Nkpoint 4

<Unfolding.kpoint

K 0.33333333333 0.33333333333 0.0000000000

G 0.00000000000 0.00000000000 0.0000000000

M 0.50000000000 0.00000000000 0.0000000000

K 0.33333333333 0.33333333333 0.0000000000

Unfolding.kpoint>

Unfolding.desired_totalnkpt 30

The specification of the keywords above are listed below.

• Unfolding.Electronic.Band on| off, default=off

To analyze and/or unfold bands the keyword should be switched on. The default is ’off’.

• Unfolding.LowerBound

The keyword ’Unfolding.LowerBound’ specifies the lower bound for the energy of bands in the

analysis, where the energy is taken as the relative energy to the chemical potential. The default

value is -10 eV.

223

"sic_primitive.BANDDAT1"
"sic_primitive.unfold_totup" u 1:2:($3*0.02)

-10

-8

-6

-4

-2

0

2

4

6

K G M K

E
n

e
rg

y
 (

e
V

)

-10

-8

-6

-4

-2

0

2

4

6

K G M K

E
n
e
rg

y
 (

e
V

)

"sic_primitive.BANDDAT1"
"sic_primitive.unfold_orbup" u 1:2:(($3+$4+$5+$6)*0.05)

"sic_primitive.unfold_orbup" u 1:2:($7*0.05)

(a) (b)

Figure 61: (a) Band structure of SiC primitive cell in a two-dimensional honeycomb structure without

imperfection as shown in the inset, where the red line was obtained by the conventional calculation, and

the green circles represent the total spectral weight. The radius reflects the magnitude of the weight.

(b) Orbitally decomposed spectral weights of SiC primitive cell in a two-dimensional honeycomb

structure without imperfection, where the green and purple circles represent the sum of spectral

weights for the s, px, and py orbitals, and the pz orbitals on the carbon atom, respectively. The

radius reflects the magnitude of the weight. The calculation was performed by using an input file

’SiC Primitive.dat’ in the directory ’work/unfolding example’.

• Unfolding.UpperBound

The keyword ’Unfolding.UpperBound’ specifies the upper bound for the energy of bands in the

analysis, where the energy is taken as the relative energy to the chemical potential. The default

value is 10 eV.

• Unfolding.Nkpoint

The keyword ’Unfolding.Nkpoint’ specifies the number of k-points appearing in the keyword

’Unfolding.kpoint’.

• Unfolding.kpoint

The keyword ’Unfolding.kpoint’ specifies the k-points of which number is given by the keyword

’Unfolding.Nkpoint’. In the above case four k-points are given, and three k-paths conecting the

two k-points are considered, i.e., one from ’K’ to ’G’, one from ’G’ to ’M’, and one from ’M’ to

’K’. Along the k-paths the analysis of bands is performed. Note that the unit for the k-points

specified by the keyword is the reciprocal lattice vectors of the unit cell given by the keyword

’Atoms.UnitVectors’ in this case, while the cell vectors can be changed to perform unfolding of

bands by utilizing a keyword ’Unfolding.ReferenceVectors’. At this moment, it should be noted

that the reciprocal lattice vectors of the unit cell given by the keyword ’Atoms.UnitVectors’ is

224

automatically used unless the keyword ’Unfolding.ReferenceVectors’ is explicitly specified. The

keyword ’Unfolding.ReferenceVectors’ will be explained in the next subsection.

• Unfolding.desired totalnkpt

The k-paths specified by the keyword ’Unfolding.kpoint’ are divided with a nearly equal spacing,

where the spacing is estimated by (the total length of all the k-paths)/Unfolding.desired totalnkpt.

Starting from the estimated spacing, the actual spacing is automatically adjusted from one k-

path to another k-path so that the k-points specified by the keyword ’Unfolding.kpoint’ can be

always included in the analysis.

Output files relevant to analysis of band structure

After getting the SCF convergence, the following files related to analyzing and/or unfolding bands

will be generated.

• sic primitive.unfold totup

The total spectral weight given by Eq. (24) in Ref. [142] is stored. The first, second, and

third columns correspond to the distance measured from the first k
¯
-point given by the key-

word ’Unfolding.kpoint’ in the unit of Bohr−1, energy relative to the chemical potential in

the unit of eV, and the total spectral weight, respectively. In the spin-polarized calculation,

’System.Name.unfold totdn’ is also generaged for the down spin case, while only a single file

’System.Name.unfold tot’ is generated in the non-collinear calculation.

• sic primitive.unfold orbup

The orbitally decomposed spectral weights given by Eq. (26) in Ref. [142] are stored. The first,

second, and subsequent columns correspond to the distance measured from the first k-point

given by the keyword ’Unfolding.kpoint’ in the unit of Bohr−1, energy relative to the chemical

potential in the unit of eV, and the orbitally decomposed spectral weights, respectively. The

sequence of the orbitally decomposed spectral weights can be found in ’System.Name.out’. In the

spin-polarized calculation, ’System.Name.unfold orbdn’ is also generaged for the down spin case,

while only a single file ’System.Name.unfold orb’ is generated in the non-collinear calculation.

• sic primitive.unfold plotexample

As an example of plotting above the data by gnuplot, ’System.Name.unfold plotexample’ is

generated. On the command line of the gnuplot, one can perform as

gnuplot> load ‘sic_primitive.unfold_plotexample’

According to your purpose, it is needless to say that you can modify the file.

By plotting both ’sic primitive.BANDDAT1’ and ’sic primitive.unfold totup’ as

gnuplot> set style data lines

gnuplot> set zeroaxis

gnuplot> set key below

gnuplot> set ytics 1

gnuplot> set mytics 5

225

gnuplot> set xra [0.000000:1.708883]

gnuplot> set yra [-10.0:6.0]

gnuplot> set ylabel "eV"

gnuplot> set xtics ("K" 0.000000, "G" 0.722258, "M" 1.347753, "K" 1.708882)

gnuplot> p "sic_primitive.BANDDAT1","sic_primitive.unfold_totup" u 1:2:($3*0.02) w circle

one may obtain a figure as shown in Fig. 61(a), where the solid line and circle correspond to

”sic primitive.BANDDAT1” and ”sic primitive.unfold totup”, respectively. The radius of the circle

reflects the spectral weight, and all the radii are unity in this case, resulting in the equivalent radius

for all the points, since we analyze the band dispersion represented by the Brillouin zone of the original

cell.
Now let us move on ’sic primitive.unfold orbup’ storing orbitally decomposed spectral weights. In

a similar way above, one can plot the orbitally decomposed spectral weights as

gnuplot> p "sic_primitive.BANDDAT1","sic_primitive.unfold_orbup" u 1:2:(($3+$4+$5+$6)*0.05) w circle,

"sic_primitive.unfold_orbup" u 1:2:($7*0.05) w circle

Then, you may obtain a figure as shown in Fig. 61(b). In this case, the sum of spectral weights

for the s, px, and py orbitals, and the pz orbitals on the carbon atom are shown by the green and

purple circles, respectively. It can be confirmed from the analysis that the σ and π bands are clearly

distinguished. As for the format of ’sic primitive.unfold orbup’, please refer the explanation above.

52.2 Unfolding of band structures

In the subsection, we show how the band structure calculated for a supercell can be unfolded into the

Brillouin zone of a reference unit cell that a user specifies. As an example, let us consider again SiC

in a two-dimensional honeycomb structure without imperfection. However, the unit cell in this case

is extended to the (2× 2) supercell as given by

Atoms.Number 12

Atoms.SpeciesAndCoordinates.Unit FRAC # Ang|AU

<Atoms.SpeciesAndCoordinates

1 C 0.16666666 0.33333333 0.50000000 2 2

2 C 0.66666666 0.33333333 0.50000000 2 2

3 C 0.16666666 0.83333333 0.50000000 2 2

4 C 0.66666666 0.83333333 0.50000000 2 2

5 Si 0.33333333 0.16666666 0.50000000 2 2

6 Si 0.83333333 0.16666666 0.50000000 2 2

7 Si 0.33333333 0.66666666 0.50000000 2 2

8 Si 0.83333333 0.66666666 0.50000000 2 2

9 Te 0.00000000 0.00000000 0.50000000 0 0

10 Te 0.50000000 0.00000000 0.50000000 0 0

11 Te 0.00000000 0.50000000 0.50000000 0 0

12 Te 0.50000000 0.50000000 0.50000000 0 0

Atoms.SpeciesAndCoordinates>

Atoms.UnitVectors.Unit Ang # Ang|AU

<Atoms.UnitVectors

226

-10

-8

-6

-4

-2

0

2

4

6

K G M K

E
n

e
rg

y
 (

e
V

)

’sic_primitive.BANDDAT1’
’sic_c_nsp_p.unfold_totup’ using 1:2:($3)*0.02

-10

-8

-6

-4

-2

0

2

4

6

K G M K

E
n
e
rg

y
 (

e
V

)

’sic_primitive.BANDDAT1’
’sic_c_sp_v.unfold_totup’ u 1:2:($3)*0.02
’sic_c_sp_v.unfold_totdn’ u 1:2:($3)*0.02

(a) (b)

Figure 62: (a) Band structure of a SiC (2 × 2) supercell in a two-dimensional honeycomb structure

without imperfection as shown in the inset, where the red line was obtained by the conventional

calculation for the primitive cell, and the green circles represent the total spectral weight obtained by

unfolding. The radius reflects the magnitude of the weight. The calculation was performed by using

an input file ’SiC C NSP P.dat’ in the directory ’work/unfolding example’. (b) Band structure of a

SiC (2 × 2) supercell in a two-dimensional honeycomb structure with a Si vacancy as shown in the

inset, where the red line was obtained by the conventional calculation for the primitive cell, and the

green and blue circles represent the total spectral weight obtained by the unfolding procedure for up-

and down-spin states, respectively. The radius reflects the magnitude of the weight. The calculation

was performed by using an input file ’SiC C SP V.dat’ in the directory ’work/unfolding example’.

6.138 0.0000000000 0.00

-3.069 5.3156639282 0.00

0.000 0.0000000000 10.00

Atoms.UnitVectors>

The SCF calculation for the supercell of the two-dimensional SiC can be performed as

% mpirun -np 16 openmx SiC_C_NSP_P.dat > sic_c_nsp_p.std &

where the input file ’SiC C NSP P.dat’ can be found in the directory ’work/unfolding example’. After

finishing the SCF calculation, you obtain the following files relevant to the unfolding calculation:

sic_c_nsp_p.unfold_totup

sic_c_nsp_p.unfold_orbup

sic_c_nsp_p.unfold_plotexample

By plotting ’sic c nsp p.unfold totup’ with gnuplot together with the band structure of the primitive

cell as a reference, you may obtain a figure as shown in Fig. 62(a). It is confirmed that the unfolded

bands of the supercell exactly recover those of the primitive cell as expected.

227

To perform the unfolding of bands in the calculation, the following keywords are specified in

addition to the keywords explained in the previous subsection:

<Unfolding.ReferenceVectors

3.0690 0.0000000000 0.000

-1.5345 2.6578319641 0.000

0.0000 0.0000000000 10.000

Unfolding.ReferenceVectors>

<Unfolding.Map

1 1

2 1

3 1

4 1

5 2

6 2

7 2

8 2

9 3

10 3

11 3

12 3

Unfolding.Map>

The specification of the keywords above are explained below.

• Unfolding.ReferenceVectors

With the keyword ’Unfolding.ReferenceVectors’ one can define a reference unit cell for which

the unfolding of bands is performed based on Eq. (24) in Ref. [142]. In the example above, the

primitive cell was used as the reference cell. The format is the same as that for the keywords

’Atoms.UnitVectors’, i.e., the first, second, and third lines correspond to a-, b-, and c-axes, re-

spectively. It is also noted that the unit of the reference unit cell is the same as that used for the

supercell, which is specified by the keyword ’Atoms.UnitVectors.Unit’. In the subsection ’Anal-

ysis of band structures’, the keyword ’Unfolding.ReferenceVectors’ was not specified explicitly.

In such a case, ’Atoms.UnitVectors’ is automatically set for ’Unfolding.ReferenceVectors’.

• Unfolding.Map

The keyword ’Unfolding.Map’ specifies how atoms in the supercell can be mapped to atoms in the

reference cell. The first and second columns are the serial number of atom, which corresponds to

the number of the first column in the specification of the keyword ’Atoms.SpeciesAndCoordinates’,

and an identification number representing the group to which the atom belongs. In the example

above, atoms 1 to 4 belong to the group 1, and atoms 5 to 8 the group 2, and atoms 9 to 12 the

group 3. Based on the information given by the keyword ’Unfolding.Map’, the relabelling of the

index for each atom is performed as given by Eq. (17) in Ref. [142], which is the essential part

in the unfolding procedure. It is also noted that the identification number should be positive

228

and integer, while the the integer needs not to start from ’1’, and not to appear in ascending

order.

Here we show one more example, i.e., a SiC (2 × 2) supercell in a two-dimensional honeycomb

structure with a Si vacancy. The SCF calculation can be performed by

% mpirun -np 16 openmx SiC_C_SP_V.dat > sic_c_sp_v.std &

where the input file ’SiC C SP V.dat’ can be found in the directory ’work/unfolding example’. By

removing a Si atom from the (2×2) supercell cell structure, the honeycomb structure with a Si vacancy

was created as

Atoms.Number 11

Atoms.SpeciesAndCoordinates.Unit FRAC # Ang|AU

<Atoms.SpeciesAndCoordinates

1 C 0.16666666 0.33333333 0.50000000 2.5 1.5

2 C 0.66666666 0.33333333 0.50000000 2.5 1.5

3 C 0.16666666 0.83333333 0.50000000 2.5 1.5

4 C 0.66666666 0.83333333 0.50000000 2.5 1.5

5 Si 0.33333333 0.16666666 0.50000000 2.5 1.5

6 Si 0.83333333 0.16666666 0.50000000 2.5 1.5

7 Si 0.33333333 0.66666666 0.50000000 2.5 1.5

8 Te 0.00000000 0.00000000 0.50000000 0.0 0.0

9 Te 0.50000000 0.00000000 0.50000000 0.0 0.0

10 Te 0.00000000 0.50000000 0.50000000 0.0 0.0

11 Te 0.50000000 0.50000000 0.50000000 0.0 0.0

Atoms.SpeciesAndCoordinates>

The mapping of atoms in the supercell to those in the reference cell was specified by

<Unfolding.Map

1 1

2 1

3 1

4 1

5 2

6 2

7 2

8 3

9 3

10 3

11 3

Unfolding.Map>

After finishing the SCF calculation, you obtain the following files relevant to the unfolding calculation:

sic_c_sp_v.unfold_totup

sic_c_sp_v.unfold_totdn

229

sic_c_sp_v.unfold_orbup

sic_c_sp_v.unfold_orbdn

sic_c_sp_v.unfold_plotexample

By plotting ’sic c sp v.unfold totup’ and ’sic c sp v.unfold totdn’ with gnuplot together with the band

structure of the primitive cell as a reference, you may obtain a figure as shown in Fig. 62(b). It is

found from the unfolded spectral weights that the characteristic feature of the perfect case is still

preserved in spite of introduction of the vacancy, and the chemical potential is pushed up largely. We

also see that the electronic state is spin-polarized due to dangling bonds of carbon atoms. The analysis

shows that the unfolding method would be useful to analyze how the original bands are pertubed by

the introduced imperfection.

When you consider an impurity instead of introduction of vacancy, you only have to assign the

impurity with an identification number. For example, if you introduce an impurity of atom 13 in the

SiC (2× 2) supercell, you can define the mapping rule in relabelling as

<Unfolding.Map

1 1

2 1

3 1

4 1

5 2

6 2

7 2

8 2

9 3

10 3

11 3

12 3

13 4

Unfolding.Map>

In case of multi-impurities and existence of surfaces, you can define the mapping in a similar way

above.

52.3 The origin of the reference unit cell

If you take a close look at Eq. (17) in Ref. [142], you may notice that the relabelling requires the

two mapping rules, i.e., R → R + r0(M) and M → m′(M), where R and r0(M) are the lattice

vectors of the supercell and the reference cells, respectively, and M and m′(M) are a symbolic atomic

orbital index, respectively. We have already given the keyword ’Unfolding.Map’ which actually gives

the mapping rule in relabelling M → m′(M). In this subsection, we explain how the relabelling

R → R+ r0(M) is taken into account. The relabelling R → R+ r0(M) depends on how the reference

unit cell is placed relative to the atomic coordinates in real space, which is equivalent to the choice of

the origin of the reference unit cell. The choice of the origin can be insensitive to the unfolded weights,

because the mapping rule in relabelling M → m′(M) does not change in most cases. However, the

mapping rule may vary depending on the choice of the origin in subtle cases such as surfaces and

230

largely distorted structures. As default, OpenMX will try to estimate an origin using the following

two rules. The first rule is that no more than one atom labeled by the same identification number

in the keyword ’Unfolding.Map’ can be assigned in each reference cell. The multiple assignment of

atoms labeled by the same identification number to a reference cell may happen in a largely distorted

structure. OpenMX will automatically try to avoid such a situation. The second rule is that the origin

of the reference cell is determined by minimizing the total number of the reference lattices that the

number of atoms allocated by the rellabelling is non-zero. Since a system with surfaces represented

by the supercell approach has vacuum region between the slabs, the total number of the reference

lattices having non-zero allocated atoms may vary depending on the choice of origin. OpenMX will

automatically try to minimize the total number of the reference lattices having non-zero allocated

atoms. Applying the two rules may satisfy requirement for most of users, however, you may want to

control the origin by yourself. For this purpose, the following keyword is available:

<Unfolding.ReferenceOrigin

0.1 0.2 0.3

Unfolding.ReferenceOrigin>

where the unit is defined by the keyword ’Atoms.UnitVectors.Unit’.

52.4 Intensity map of unfolded spectral weight

The unfolded spectral weight can be visualized by an intensity map that the weight w is smeared out

by a Lorentian function:

L(k,E) =
w

(k/∆k)2 + (E/∆E)2 + 1
,

where k and E are the magnitude of k-vector in Bohr−1 and energy in eV, respectively, and ∆k and

∆E are the corresponding degree of smearing. Note that the absolute value of the intensity map does

not have physical meaning. The visualization can be performed by the following three steps:

(1) Compilation of intensity map.c

In the the directory ’source’, please compile ’intensity map.c’ as

gcc intensity_map.c -lm -o intensity_map

and copy the executable file ’intensity map’ to your work directory.

(2) Generation of the intensity map

After finising the unfolding calculation, you can generate a file storing a mesh data for drawing
the intensity map using ’intensity map’. For the case of SiC (2 × 2) supercell in a two-dimensional
honeycomb structure with a Si vacancy discussed in the previous subsection, where the input file is
’SiC C SP V.dat’, e.g., one can generate a file ’sic-intmap.txt ’ storing the mesh data by

./intensity_map sic_c_sp_v.unfold_totup -c 3 -k 0.1 -e 0.1 -l -10 -u 6 > sic-intmap.txt

where the arguments have the following meaning:

231

(a) (b)

Figure 63: (a) Intensity map of the unfolded total spectral weight for the up-spin state of a SiC (2×2)

supercell in a two-dimensional honeycomb structure with a Si vacancy, where the SCF calculation was

performed by ’SiC C SP V.dat’ with a modification that the keyword ’Unfolding.desired totalnkpt’

is set to 300 for better resolution. The degree of smearings are 0.1 (Bohr−1) and 0.1 (eV) for ∆k

and ∆E , respectively. (b) Intensity map of the unfolded total spectral weight of the cubic cell

of Fe in the BCC structure with structural disorder, where the SCF calculation was performed by

BCC Fe N SO Disorder.dat with a modification that the keyword ’Unfolding.desired totalnkpt’ is set

to 300 for better resolution. The degree of smearings are 0.1 (Bohr−1) and 0.1 (eV) for ∆k and ∆E ,

respectively.

-c column of spectral weight you analyze

-k degree of smearing (Bohr^{-1}) in {\bf k}-vector

-e degree of smearing (eV) in energy

-l lower bound of energy for drawing the map

-u upper bound of energy for drawing the map

You might be confused by the argument ’-c’ specifying the column number in the file. When you ana-

lyze ’System.Name.unfold orbup(dn)’, you will refer the sequence number for pseudo-atomic orbitals

in ’System.Name.out’. Then, it should be noted that the number Ncol specified by ’-c’ is related to

the sequence number Nseq for pseudo-atomic orbitals in ’System.Name.out’ by Ncol = Nseq + 2.

(3) Drawing of the intensity map

Using gnuplot you can draw the intensity map. For example, for the calculation with the input file

’SiC C SP V.dat’ it can be done as follows:

gnuplot> set yrange [-10.000000:6.000000]

gnuplot> set ylabel ’Energy (eV)’

gnuplot> set xtics(’K’ 0.000000,’G’ 0.722259,’M’ 1.347753,’K’ 1.708883)

gnuplot> set xrange [0:1.708883]

gnuplot> set arrow nohead from 0,0 to 1.708883,0

232

gnuplot> set arrow nohead from 0.722259,-10.000000 to 0.722259,6.000000

gnuplot> set arrow nohead from 1.347753,-10.000000 to 1.347753,6.000000

gnuplot> set pm3d map

gnuplot> sp ’sic-intmap.txt’

Then, you may obtain a figure as shown in Fig. 63(a).

52.5 In case of non-collinear DFT calculations

The functionality for unfolding bands is also supported for the non-collinear DFT calculations with

spin-orbit coupling, and compatible with any other functionalities such as the plus U method. For

such cases, there is no additional keyword.

52.6 Examples

For user’s convenience, input files for six examples can be found in ’work/unfolding example’ as follows:

• SiC Perfect.dat

The primitive cell of SiC in a two-dimensional honeycomb structure without imperfection for an-

alyzing how each band consists of pseudo-atomic orbitals, where the collinear non-spin polarized

calculation is performed.

• SiC C NSP P.dat

The (2× 2) supercell of SiC in a two-dimensional honeycomb structure without imperfection for

unfolding bands, where the collinear non-spin polarized calculation is performed.

• SiC C SP V.dat

The (2 × 2) supercell of SiC in a two-dimensional honeycomb structure with a Si vacancy for

unfolding bands, where the collinear spin polarized calculation is performed.

• SiC NC SO P.dat

The (2× 2) supercell of SiC in a two-dimensional honeycomb structure without imperfection for

unfolding bands, where the non-collinear calculation is performed with spin-orbit coupling.

• SiC NC SO V.dat

The (2 × 2) supercell of SiC in a two-dimensional honeycomb structure with a Si vacancy for

unfolding bands, where the non-collinear calculation is performed with spin-orbit coupling.

• BCC Fe Perfect.dat

The primitive cell of Fe in the BCC structure without imperfection for analyzing how each band

consists of pseudo-atomic orbitals, where the collinear spin polarized calculation is performed.

• BCC Fe C SP Perfect.dat

The cubic cell of Fe in the BCC structure without imperfection for unfolding bands, where the

collinear spin polarized calculation is performed.

233

• BCC Fe N SO Disorder.dat

The cubic cell of Fe in the BCC structure with structural disorder for unfolding bands, where

the non-collinear calculation is performed with spin-orbit coupling.

234

53 Analysis of spin texture in the k-space

Spin splitting in the band structure as can be seen in the Rashba effect may occur when the spin-orbit

coupling is taken into account. The spin splitting can be resolved in each state and wave vector k,

and the state- and k-resolved spin splitting, which is a spin structure on the band dispersion relation

in the reciprocal space, is called spin texture. Using a post-processing code ’kSpin’ one can calculate

the spin texture in the case of a non-collinear calculation with spin-orbit coupling. The state- and

k-resolved spin density matrix, which is referred to as the k-space spin density matrix hereafter, is

calculated from the two component spinor, and takes a form of a 2 × 2 matrix. The spin texture is

actually calculated using the 2 × 2 matrix. In addition to the spin texture, ’kSpin’ provides us the

k-space spin density matrix so that physical origins of phenomena caused by spin-orbit interaction

such as the Rashba effect can be analyzed. ’kSpin’ also supports the analysis of spin texture resolved

for not only each state and wave vector k, but also atom and pseudo-atomic orbital, which may help

us to understand which atom and orbital play a central role of the spin splitting. Note that ’kSpin’ is

applicable to not only the Rashba effect but also topological insulators and systems with non-Rashba

type spin splitting.

In the following subsequent subsections, we explain how ’kSpin’ can be used for such an analysis

with instructive examples of calculations. It should be noted that ’kSpin’ is compatible with only the

non-collinear case, and not supported for the collinear case. See also the section of 34 ’Non-collinear

DFT’ to get information of non-collinear calculations.

To acknowledge in any publications by using the functionality, the citation of the reference [78]

would be appreciated. Also, a technical note regarding the implementation of the functionality is

available at http://www.openmx-square.org/tech notes/note kSpin-1 0.pdf.

53.1 General

In this subsection, the calculation of spin textures is illustrated with a simple model of an Au(111)

surface. The spin texture/k-space spin density matrix are analyzed by the following two or three steps:

1. SCF calculation

First, please perform a conventional SCF calculation using an input file ’Au111Surface FL.dat’

stored in the directory ’work’. Then, the following keywords ’scf.SpinPolarization’ and ’HS.fileout’

should be switched to ’NC’ and ’ON’, respectively, as follows:

scf.SpinPolarization NC # On|Off|NC

HS.fileout ON # on|off, default=Off

Also, when you consider to investigate spin texture, the keyword ’scf.SpinOrbit.Coupling’ should be

switched on:

scf.SpinOrbit.Coupling ON # On|Off

Once the calculation is completed normally, you can obtain an output file ’Au111Surface.scfout’ in

the directory ’work’. Figure 64 shows the band structure of the Au(111) surface.

2. Calculation of the spin texture and k-space spin density matrix

235

-1

0

MKΓM

E
-E
F
(e
V
)

Figure 64: Band structure for the Rashba spin splitting at the Au(111) surface. This figure is obtained

by a Band file ’Au111Surface.Band’ (See the section of 19 Band dispersion). The red curves show the

Rashba bands, which correspond to band indices 55 and 56. This highlight of the Rashba bands can

be reproduced by modifing a GNUBAND file ’Au111Surface.GNUBAND’ or using OMXTool [146].

Let us analyze Rashba bands with a spin splitting shown in Fig. 64. The spin texture and k-

space spin density matrix are calculated by a post-processing code ’kSpin’. The executable file can be

obtained by compilation in the directory ’source’ as follows:

% make kSpin

After the successful compilation, you can find the executable file ’kSpin’ in the directory ’work’. Then,

please move to the directory ’work’, and perform as follows:

% ./kSpin Au111Surface_FL.dat

Note that the input file must include appropriate keywords about ’kSpin’, which will be explained

later on. ’kSpin’ has four ways to calculate the k-space spin density matrix: FermiLoop, GridCalc,

BandDispersion, and MulPOnly. The details of the four ways are provided in each subsection. The

example ’Au111Surface FL.dat’ is for FermiLoop so that you can proceed with this exercise by moving

to the subsection of 53.2 FermiLoop.

3. (Optional) Analysis of the k-space spin density matrix

236

You may need to analyze the k-space spin density matrix, or atomic decomposition of it. Moreover,

it can be decomposed into the s-, p-, d-, or f -character components. You can use a post-processing

code ’MulPCalc’ to analyze the k-space spin density matrix resolved atom and pseudo-atomic orbital.

How to do that will be explained in the subsection of 53.6 MulPCalc.

53.2 FermiLoop: Calculation on a constant-energy level

’kSpin’ has four ways to calculate the k-space spin density matrix, which can be specified by a keyword

’Calc.Type’. Here we introduce FermiLoop among the four ways. FermiLoop can calculate the spin

texture/k-space spin density matrix on a constant-energy level (e.g. the Fermi level). The calculation

of spin texture using FermiLoop is illustrated here with a simple model of an Au(111) surface. Fer-

miLoop searches k-points by two steps: In the first step, FermiLoop performs a rough search to find

the bands to calculate; In the second step, FermiLoop detects k-points on the constant-energy level

using a triangular mesh.

After the calculation of ’Au111Surface FL.dat’ as explained above, you may try to run ’kSpin’.

The keywords relevant to the executation of kSpin can be found at the bottom of the input file

’Au111Surface FL.dat’ stored in the directory ’work’ as shown below:

List of keywords relevant to kSpin

Filename.scfout Au111Surface.scfout

Filename.outdata Au111Surface_FL

Calc.Type FermiLoop # FermiLoop, GridCalc,

BandDispersion, or MulPOnly

default: MulPOnly

Energy.Range 0.0 0.0 # eV; default: 0.0 0.0

Search.kCentral 0.0 0.0 0.0 # default: 0.0 0.0 0.0

Calc.Type.3mesh 2 # default: 1

kRange.3mesh 0.2 0.2 # default: 0.5 0.5

k-plane.1stStep 21 21 # default: 2 2

k-plane.2ndStep 3 3 # default: 3 3

Eigen.Brent On # on|off, default: On

Trial.Brent 5 # default: 5

Calc.Bandbyband Off # on|off, default: Off

Calc.Band.Min 55

Calc.Band.Max 56

MulP.Vec.Scale 0.1 0.1 0.1 # default: 1.0 1.0 1.0

Specification of keywords

The specification of each keyword is explained below:

Filename.scfout

Specify the name of the scfout file which will be read by ’kSpin’.

Filename.outdata

237

Specify a name for output files. This keyword corresponds to the keyword ’System.Name’ for OpenMX

calculations.

Calc.Type

Choose either FermiLoop, GridCalc, BandDispersion, or MulPOnly. The default setting is MulPOnly.

Here we choose FermiLoop for the exercise.

Energy.Range

The keyword specifies the energy range in which bands to be analyzed are searched. For FermiLoop,

specify the two same values for an energy level. The unit is ’eV’. If different values are set, the average

of them will be used. The default is ’-0.5 0.5’ (i.e. the Fermi level).

Search.kCentral

Specify a set of three values for the central k-point around which FermiLoop should search k-points

on the specified constant-energy level (i.e. values for the keyword ’Energy.Range’). The notation to

specify the k-point follows the keyword ’Band.kpath’. The default is ’0.0 0.0 0.0’ (i.e. Γ-point).

Calc.Type.3mesh

Specify a plane on which the spin texture is calculated. Set a value ’1’, ’2’, and ’3’, for the case of

kakb-, kbkc-, and kcka-planes, respectively. The default is ’1’.

kRange.3mesh

Specify two values for a two-dimensional domain in the reciprocal space where k-points should be

calculated. For example, if the value for the keyword ’Calc.Type.3mesh’ is ’1’ (kakb-plane), values ’0.2

0.3’ specifies a domain: −0.2 ≤ ka ≤ 0.2, −0.3 ≤ kb ≤ 0.3. The notation of the k-points follows the

keyword ’Band.kpath’. The default is ’0.5 0.5’ (i.e. the whole of the first brillouin zone).

k-plane.1stStep

Specify the number of grid points to divide the domain by the keyword ’kRange.3mesh’ for the first

search. For example, if the value for the keyword ’Calc.Type.3mesh’ is ’1’ (kakb-plane), values ’2 3’

specifies the number of grid points as follows: 2 for ka-axis, 3 for kb-axis. If the values are ’1 1’ and

the value for the keyword ’Calc.Bandbyband’ is ’ON’, FermiLoop will omit the first step, which is

useful for a large-scale calculation with many MPI processes (cf. k-plane.2ndStep; Calc.Bandbyband;

Calc.BandMin; Calc.BandMax). The default is ’2 2’.

k-plane.2ndStep

Specify the number of grid points for the second search, which divides the subspace divided in the

first search. The notation is the same as that for the keyword ’k-plane.1stStep’ (cf. k-plane.1stStep).

The default is ’3 3’.

Eigen.Brent

Specify if FermiLoop should use the Brent method (ON) or not (OFF) to search k-points on the

specified constant-energy level (i.e. values for the keyword ’Energy.Range’). If the value is ’OFF’,

FermiLoop will use a linear interpolation scheme. The default is ’ON’ (cf. Trial.Brent).

Trial.Brent

238

Specify the maximum number of steps for the Brent method (cf. Eigen.Brent). This keyword is valid

when the value for the keyword ’Eigen.Brent’ is ’ON’. The default is ’5’ (cf. Eigen.Brent).

Calc.Bandbyband

Specify if FermiLoop should calculate given bands (ON) or not (OFF). (cf. Calc.BandMin; Calc.BandMax).

The default is ’OFF’.

Calc.BandMin

Set the lower limit on the range for bands to calculate by specifying the band index. This key-

word is valid when the value for the keyword ’Calc.Bandbyband’ is ’ON’ (cf. Calc.Bandbyband;

Calc.BandMax). You can see band indices using OMXTool [146] or 53.4 BandDispersion.

Calc.BandMax

Set the upper limit on the range for bands to calculate by specifying the band index. This key-

word is valid when the value for the keyword ’Calc.Bandbyband’ is ’ON’ (cf. Calc.Bandbyband;

Calc.BandMin). You can see band indices using [146] or 53.4 BandDispersion.

MulP.Vec.Scale

Specify a scale to draw vectors expressing the spin texture. For example, values ’0.1 0.2 0.3’ spec-

ifies the scale as follows: 0.1 for x-axis, 0.2 for y-axis, 0.3 for z-axis. This keyword affects only

’XXXXX.Pxyz YY’ (XXXXX = the value for the keyword ’Filename.outdata’; YY = the band in-

dex). The default is ’1.0 1.0 1.0’.

Calculation

The spin texture/k-space spin density matrix are calculated by a post-processing code ’kSpin’ in the

directory ’work’. Then, please move to the directory ’work’, and perform a calculation as follows:

% ./kSpin Au111Surface_FL.dat

or for the MPI calculation, for example, the case with 4 MPI processes

% mpirun -np 4 ./kSpin Au111Surface_FL.dat

As the calculation proceeds, you may see the following standard output:

**

**

kSpin:

code for evaluating spin related properties

in momentum space of solid state materials.

Copyright (C), 2019,

Hiroki Kotaka, Naoya Yamaguchi and Fumiyuki Ishii.

This software includes the work that is distributed

in version 3 of the GPL (GPLv3).

Please cite the following article:

H. Kotaka, F. Ishii, and M. Saito,

239

Jpn. J. Appl. Phys. 52, 035204 (2013).

DOI: 10.7567/JJAP.52.035204.

**

**

Input filename is "Au111Surface.scfout"

Start "FermiLoop" Calculation (5).

########### ORBITAL DATA ##################

ClaOrb_MAX[0]: 2

ClaOrb_MAX[1]: 8

Total Band (2*n): 124

Central (0.000000 0.000000 0.000000)

###

########### EIGEN VALUE ###################

The number of BANDs 2 (55-> 56)

########### CONTOUR CALC ##################

k-height : 0 0.000000

The number of BANDs 2 (55-> 56)

l= 55, k_points: 139 (array: 277)

l= 56, k_points: 115 (array: 229)

Total MulP data: 254

###

###

############ CALC TIME ####################

Total Calculation Time: 26.851349 (s)

Eigen Value Calc: 4.277838 (s)

l= 55: Contour Calc: 11.349228 (s)

MulP Calc: 1.120379 (s)

l= 56: Contour Calc: 9.179602 (s)

MulP Calc: 0.920524 (s)

###

############ CALC TIME ####################

Total Calculation Time: 26.869150 (s)

###

When the calculation is completed normally as shown above, you can find the following output files

in the directory ’work’:

Au111Surface_FL.FermiSurf_53

240

Au111Surface_FL.Pxyz_53

Au111Surface_FL.FermiSurf_54

Au111Surface_FL.Pxyz_54

Au111Surface_FL.FermiSurf_55

Au111Surface_FL.Pxyz_55

Au111Surface_FL.FermiSurf_56

Au111Surface_FL.Pxyz_56

Au111Surface_FL.AtomMulP

Au111Surface_FL.MulP_s

Au111Surface_FL.MulP_p

Au111Surface_FL.MulP_p1

Au111Surface_FL.MulP_p2

Au111Surface_FL.MulP_p3

Au111Surface_FL.MulP_d

Au111Surface_FL.MulP_d1

Au111Surface_FL.MulP_d2

Au111Surface_FL.MulP_d3

Au111Surface_FL.MulP_d4

Au111Surface_FL.MulP_d5

Au111Surface_FL.plotexample

Au111Surface_FL.atominfo

temporal_12345.input

As an example, by executing the following command, you can obtain a figure of spin texture for the

Rashba spin splitting in the Au(111) surface as shown in Fig. 65. which exhibits a typical Rashba-type

spin texture.

% gnuplot Au111Surface_FL.plotexample

Output files

The content of each output file is explained below:

FermiSurf YY file

This file stores data of the k-points for the band with the band index YY searched on the specified

constant-energy level. The first, second, and third columns correspond to the kx, ky, and kz compo-

nents of the k-points in units of Bohr−1, respectively. The fourth, and fifth columns correspond to the

band index, the energy (in units of eV), respectively.

Pxyz YY file

This file stores data of the expectation value of the Pauli matricies vectors for each k-point stored

in the FermiSurf YY file. The first, second, and third columns correspond to the kx, ky, and kz
components of the k-points in units of Bohr−1, respectively. The fourth, fifth, and sixth columns

correspond to the expectation value of the σx, σy, and σz in units of the Bohr magneton, respectively.

AtomMulP file

241

−0.4

−0.2

0

0.2

0.4

−0.4 −0.2 0 0.2 0.4

k y
(/
Å
)

kx (/Å)

+

Γ

Figure 65: Spin textures for the Rashba spin splitting around Γ-point at the Au(111) surface. The

outer and inner ones correspond to the band indices 55 and 56. The vectors represent the expectation

values of the Pauli matrices vectors at each k-point stored in Pxyz YY files ’Au111Surface FL.Pxyz 55’

and ’Au111Surface FL.Pxyz 56’. The closed curves represent the constant-energy level stored

in FermiSurf YY files ’Au111Surface FL.FermiSurf 55’ and ’Au111Surface FL.FermiSurf 56’. The

central cross point corresponds to Γ-point. You can get this figure by a plotexample file

’Au111Surface FL.plotexample’.

This file stores data of the k-space spin density matrix resolved to the atomic contribution, which can

be analyzed by 53.6 MulPCalc.

MulP xx file

This file stores data of the xx-component of the k-space spin density matrix resolved to the atomic

contribution, and can be analyzed by 53.6 MulPCalc.

plotexample file

This file supplies an example of gnuplot scripts.

atominfo file

This file supplies information of lattice vectors and PAOs.

temporal 12345.input

This file is a copy of the input file stored in the scfout file.

242

(Optional) Analysis of the k-space spin density matrix

MulPCalc can extract data to analyze the k-space spin density matrix from AtomMulP files or

MulP xx files. You can find an example of input files for MulPCalc at the bottom of an input file

’Au111Surface FL.dat’ and proceed to the analysis of the k-space spin density matrix after the above

calculation as follows:

% ./MulPCalc Au111Surface_FL.dat

For more information of MulPCalc, see also the subsection of 53.6 MulPCalc.

Other tips

GridCalc may be useful in finding appropriate settings for FermiLoop because GridCalc can draw

spin the texture on a k-point grid to investigate a wider domain in the reciprocal space. Setting ’OFF’

for the keyword ’Eigen.Brent’ may be effective in reducing computational time. In this case, you

should use a fine mesh by increaing the values for the keywords ’k-plane.1stStep’ or ’k-plane.2ndStep’

for accuracy.

53.3 GridCalc: Calculation on a k-point grid

’kSpin’ has four ways to calculate the k-space spin density matrix, which can be specified by a keyword

’Calc.Type’. Here we introduce GridCalc among the four ways. GridCalc can calculate the spin

textures/k-space spin density matrix on a given k-point grid for each band within a user-specified

energy range. You can also specify bands to calculate instead of specifying an energy range. The

calculation of spin textures using GridCalc is illustrated here with a simple model of an Au(111)

surface.

After a calculation of OpenMX with an input file ’Au111Surface GC.dat’ stored in the directory

’work’, you may try to run ’kSpin’. The keywords relevant to the executation of kSpin can be found

at the bottom of the input file ’Au111Surface GC.dat’ stored in the directory ’work’ as shown below:

List of keywords relevant to kSpin

Filename.scfout Au111Surface.scfout

Filename.outdata Au111Surface_GL

Calc.Type GridCalc # FermiLoop, GridCalc,

BandDispersion, or MulPOnly

default: MulPOnly

Energy.Range -1.0 1.0 # eV; default: 0.0 0.0

Search.kCentral 0.0 0.0 0.0 # default: 0.0 0.0 0.0

Calc.Type.3mesh 2 # default: 1

kRange.3mesh 0.5 0.5 # default: 0.5 0.5

k-plane.1stStep 14 14 # default: 2 2

Calc.Bandbyband Off # default: Off

Calc.Band.Min 55

Calc.Band.Max 56

MulP.Vec.Scale 0.1 0.1 0.1 # default: 1.0 1.0 1.0

243

Specification of keywords

Although the keywords above are the same as for the case of FermiLoop, for user’s convenience the

specification of each keyword is explained with emphasis on GridCalc below. Note that the behavier

of the keyword ’Enery.Range’ is different from that in FermiLoop.

Filename.scfout

Specify the name of the scfout file which will be read by ’kSpin’.

Filename.outdata

Specify a name for output files. This keyword corresponds to the keyword ’System.Name’ for OpenMX

calculations.

Calc.Type

Choose either FermiLoop, GridCalc, BandDispersion, or MulPOnly. The default setting is MulPOnly.

Here we choose GridCalc for the exercise.

Energy.Range

Specify the two different values for an energy range for which GridCalc should search bands. The

unit is in eV. This keyword should be valid when the keyword ’Calc.Bandbyband’ is ’OFF’ (cf.

Calc.Bandbyband). The default is ’-0.5 0.5’ (i.e. the range is [-0.5, 0.5]).

Search.kCentral

Specify a set of three values for the central k-point around which GridCalc should search k-points on

the specified energy range (i.e. values for the keyword ’Energy.Range’). The notation to specify the

k-point follows the keyword ’Band.kpath’. The default is ’0.0 0.0 0.0’ (i.e. Γ-point).

Calc.Type.3mesh

Specify a plane on which the spin texture is calculated. Set a value ’1’, ’2’, and ’3’, for the case of

kakb-, kbkc-, and kcka-planes, respectively. The default is ’1’.

kRange.3mesh

Specify two values for a two-dimensional domain in the reciprocal space where k-points should be

calculated. For example, if the value for the keyword ’Calc.Type.3mesh’ is ’1’ (kakb-plane), values ’0.2

0.3’ specifies a domain: −0.2 ≤ ka ≤ 0.2, −0.3 ≤ kb ≤ 0.3. The notation of the k-points follows the

keyword ’Band.kpath’. The default is ’0.5 0.5’ (i.e. the whole of the first brillouin zone).

k-plane.1stStep

Specify the number of grid points to divide the domain by the keyword ’kRange.3mesh’ for the first

search. For example, if the value for the keyword ’Calc.Type.3mesh’ is ’1’ (kakb-plane), values ’2 3’

specifies the number of grid points as follows: 2 for ka-axis, 3 for kb-axis. The default is ’2 2’.

Calc.Bandbyband

Specify ifGridCalc should calculate given bands (ON) or not (OFF). (cf. Calc.BandMin; Calc.BandMax).

The default is ’OFF’.

244

Calc.BandMin

Set the lower limit on the range for bands to calculate by specifying the band index. This key-

word is valid when the value for the keyword ’Calc.Bandbyband’ is ’ON’ (cf. Calc.Bandbyband;

Calc.BandMax). You can see band indices using OMXTool [146] or 53.4 BandDispersion.

Calc.BandMax

Set the upper limit on the range for bands to calculate by specifying the band index. This key-

word is valid when the value for the keyword ’Calc.Bandbyband’ is ’ON’ (cf. Calc.Bandbyband;

Calc.BandMin). You can see band indices using OMXTool [146] or 53.4 BandDispersion.

MulP.Vec.Scale

Specify a scale to draw vectors expressing the spin texture. For example, values ’0.1 0.2 0.3’ spec-

ifies the scale as follows: 0.1 for x-axis, 0.2 for y-axis, 0.3 for z-axis. This keyword affects only

’XXXXX.Pxyz YY’ (XXXXX = the value for the keyword ’Filename.outdata’; YY = the band in-

dex). The default is ’1.0 1.0 1.0’.

Calculation

The spin texture/k-space spin density matrix are calculated by a post-processing code ’kSpin’ in the

directory ’work’. Then, please move to the directory ’work’, and perform a calculation as follows:

% ./kSpin Au111Surface_GC.dat

or for the MPI calculation, for example, the case with 4 MPI processes

% mpirun -np 4 ./kSpin Au111Surface_GC.dat

As the calculation proceeds, you may see the following standard output:

**

**

kSpin:

code for evaluating spin related properties

in momentum space of solid state materials.

Copyright (C), 2019,

Hiroki Kotaka, Naoya Yamaguchi and Fumiyuki Ishii.

This software includes the work that is distributed

in version 3 of the GPL (GPLv3).

Please cite the following article:

H. Kotaka, F. Ishii, and M. Saito,

Jpn. J. Appl. Phys. 52, 035204 (2013).

DOI: 10.7567/JJAP.52.035204.

**

**

245

Input filename is "Au111Surface.scfout"

Start "GridCalc" Calculation (4).

########### ORBITAL DATA ##################

ClaOrb_MAX[0]: 2

ClaOrb_MAX[1]: 8

Total Band (2*n): 124

Central (0.000000 0.000000 0.000000)

###

########### EIGEN VALUE ###################

The number of BANDs 8 (49-> 56)

Total MulP data:1568

###

############ CALC TIME ####################

Total Calculation Time: 3.656405 (s)

Eigen Value Calc: 3.498849 (s)

###

############ CALC TIME ####################

Total Calculation Time: 3.670708 (s)

###

When the calculation is completed normally as shown above, you can find the following output files

in the directory ’work’:

Au111Surface_GC.EigenMap_49

Au111Surface_GC.Pxyz_49

Au111Surface_GC.plotexample_49

Au111Surface_GC.EigenMap_50

Au111Surface_GC.Pxyz_50

Au111Surface_GC.plotexample_50

Au111Surface_GC.EigenMap_51

Au111Surface_GC.Pxyz_51

Au111Surface_GC.plotexample_51

Au111Surface_GC.EigenMap_52

Au111Surface_GC.Pxyz_52

Au111Surface_GC.plotexample_52

Au111Surface_GC.EigenMap_53

Au111Surface_GC.Pxyz_53

Au111Surface_GC.plotexample_53

Au111Surface_GC.EigenMap_54

Au111Surface_GC.Pxyz_54

246

Au111Surface_GC.plotexample_54

Au111Surface_GC.EigenMap_55

Au111Surface_GC.Pxyz_55

Au111Surface_GC.plotexample_55

Au111Surface_GC.EigenMap_56

Au111Surface_GC.Pxyz_56

Au111Surface_GC.plotexample_56

Au111Surface_GC.AtomMulP

Au111Surface_GC.MulP_s

Au111Surface_GC.MulP_p

Au111Surface_GC.MulP_p1

Au111Surface_GC.MulP_p2

Au111Surface_GC.MulP_p3

Au111Surface_GC.MulP_d

Au111Surface_GC.MulP_d1

Au111Surface_GC.MulP_d2

Au111Surface_GC.MulP_d3

Au111Surface_GC.MulP_d4

Au111Surface_GC.MulP_d5

Au111Surface_GC.atominfo

temporal_12345.input

As an example, by executing the following command, you can obtain figures of the spin texture for

the Rashba spin splitting in the Au(111) surface as shown in Figs. 66(a) and (b). which exhibit the

typical Rashba-type spin texture.

% gnuplot Au111Surface_GC.plotexample_55

% gnuplot Au111Surface_GC.plotexample_56

Output files

The content of each output file is explained below:

EigenMap YY file

This file stores a grid data for the band with the band index YY. The first, second, and third columns

correspond to the kx, ky, and kz components of the k-points in units of Bohr−1, respectively. The

fourth column corresponds to the energy in units of eV.

Pxyz YY file

This file stores data of the expectation value of the Pauli matrices vectors for each k-point stored in the

FermiSurf YY file. The first, second, and third columns correspond to the kx, ky, and kz component

of the k-points in units of Bohr−1, respectively. The fourth, fifth, and sixth columns correspond to

the expectation value of the σx, σy, and σz in units of the Bohr magneton, respectively.

AtomMulP file

247

−1.5−1−0.5 0 0.5 1 1.5

kx (/Å)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

k y
(/
Å
)

−1
−0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

e
V+

−1.5−1−0.5 0 0.5 1 1.5

kx (/Å)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

k y
(/
Å
)

−1
−0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

e
V+

(a) (b)

Figure 66: Spin texture for the band with (a) the band indice 55 and (b) 56 in the

Rashba spin splitting around Γ-point at the Au(111) surface. The vectors represent the

expectation values of the Pauli matrices vectors at each k-point stored in a Pxyz YY file

’Au111Surface GC.Pxyz 55’ and ’Au111Surface GC.Pxyz 56’, respectively. The color maps represent

the height in energy at each k-point stored in an EigenMap YY file ’Au111Surface GC.EigenMap 55’

and ’Au111Surface GC.EigenMap 56’, respectively. The central cross point corresponds to Γ-

point. You can get thes figures by plotexample YY files ’Au111Surface GC.plotexample 55’ and

’Au111Surface GC.plotexample 56’.

This file stores data of the k-space spin density matrix resolved to the atomic contribution, which can

be analyzed by 53.6 MulPCalc.

MulP xx file

This file stores data of the xx-component of the k-space spin density matrix resolved to the atomic

contribution, and can be analyzed by 53.6 MulPCalc.

plotexample file

This file supplies an example of gnuplot scripts.

atominfo file

This file supplies information of lattice vectors and PAOs.

temporal 12345.input

This file is a copy of the input file stored in the scfout file.

(Optional) Analysis of the k-space spin density matrix

MulPCalc can extract data to analyze the k-space spin density matrix from AtomMulP files or

MulP xx files. You can find an example of input files for MulPCalc at the bottom of an input file

’Au111Surface GC.dat’ and proceed to the analysis of the k-space spin density matrix after the above

248

calculation as follows:

% ./MulPCalc Au111Surface_GC.dat

For more information of MulPCalc, see also the subsection of 53.6 MulPCalc.

53.4 BandDispersion: Calculation on the band dispersion relation

’kSpin’ has four ways to calculate the k-space spin density matrix, which can be specified by a keyword

’Calc.Type’. Here we introduce BandDispersion among the four ways. BandDispersion can calculate

the k-space spin density matrix resolved to each atom on the band dispersion relation within a user-

specified energy range. First, the calculation of the band dispersion using BandDispersion is illustrated

here with a simple model of an Au(111) surface. Then, you can calculate spin textures using 53.6

MulPCalc.

After a calculation of OpenMX with an input file ’Au111Surface BD.dat’ stored in the directory

’work’, you may try to run ’kSpin’. The keywords relevant to the executation of kSpin can be found

at the bottom of the input file ’Au111Surface BD.dat’ stored in the directory ’work’ as shown below:

List of keywords relevant to kSpin

Filename.scfout Au111Surface.scfout

Filename.outdata Au111Surface_BD

Calc.Type BandDispersion # FermiLoop, GridCalc,

BandDispersion, or MulPOnly

default: MulPOnly

Energy.Range -1.0 1.0 # eV; default: 0.0 0.0

Band.Nkpath 2

<Band.kpath

135 0.0 0.500000 0.000000 0.0 0.000000 0.000000 M G

135 0.0 0.000000 0.000000 0.0 -0.500000 0.000000 G -M

Band.kpath>

Specification of keywords

The specification of each keyword is explained below:

Filename.scfout

Specify the name of the scfout file which will be read by ’kSpin’.

Filename.outdata

Specify a name for output files. This keyword corresponds to the keyword ’System.Name’ for OpenMX

calculations.

Calc.Type

Choose either FermiLoop, GridCalc, BandDispersion, or MulPOnly. The default setting is MulPOnly.

Here we choose BandDispersion for the exercise.

Energy.Range

249

Specify the two different values for an energy range for which BandDispersion should search bands.

The unit is in eV. The default is ’-0.5 0.5’ (i.e. the range is [-0.5, 0.5]).

Band.Nkpath

Specify the number of k-paths along whichBandDispersion should calculate the band dispersion. The

notation is the same as that in the conventional calculation.

Band.kpath

Specify k-paths along which BandDispersion should calculate the band dispersion. The notation is

the same as that in the conventional calculation.

Calculation

The k-space spin density matrix resolved to each atom is calculated by a post-processing code ’kSpin’

in the directory ’work’. Please move to the directory ’work’, and perform a calculation as follows:

% ./kSpin Au111Surface_BD.dat

or for the MPI calculation, for example, the case with 4 MPI processes

% mpirun -np 4 ./kSpin Au111Surface_BD.dat

As the calculation proceeds, you may see the following standard output:

**

**

kSpin:

code for evaluating spin related properties

in momentum space of solid state materials.

Copyright (C), 2019,

Hiroki Kotaka, Naoya Yamaguchi and Fumiyuki Ishii.

This software includes the work that is distributed

in version 3 of the GPL (GPLv3).

Please cite the following article:

H. Kotaka, F. Ishii, and M. Saito,

Jpn. J. Appl. Phys. 52, 035204 (2013).

DOI: 10.7567/JJAP.52.035204.

**

**

Input filename is "Au111Surface.scfout"

Start "BandDispersion" Calculation (3).

line_Nk[1]: 0.665829

250

(0.000000, 0.500000, 0.000000) -> (0.000000, 0.000000, 0.000000)

line_Nk[2]: 1.331658

(0.000000, 0.000000, 0.000000) -> (0.000000, -0.500000, 0.000000)

########### ORBITAL DATA ##################

ClaOrb_MAX[0]: 2

ClaOrb_MAX[1]: 8

Total Band (2*n): 124

###

Band.Nkpath: 2

135 (0.000000, 0.500000, 0.000000) >>> (0.000000, 0.000000, 0.000000) M G

135 (0.000000, 0.000000, 0.000000) >>> (0.000000, -0.500000, 0.000000) G -M

l_min: 49 l_max: 56 l_cal: 8

Au111Surface_BD.Band49_1

Au111Surface_BD.Band50_1

Au111Surface_BD.Band51_1

Au111Surface_BD.Band52_1

Au111Surface_BD.Band53_1

Au111Surface_BD.Band54_1

Au111Surface_BD.Band55_1

Au111Surface_BD.Band56_1

l_min: 49 l_max: 56 l_cal: 8

Au111Surface_BD.Band49_2

Au111Surface_BD.Band50_2

Au111Surface_BD.Band51_2

Au111Surface_BD.Band52_2

Au111Surface_BD.Band53_2

Au111Surface_BD.Band54_2

Au111Surface_BD.Band55_2

Au111Surface_BD.Band56_2

###

Total MulP data:2176

############ CALC TIME ####################

Total Calculation Time: 4.772406 (s)

###

When the calculation is completed normally as shown above, you can find the following output files

in the directory ’work’:

Au111Surface_BD.BAND

Au111Surface_BD.Band49_1

Au111Surface_BD.Band50_1

Au111Surface_BD.Band51_1

Au111Surface_BD.Band52_1

Au111Surface_BD.Band53_1

Au111Surface_BD.Band54_1

251

Au111Surface_BD.Band55_1

Au111Surface_BD.Band56_1

Au111Surface_BD.Band49_2

Au111Surface_BD.Band50_2

Au111Surface_BD.Band51_2

Au111Surface_BD.Band52_2

Au111Surface_BD.Band53_2

Au111Surface_BD.Band54_2

Au111Surface_BD.Band55_2

Au111Surface_BD.Band56_2

Au111Surface_BD.AMulPBand

Au111Surface_BD.AMulPBand_s

Au111Surface_BD.AMulPBand_p

Au111Surface_BD.AMulPBand_p1

Au111Surface_BD.AMulPBand_p2

Au111Surface_BD.AMulPBand_p3

Au111Surface_BD.AMulPBand_d

Au111Surface_BD.AMulPBand_d1

Au111Surface_BD.AMulPBand_d2

Au111Surface_BD.AMulPBand_d3

Au111Surface_BD.AMulPBand_d4

Au111Surface_BD.AMulPBand_d5

Au111Surface_BD.plotexample

Au111Surface_BD.atominfo

temporal_12345.input

As an example, by executing the following command, you can obtain a figure of the band dispersion

for the Rashba spin splitting in the Au(111) surface as shown in Fig. 67(a).

% gnuplot Au111Surface_BD.plotexample

In order to obtain information of spin textures on the band dispersion, you may try to analyze by 53.6

MulPCalc.

Output files

The content of each output file is explained below:

BAND file

This file stores data for the band dispersion. The first and second columns correspond to the distance

for the k-points along each k-path (in units of Bohr−1) and the energy for each of them (in units of

eV), respectively.

Band YY Z file

This file stores data for the band dispersion of each branch with the band index YY and k-path index

Z. The notation of contents of this file is the same as the BAND file.

252

-1

-0.5

0

0.5

1

M Γ -M

E
-E
F
(e
V
)

-1

-0.5

0

0.5

1

M Γ -M

E
-E
F
(e
V
)

(a) (b)

Figure 67: (a) Band dispersion for the Rashba spin splitting at the Au(111) surface stored

in a BAND file ’Au111Surface BD.BAND’. You can get this figure by a plotexample file

’Au111Surface BD.plotexample’. (b) k-space spin density matrix resolved to each atom for the Rashba

spin splitting at the Au(111) surface. The circles represent the difference between the number of elec-

trons with α- and β-spin at each k-point, and the radius and color reflect its magnitude and sign,

respectively, stored in a MulPop file ’Au111Surface BD MC.MulPop’. You can get this figure by a

plotexample file ’Au111Surface BD MC.plotexample’.

AMulPBand file

This file stores data of the k-space spin density matrix resolved to each atom, and can be analyzed by

53.6 MulPCalc.

AMulPBand xx file

This file stores data of the xx-component of the k-space spin density matrix resolved to each atom,

and can be analyzed by 53.6 MulPCalc.

plotexample file

This file supplies an example of gnuplot scripts.

atominfo file

This file supplies information of lattice vectors and PAOs.

temporal 12345.input

This file is a copy of the input file stored in the scfout file.

Analysis of the k-space spin density matrix resolved to each atom

MulPCalc can extract data to analyze the k-space spin density matrix resolved to each atom from

AMulPBand files or AMulPBand xx files. The executable file can be obtained by compilation in the

directory ’source’ as follows:

% make MulPCalc

After the successful compilation, you can find the executable file ’MulPCalc’ in the directory ’work’.

253

Let us analyze the k-space spin density matrix resolved to the atomic contribution on the band

dispersion for the Rashba spin splitting in the Au(111) surface. First, add the following keywords and

values into the input file ’Au111Surface BD.dat’, for example:

Filename.atomMulP Au111Surface_BD.AMulPBand # default: default

Filename.xyzdata Au111Surface_BD_MC # default: default

Num.of.Extract.Atom 3 # default: 1

Extract.Atom 1 2 3 # default: 1 2 ... (Num.of.Extract.Atom)

After the above calculation, you can analyze the k-space spin density matrix resolved to the atomic

contribution as follows:

% ./MulPCalc Au111Surface_BD.dat

In addtion, you can adjust data for making better figures by the following keywords and values:

MulP.Vec.Scale 0.1 0.1 0.1 # default: 1.0 1.0 1.0

Data.Reduction 1 # default: 1

After executing MulPCalc, you can find the following output files in the directory ’work’.

Au111Surface_BD_MC.MulPop

Au111Surface_BD_MC.MulPop49

Au111Surface_BD_MC.MulPop50

Au111Surface_BD_MC.MulPop51

Au111Surface_BD_MC.MulPop52

Au111Surface_BD_MC.MulPop53

Au111Surface_BD_MC.MulPop54

Au111Surface_BD_MC.MulPop55

Au111Surface_BD_MC.MulPop56

Au111Surface_BD_MC.plotexample

As an example, by executing the following command, you can obtain a figure of the band dispersion

for the Rashba spin splitting in the Au(111) surface with the k-space spin density matrix resolved to

the atom contribution as shown in Fig. 67(b).

% gnuplot Au111Surface_BD_MC.plotexample

For more information of MulPCalc, see also the subsection of 53.6 MulPCalc.

53.5 MulPOnly: Calculation on user-specified k-points

’kSpin’ has four ways to calculate the k-space spin density matrix, which can be specified by a keyword

’Calc.Type’. Here we introduce MulPOnly among the four ways. MulPOnly can calculate the k-space

spin density matrix on user-specified k-points for user-specified bands. The calculation of spin texture

using MulPOnly and MulPCalc is illustrated here with a simple model of an Au(111) surface.

After a calculation of OpenMX with an input file ’Au111Surface MO.dat’ stored in the directory

’work’, you may try to run ’kSpin’. The keywords relevant to the executation of kSpin can be found

at the bottom of the input file ’Au111Surface MO.dat’ stored in the directory ’work’ as shown below:

List of keywords relevant to kSpin

254

Filename.scfout Au111Surface.scfout

Filename.outdata Au111Surface_MO

Calc.Type MulPOnly # FermiLoop, GridCalc,

BandDispersion, or MulPOnly

default: MulPOnly

Filename.kpointdata kpoint.in

In addition, another input file, whose file name is specified by the keyword ’Filename.kpointdata’, is
required to specify k-points on which the k-space spin density matrix is calculated by MulPOnly. For
the exercise, the file ’kpoint.in’ is stored in the directory ’work’. The notation follows the following
rule: In the first row, you need to specify the number of k-points where MulPOnly will calculate the
k-space spin density matrix. Then, specify a k-point (the first, second, and third columns correspond
to kx, ky, and kz, respectively, in Bohr−1.) and a band index (the fourth column) for it. The file
’kpoint.in’ stores information of the k-points on the circle around the Γ-point in the reciprocal space.
For example, you can prepare this file as follows:

rm -f kpoint.in && awk ’{for (i=0; i<$1; i++){printf "%17.14f %17.14f %17.14f %d\n", 0, $2*cos(2*atan2(0, -1)/$1*i),

$2*sin(2*atan2(0, -1)/$1*i), $3 >> "buffer"}; sum+=$1; if (!$1) {print sum; exit}}’ - > N.in && cat N.in buffer >> kpoint.in && rm N.in buffer

After that, if you give values as follows:

40 0.18 55 <- # of k-points; radius; band index

40 0.15 56 <- # of k-points; radius; band index

0 <- exit

Then, you will get ’kpoint.in’ and you can see the content of ’kpoint.in’ as follows:

% cat kpoint.in

80

0.00000000000000 0.18000000000000 0.00000000000000 55

0.00000000000000 0.17778390130712 0.02815820370724 55

0.00000000000000 0.17119017293313 0.05562305898749 55

0.00000000000000 0.16038117435391 0.08171828995312 55

0.00000000000000 0.14562305898749 0.10580134541265 55

0.00000000000000 0.12727922061358 0.12727922061358 55

0.00000000000000 0.10580134541265 0.14562305898749 55

0.00000000000000 0.08171828995312 0.16038117435391 55

0.00000000000000 0.05562305898749 0.17119017293313 55

0.00000000000000 0.02815820370724 0.17778390130712 55

0.00000000000000 0.00000000000000 0.18000000000000 55

0.00000000000000 -0.02815820370724 0.17778390130712 55

...

..

Specification of keywords

The specification of each keyword is explained below:

Filename.scfout

Specify the name of the scfout file which will be read by ’kSpin’.

255

Filename.outdata

Specify a name for output files. This keyword corresponds to the keyword ’System.Name’ for OpenMX

calculations.

Calc.Type

Choose either FermiLoop, GridCalc, BandDispersion, or MulPOnly. The default setting is MulPOnly.

Here we choose MulPOnly for the exercise.

Filename.kpointdata

Specify the name of an data file of k-points and band indices.

Calculation

The k-space spin density matrix resolved to each atom is calculated by a post-processing code

’kSpin’ in the directory ’work’. Please move to the directory ’work’, and perform a calculation as

follows:

% ./kSpin Au111Surface_MO.dat

or for the MPI calculation, for example, the case with 4 MPI processes

% mpirun -np 4 ./kSpin Au111Surface_MO.dat

As the calculation proceeds, you may see the following standard output:

**

**

kSpin:

code for evaluating spin related properties

in momentum space of solid state materials.

Copyright (C), 2019,

Hiroki Kotaka, Naoya Yamaguchi and Fumiyuki Ishii.

This software includes the work that is distributed

in version 3 of the GPL (GPLv3).

Please cite the following article:

H. Kotaka, F. Ishii, and M. Saito,

Jpn. J. Appl. Phys. 52, 035204 (2013).

DOI: 10.7567/JJAP.52.035204.

**

**

Input filename is "Au111Surface.scfout"

Start "MulPOnly" Calculation (6).

256

########### ORBITAL DATA ##################

ClaOrb_MAX[0]: 2

ClaOrb_MAX[1]: 8

Total Band (2*n): 124

###

############ CALC TIME ####################

Total Calculation Time: 0.642631 (s)

###

############ CALC TIME ####################

Total Calculation Time: 0.660566 (s)

###

When the calculation is completed normally as shown above, you can find the following output files

in the directory ’work’:

Au111Surface_MO.AtomMulP

Au111Surface_MO.MulP_s

Au111Surface_MO.MulP_p

Au111Surface_MO.MulP_p1

Au111Surface_MO.MulP_p2

Au111Surface_MO.MulP_p3

Au111Surface_MO.MulP_d

Au111Surface_MO.MulP_d1

Au111Surface_MO.MulP_d2

Au111Surface_MO.MulP_d3

Au111Surface_MO.MulP_d4

Au111Surface_MO.MulP_d5

Au111Surface_MO.atominfo

temporal_12345.input

Output files

The content of each output file is explained below:

AtomMulP file

This file stores data of the k-space spin density matrix resolved to each atom, and can be analyzed by

53.6 MulPCalc.

MulP xx file

This file stores data of the xx-component of the k-space spin density matrix resolved to each atom,

and can be analyzed by 53.6 MulPCalc.

atominfo file

257

This file supplies information of lattice vectors and PAOs.

temporal 12345.input

This file is a copy of the input file stored in the scfout file.

Analysis of the k-space spin density matrix resolved to each atom

MulPCalc can extract data to analyze the k-space spin density matrix resolved to each atom from

AMulPBand files or AMulPBand xx files. The executable file can be obtained by compilation in the

directory ’source’ as follows:

% make MulPCalc

After the successful compilation, you can find the executable file ’MulPCalc’ in the directory ’work’.

Let us analyze spin textures for the Rashba spin splitting in the Au(111) surface. First, add the

following keywords and values into the input file ’Au111Surface MO.dat’, for example:

Filename.atomMulP Au111Surface_MO.AMulPBand # default: default

Filename.xyzdata Au111Surface_MO_MC # default: default

Num.of.Extract.Atom 3 # default: 1

Extract.Atom 1 2 3 # default: 1 2 ... (Num.of.Extract.Atom)

Calc.Type.3mesh 2 # default: 1

And, after the above calculation, you can analyze spin textures as follows:

% ./MulPCalc Au111Surface_MO.dat

In addtion, you can adjust data for making better figures by the following keywords and values:

MulP.Vec.Scale 0.1 0.1 0.1 # default: 1.0 1.0 1.0

Data.Reduction 1 # default: 1

After executing MulPCalc, you can find the following output files in the directory ’work’.

Au111Surface_MO_MC.MulPop

Au111Surface_MO_MC.MulPop55

Au111Surface_MO_MC.MulPop56

Au111Surface_MO_MC.plotexample

As an example, by executing the following command, you can obtain a figure of spin textures for the

Rashba spin splitting in the Au(111) surface as shown in Fig. 68.

% gnuplot Au111Surface_MO_MC.plotexample

For more information of MulPCalc, see also the subsection of 53.6 MulPCalc.

258

−0.4

−0.2

0

0.2

0.4

−0.4 −0.2 0 0.2 0.4

k y
(/
Å
)

kx (/Å)

Figure 68: Spin textures for the Rashba spin splitting around Γ-point at the Au(111) surface. The

outer and inner ones correspond to the band indices 55 and 56. The vectors represent the expectation

values of the Pauli matrices vectors at each k-point stored in ’Au111Surface MO MC.MulPop’. You

can get this figure by a plotexample file ’Au111Surface MO MC.plotexample’

53.6 MulPCalc: k-space spin density matrix resolved to each atom

MulPCalc can extract data to analyze the Mulliken population from AtomMulP files, MulP xx files,

AMulPBand files or AMulPBand xx files obtained by kSpin. The executable file can be obtained by

compilation in the directory ’source’ as follows:

% make MulPCalc

After the successful compilation, you will find the executable file ’MulPCalc’ in the directory ’work’.

Also, you find an example of an input file ’SiC Primitive BD.dat’ in the directory ’work’. After the

SCF calculation, please perform a BandDispersion calculation by ’kSpin’ with the following settings:

Filename.scfout sic_primitive.scfout # default: default

Filename.outdata sic_primitive_BD # default: default

Calc.Type BandDispersion # default: MulPOnly

Energy.Range -10.0 6.0 # eV; default: 0.0 0.0

Next, please execute MulPCalc as

% ./MulPCalc SiC_Primitive_BD.dat

with the following settings to extract data of pz orbitals on a carbon atom:

259

Filename.atomMulP sic_primitive_BD.AMulPBand_p3 # default: default

Filename.xyzdata sic_primitive_BD_MC_C_p3 # default: default

Num.of.Extract.Atom 1 # default: 1

Extract.Atom 1 # default: 1 2 ... (Num.of.Extract.Atom)

In addtion, you can adjust data for making better figures by the following keywords and values:

MulP.Vec.Scale 0.1 0.1 0.1 # default: 1.0 1.0 1.0

Data.Reduction 2 # default: 1

Figure 69 can be obtained by executing MulPCalc several times similarly and plotting extracted data

of the eleventh, four, and fifth columns stored in MulPop files by using the circles style of gnuplot.

-10

-8

-6

-4

-2

0

2

4

6

K Γ M K

E
-E
F
(e
V
)

Figure 69: k-space spin density matrix resolved to each atom for the SiC primitive cell in

a two-dimensional haneycomb structure without imperfection as explained in the subsection

of 52.1 Analysis of band structures under the section of 52 Unfolding method for band struc-

tures. The green and purple circles represent the number of elecrons occupying s, px, and py
orbitals on a carbon atom, and that occupying pz orbitals on it, respectively. The radius re-

flects the magnitude of the number of electrons. Using MulPCalc, the data can be extracted

from AMulPBand xx files ’sic primitive BD.AMulPBand s’, ’sic primitive BD.AMulPBand p1’,

’sic primitive BD.AMulPBand p2’, or ’sic primitive BD.AMulPBand p3’ or

’sic primitive BD.AMulPBand p’.

In addition, in the directory ’work’, there is another example of an input file ’Au111Surface23 FL.dat’

for a slab model with two clean Au(111) surfaces, which may take much more time than the other

examples. You can try it similarly. After the SCF calculation and subsequent FermiLoop calculation,

you may find the band dispersion and spin textures as shown in Figs. 70(a) and 70(b), respectively,

where there are two pairs of Rashba bands, which are degenerated because one surface is equivalent to

260

the other. In this case, you may need to obtain the contribution of atoms in one surface by MulPCalc.

By using MulPCalc, you can get it and find spin texture in one surface as shown in Fig. 70(c).

The specification of each keyword is explained below:

List of keywords (common) relevant to MulPCalc

Filename.atomMulP

Specify the name of an AtomMulP file, a MulP xx file, an AMulPBand file or an AMulPBand xx file.

Filename.xyzdata

Specify a name for output files. This keyword corresponds to the keyword ’System.Name’.

Num.of.Extract.Atom

Specify the number of atoms for which MulPCalc should extract data of the Mulliken population. The

default is ’1’.

Extract.Atom

Specify atoms for which MulPCalc should extract data of the Mulliken population. The default is ’1

2 ... (the value for the keyword ’Num.of.Extract.Atom’)’.

Data.Reduction

Specify the number of k-points every which MulPCalc should extract data of the Mulliken population.

This keyword is useful in thinning out k-points or reducing data size.

MulP.Vec.Scale

Specify a scale to draw vectors expressing spin textures. For example, values ’0.1 0.2 0.3’ specifies the

scale as follows: 0.1 for x-axis, 0.2 for y-axis, 0.3 for z-axis. The default is ’1.0 1.0 1.0’.

Filename.outdata

Keep the specification in kSpin.

Calc.Type

Keep the specification in kSpin.

List of keywords (Calc.Type = FermiLoop or GridCalc) relevant to MulPCalc

Search.kCentral

Keep the specification in kSpin.

Calc.Type.3mesh

Keep the value in kSpin.

Energy.Range

Keep the value in kSpin.

List of keywords (Calc.Type = BandDispersion) relevant to MulPCalc

261

Energy.Range

Keep the value in kSpin.

Band.Nkpath

Keep the value in kSpin.

Band.kpath

Keep the value in kSpin.

List of keywords (Calc.Type = MulPOnly) relevant to MulPCalc

Calc.Type.3mesh

Specify a plane to calculate as follows: Set a value ’1’, ’2’, and , ’3’, for the case of kakb-, kbkc-, and

kcka- planes, respectively. The default is ’1’.

Output files

After the calculation by ’MulPCal’ is completed normally, you obtain the following output files in the

working directory’.

MulPop file

This file stores data for each k-point. The first, second, and third columns correspond to the kx, ky,

and kz components of the k-points in units of Å−1, respectively. The fourth column corresponds to the

energy in units of eV; The fifth, sixth, and seventh columns correspond to the number of electrons:

Total, α-spin, and β-spin, respectively. The eighth, nineth, and tenth columns correspond to the

expectation value of the σx, σy, and σz in units of the Bohr magneton, respectively. If the value for

the keyword ’Calc.Type’ is ’BandDispersion’, the eleventh column corresponds to the distance for the

k-points along each k-path in units of Bohr−1.

MulPop YY file

This file stores data for each k-point with the band index YY. The notation of contents of this file is

the same as the MulPop file.

plotexample file

If the value for the keyword ’Calc.Type’ is not ’GridCalc’, this file supplies an example of gnuplot

scripts.

plotexample YY file

If the value for the keyword ’Calc.Type’ is ’GridCalc’, this file supplies an example of gnuplot scripts

for the band with the band index YY.

53.7 MPI parallelization of kSpin

MPI parallelization is available for kSpin. More detailed information follows:

262

FermiLoop

Although MPI parallelization is done for k-points on a grid, the second search should be done in each

domain picked out in the first search. Since the second search is done sequentially only in domains

necessary for calculations, the maximum of the appropriate number of MPI processes is the product

of the first and second values for the keyword ’k-plane.2ndStep’. Note that the second search should

cost most of computation.

GridCalc

MPI parallelization is done for k-points on a grid so that the maximum of the appropriate number of

MPI processes is the product of the first and second values for the keyword ’k-plane.1stStep’.

BandDispersion

MPI parallelization is done for k-points on every k-path so that the maximum of the appropriate

number of MPI processes is the maximum number of k-points among k-paths.

MulPOnly

MPI parallelization is done for k-points so that the maximum of the appropriate number of MPI

processes is the number of specified k-points.

263

-1

0

1

M Γ K M
E
-E
F
(e
V
)

�0.2

0

0.2

�0.2 0 0.2

k y
(/
Å
)

kx (/Å)

+

Γ

�0.2

0

0.2

�0.2 0 0.2

k y
(/
Å
)

kx (/Å)

+

Γ

(a)

(b) (c)

Figure 70: (a) Band dispersion for the Rashba spin splitting at both the Au(111) surfaces stored in

a Band file ’Au111Surface23.Band’ (See the section of 53.4 BandDispersion). The red curves show

the Rashba bands, which correspond to band indices 413, 414, 415 and 416. This highlight of the

Rashba bands can be reproduced by modifing a GNUBAND file ’Au111Surface23.GNUBAND’ or

using OMXTool [146]. Spin textures for the Rashba spin splitting around Γ-point at (b) both the

Au(111) surfaces and (c) one of the Au(111) surfaces. The vectors represent the expectation values

of the Pauli matrices vectors at each k-point stored in Pxyz YY files ’Au111Surface23 FL.Pxyz 413’,

’Au111Surface23 FL.Pxyz 414’, ’Au111Surface23 FL.Pxyz 415’ and ’Au111Surface23 FL.Pxyz 416’,

and ’Au111Surface23 FL MC.Pxyz 413’, ’Au111Surface23 FL MC.Pxyz 414’,

’Au111Surface23 FL MC.Pxyz 415’ and ’Au111Surface23 FL MC.Pxyz 416’, respec-

tively. The closed curves represent the constant-energy level stored in Fer-

miSurf YY files ’Au111Surface23 FL.FermiSurf 413’, ’Au111Surface23 FL.FermiSurf 414’,

’Au111Surface23 FL.FermiSurf 415’ and ’Au111Surface23 FL.FermiSurf 416’, and

’Au111Surface23 FL MC.FermiSurf 413’, ’Au111Surface23 FL MC.FermiSurf 414’,

’Au111Surface23 FL MC.FermiSurf 415’ and ’Au111Surface23 FL MC.FermiSurf 416’, respec-

tively. The central cross point corresponds to Γ-point. You can get these figures by plotexample files

’Au111Surface23 FL.plotexample’ and ’Au111Surface23 FL MC.plotexample’, respectively.

264

54 Spin spiral calculations

Spin spiral calculations are supported for the non-collinear DFT without spin orbit coupling (SOC),

which is based on the generalized Bloch theorem [79, 80, 86, 87]. It should be noted that the inclusion

of SOC is not compatible with the functionality, since the SOC violates the spiral symmetry imposed

by the generalized Bloch theorem. To acknowledge in any publications by using the functionality, the

citation of the reference [79, 80] would be appreciated. To do the calculations, the following options

are first set respectively

scf.SpinPolarization NC # On|Off|NC

scf.Generalized.Bloch on # On|Off, default=off

scf.SpinOrbit.Coupling off # On|Off, default=off

In the spiral structure there are two quantities to determine the spiral configuration which should be

paid attention. The first one is the cone angle. Since the spiral structure is of two different kinds, i.e.,

the conical spiral (0 < θ < 90) and the flat spiral (θ = 90), where θ is the cone angle, θ should then

be specified for the magnetic atoms. In OpenMX, the cone angle θ is defined as the orientation for

the spin magnetic moment as shown in Fig. 71(a). You can find how to specify the cone (Euler) angle

in section of 34 ’Non-collinear DFT’. For example, the cone (Euler) angle can be specified as follows:

<Atoms.SpeciesAndCoordinates

1 Fe 0.0 0.0 0.0 10.0 6.0 90.0 0.0 0.0 0.0 1 off

Atoms.SpeciesAndCoordinates>

In the example above, the flat spiral will be achieved by setting θ = 90 degree as written in the 8th

column. In addition, you can also specify the initial angle of φ as described in the 9th column. For

fixing the cone angle, the constraint scheme is also available as explained in section of 38 ’Constraint

DFT for non-collinear spin orientation’.

(a) (b)

q

M

x

y

z

Figure 71: (a) Definition of cone (Euler) angles for the magnetic atom. (b) The magnetic moment of

atom at site i which is given by Mi = Mi{cos(q ·Ri +φ0) sin(θi) + sin(q ·Ri +φ0)) sin(θi) + cos(θi)}.

265

The second one is the spiral vector q specified by

Spin.Spiral.Vector 0.0 0.0 0.0 # q1 q2 q3

In the above format, the spiral vector is specified by the fractional coordinates spanned by the recip-

rocal lattice vectors. The first, second, and third columns denote the components of spiral vector for

the reciprocal vectors ã1, ã2, and ã3, respectively. Then, the spin angle at atomic site i is given by

Mi = Mi{cos(q ·Ri + φ0) sin(θi) + sin(q ·Ri + φ0)) sin(θi) + cos(θi)}.

With the translation by the lattice vectors, the spin angle at each atomic site is rotated according to

the equation.

As an example of the spiral calculation, the spiral ground state of the fcc Fe is provided in Fig. 72.

We observe that the spiral ground state occurs at (0, 0, 0.6) and (0.2, 0, 1) defined in Cartesian

coordinates in units of 2π/a. Indeed, using LCPAO method, the spiral calculation needs the appro-

priate settings, such as the number of k points, number of orbitals, cutoff radius, and cutoff energy for

reaching the convergence and reliable result, a similar discussion can be found in Ref. [87]. You can try

to set those parameters to compare all of the results. In addition, although there are some available

mixing schemes specified by the keywords ’scf.Mixing.Type’, we strongly recommend RMM-DIISH as

your choice. As an experience, this option can reach the convergence much faster than other choices

for all tested systems, the detail explanations can be found in Sec. 13 ’SCF convergence’.

Figure 72: (a) Profiles of the total energy and (b) magnetic moment of the spin spiral calculation of

the fcc Fe as a function of spiral vector q defined in the Cartesian coordinates. The input file used for

the calculation is ’Fefcc-SpinSpiral.dat’ in the directory ’work’.

266

55 Computing Chern number and Berry curvature by the Fukui-

Hatsugai-Suzuki method

55.1 General

In OpenMX Ver. 3.9, a post-processing code ’calB’ is supported to calculate the Chern number and

Berry curvature of bands using overlap matrix elements between Kohn-Sham orbitals at neighboring

k-points by the Fukui-Hatsugai-Suzuki method [81, 85]. The functionality is compatible with only the

non-collinear calculations. To acknowledge in any publications by using the functionality, the citation

of the reference [84] would be appreciated.

The Chern number is a topological invariant being an integer number, which characterizes the

topology of bands for any materials. In systems having a finite Chern number C, the anomalous Hall

conductivity defined by

σxy = −e2

h
C (C = 1, 2, 3, · · ·)

is induced. Using the Berry curvature Fn = ∇ × An, An = −i⟨unk| ∂
∂k |unk⟩, the Chern number is

defined as

C =
1

2π

occ.∑
n

∫
Fnzdk

2

In the Fukui-Hatsugai-Suzuki method [81], the overlap matrix U defined by

U∆k(k) = det⟨un(k)|um(k+∆k)⟩

plays a central role to calculate the Berry connection A(k) and Berry curvature F (k), which are

defined by

A(k) = Im logU∆k(k),

F (k) = Im logU∆k1(k)U∆k2(k+∆k1)U
−1
∆k1

(k+∆k2)U
−1
∆k2

(k)

As shown in Fig. 73, the Berry curvature can be calculated in each ’plaquette’ (plaquette means

meshed area in Brillouin zone) on a regular mesh introduced in the first Brillouin zone by the following

formula:

F (k) = Im logU12U23U34U41

By summing up all the contributions of the contour integrals for the Berry curvature, one can calculate

the Chern number as

C =
1

2π

BZ∑
k

F (k)

55.2 Example

As an example, we show in Fig. 74 the Berry curvature of graphene. Since the absolute magnitude

of Berry curvature is approximately proportional to the square of inverse of bandgap, the large Berry

267

Figure 73: Computational method of the Berry curvature, where a contour integral is performed in

each plaquette.

curvature can be seen around K and K’ points, where the massive Dirac point appears if we include

spin-orbit interaction.

Let us illustrate how the calculation can be performed by using an input file ’Graphene-Chern.dat’

stored in the directory ’work’.

SCF calculation

When you perform the SCF calculation for graphene using an input file ’Graphene-Chern.dat’ stored

in the directory ’work’, you need to switch on the keyword ’HS.fileout’ as

HS.fileout on #on|off, default=off

After finishing the SCF calculation normally, we may obtain an out file ’Graphene-Chern.scfout’.

Calculation of Chern number and Berry curvature

Then, you can proceed for the calculation of the Chern number of Berry curvature using a post-

processing code ’calB.c’. The compilation of the code can be done in the director ’source’ as

% make calB

After the compilation is successfuly, you obtain the executable file ’calB’. Then, please copy it to the

directory ’work’, and execute it as follows:

% ./calB graphene.scfout

or

268

% ./calB graphene.scfout < calB.in > calB.out

or

% mpirun -np 4 ./calB graphene.scfout < calB.in > calB.out

Parameters for calB

The input file ’calB.in’ needs to be prepared as follows:

1

0

0 0 1

100 100

In the following we explain parameters for the calculation.

• In the first line, you need to specify whether the sum of the Berry curvature of all the bands

is calculated, or the Berry curvature is calculated for a disentangled bands. If the former is

selected, please set ’1’, while for the latter please set ’0’. The latter setting is valid only if a set

of bands are fully disentangled.

• In the second line, you need to specify how many bands are taken into account for the calcula-

tions, which are counted from the lowest band. If you specify ’0’, all the valence bands will be

taken into account.

• In the third line, we specify planes to be calculated in the reciprocal space. For example, ’0 0 1’

corresponds to the specification of the k3 = 0 plane.

• In the fourth line, you need to specify the number of mesh. In the example of graphene, the

plane specified by the third line is discretized by a mesh of 100×100.

Output files

After the calculation by ’calB’, the following files are generated.

• BerryC*.dat

The file stores the calculated Berry curvature and Chern number, where the ’*’ behind ’BerryC’

in the file name is the number of bands to be included. In the example of graphene, ’*’ is 8. The

unit of Berry curvature is Å−2. The part of ’BerryC8.dat’ for the graphene case is shown below:

#Mesh Number:100*100

#Band Number:8

#ChernNumber = 0.000000

#k1 k2 F (ang-2)

0.005000 0.005000 -1.59799534e-05

0.015000 0.005000 1.94455630e-05

0.025000 0.005000 3.58476883e-05

....

..

269

Using gnuplot, one can visualize the data as

% splot "BerryC8.dat" w l

Figure 74 shows the Berry curvature on the plane at k3 = 0.

• temporal 12345.input

This is a copy of input file, which was used for the SCF calculation, reconstructed from the

scfout file.

Figure 74: Berry curvature of graphene bands.

270

56 Computing Z2 invariant by the Fukui-Hatsugai method

56.1 General

The Z2 invariant of the system can be calculated with a method based on the Berry phase for-

malism proposed by Fukui and Hatsugai [81, 82]. The functionality is compatible with only the

non-collinear calculations. Also, magnetic systems cannot be treated by the current implementation.

To acknowledge in any publications by using the functionality, the citation of the reference [84] would

be appreciated.

The Z2 invariant is a topological invariant number being 0 or 1, which is defined on time reversal

symmetric non-magnetic systems. Z2 = 1 and Z2 = 0 correspond to topological and trivial insulators,

respectively. The Z2 invariant is defined as

Z2 =
1

2π

occ.∑
n

(∫
∂B

An · dk−
∫
B
Fnzdk

2
)

(mod 2)

where An = −i⟨unk| ∂
∂k |unk⟩ is called Berry connection, and Fn = ∇×An is called Berry curvature.

The integration range B = [−G1
2 , G1

2] ⊗ [0, G2
2] is enough to consider only the half of Brillouin zone.

This is because the system has the time-reversal symmetry, and thereby the topological invariant is

defined on the half of Brillouin zone. For performing the integration, we use the overlap matrix U ,

proposed by Fukui, Hatsugai, and Suzuki [81, 82], defined by U∆k = det⟨un(k)|um(k + ∆k)⟩, and
calculate the Berry connection and Berry curvature on every ’plaquette’, which means meshed area in

the Brillouin zone, as

Aab = Im logUab,

F = Im logU12U23U34U41.

Then, the integer-valued field n(= 0,±1) on every plaquette can be calculated by the following formula;

n(k) =
1

2π
(A12 +A23 +A31 +A41 − F)

By summing up all the n on the half Brillouin zone, and considering the modulo 2 of the summed

value, we can obtain the Z2 invariant. It should be noted that the Z2 invariant is gauge independent,

but the value of each n is gauge dependent, which may vary depending on computational environment,

compiler optimization level, and a tiny difference in the electronic structure. The details of computing

A and F is explained in Section of ”Chern number and Berry curvature”. Please refer it. Since the

calculation of the Z2 invariant is carried out by the contour integral on the half of Brillouin zone,

it depends on arbitrariness of wave function’s gauges. Therefore, we have to fix the gauges on the

boundary of half Brillouin zone. As shown in Fig. 75, we consider the following three kinds of gauge

fix on the boundary:

Translational symmetry (red parts)

|un(k+
G1

2
)⟩ = eiG1·r|un(k− G1

2
)⟩

Time-reversal symmetry (blue parts)

|un(k)⟩ = Θ|un(−k)⟩ = |u∗βn (−k)⟩|α⟩ − |u∗αn (−k)⟩|β⟩

271

Kramars degenerates (yellow points)

|u2n(k)⟩ = Θ|u2n−1(−k)⟩

In this calcuation, the eigenvalue problems are solved on the half of integration interval, in other

words, the quarter of Brillouin zone as shown in Fig. 75. When we perform the integrals on the other

Figure 75: Gauge fixing on the half Brillouin zone. We fix the wavefunction’s gauges as red parts

satisfying the translational symmetry, blue parts satisfying the time-reversal symmetry, and yellow

points satisfying the Kramars degeneracies.

area, we generate wave functions by fixing wavefunction’s gauges on the symmetrically corresponding

plaquette, and perform the integral.

In case of the three dimensional system, the Brillouin zone has six time-reversal invariant planes,

kn = 0, kn = Gn
2 (n = 1, 2, 3). Thus, six Z2 invariants (x0, xπ, y0, yπ, z0, zπ) can be defined as shown in

Fig. 76. Note that these invariants satisfy the following equation:

x0 + xπ = y0 + yπ = z0 + zπ (mod 2)

Therefore, only four invariants become independent parameters. Based on the fact, the Z2 invariant

in 3D system is defined as

Z2 = (ν0, ν1, ν2, ν3) = (x0 + xπ, xπ, yπ, zπ)

Especially, the system of ν0 = 1 is called strong topological insulator because the Z2 = 1 state appears

on all the direction in the Brillouin zone.

56.2 Example

As an example, let us calculate a Z2 invariant of a 3D topological insulator Bi2Se3 [83].

272

Figure 76: The six Z2 invariants defined on 3D reciprocal lattice space. These invariants satisfy

x0 + xπ = y0 + yπ = z0 + zπ (mod 2), and only four invariants become independent parameters.

SCF calculation

You can perform the SCF calculation using ’Bi2Se3-Z2.dat’ stored in the directory ’work’ with the

following keyword:

HS.fileout on #on|off, default=off

After finishing the SCF calculation normally, the out file ’Bi2Se3-Z2.scfout’ is generated.

Calculation of Z2 invariant

Before computing the Z2 invariant by using the code ’Z2FH.c’, please compile the code in directory

’source’ as

% make Z2FH

After the compilation, you may obtain the excutable file ’Z2FH’ in the directory ’work’. Then, let us

move on the calculation of the Z2 invariant as

% ./Z2FH Bi2Se3-Z2.scfout

or

% ./Z2FH Bi2Se3-Z2.scfout < Z2FH.in > Z2FH.out

or

% mpirun -np 4 ./Z2FH Bi2Se3-Z2.scfout < Z2FH.in > Z2FH.out

The file ’Z2FH.in’ contains parameters which are requested by ’Z2FH’ such as

273

5

1

1

In the first case above, you will be interactively asked from the program as follows:

**

**

Z2FH:

code for calculating the Z2 invariant of bulk systems

by Fukui-Hatsugai method.

Copyright (C), 2019, Hikaru Sawahata, Naoya Yamaguchi,

Fumiyuki Ishii and Taisuke Ozaki

This is free software, and you are welcome to

redistribute it under the constitution of the GNU-GPL.

Please cite the following article:

H. Sawahata, N. Yamaguchi, H. Kotaka and F. Ishii,

Jpn. J. Appl. Phys. 57, 030309 (2018).

**

**

Mesh1 Number(Half Direction):5

Calculate All plane?(0:No,1:Yes)1

Restart?[1:x0,2:xpi,3:y0....]1

Read the scfout file (Bi2Se3-Z2.scfout)

The file format of the SCFOUT file: 3

And it supports the following functions:

- jx

- polB

- kSpin

- Z2FH

- calB

Parameters for Z2FH

Let us explain the parameters in the input file ’Z2FH.in’.

• In the first line, you set the number of mesh on the half of integration interval, in other words,

on the space of quarter of the first Brillouin zone (please see the Fig. 75). If you set as ’5’,

the code performs the integrations on the square plaquettes formed by 5×5 k-point mesh in the

quarter Brillouin zone.

• In the second line, you can speficy a flag whether computing Z2 invariant is performed or not

on all the six k-planes on which the Z2 invariant is defined. If you want to compute only four

274

planes for (ν0, ν1, ν2, ν3), you can set as ’0’. Otherwise, please set as ’1’, corresponding to all the

calculations of the six planes for (x0, xπ, y0, yπ, z0, zπ).

• In the third line, you can set the k-plane on which you want to restart the calculation. The

numbers 1, 2, 3, 4, 5, and 6 correspond to k1 = 0, k1 = G1
2 , k2 = 0, k2 = G2

2 , k3 = 0, and

k3 =
G3
2 planes, respectively.

Output files

After the calculation by ’Z2FH’, the following files are generated.

• Z2.dat

This file stores the computational result of Z2 invariant. In case of computing all the k-plane

(you set the second row parameter as ’1’.), the Z2 invariants on the six k-planes are on the first

line, and four of Z2 invariant are on the second line as shown below:

Z2 invariant:(x0,xpi,y0,ypi,z0,zpi)=(1.000000,-0.000000,1.000000,-0.000000,1.000000,-0.000000)

Z2 invariant:(nu0,nu1,nu2,nu3):(1,0,0,0)

• LCNum*.dat

Data files of integer-valued field n(k). The ’*’ behind ’LCNum’ is the index running from 1 to 6.

The number (1,2,3,4,5,6) corresponds to (x0, xπ, y0, yπ, z0, zπ), respectively. When you calculate

only four planes, four files ’LCNum(2,4,5,6).dat’ are generated, corresponding to (xπ, yπ, z0, zπ).

• LCNum*.pl

Script files for gnuplot. The ’*’ behind ’LCNum’ is the index running from 1 to 6. The number

(1,2,3,4,5,6) corresponds to (x0, xπ, y0, yπ, z0, zπ), respectively. When you calculate only four

planes, four files ’LCNum(2,4,5,6).dat’ are generated, corresponding to (xπ, yπ, z0, zπ). You can

visualize of integer-valued field n(k) by

% gnuplot LCNum1.pl

• temporal 12345.input

This is a copy of input file, which was used for the SCF calculation, reconstructed from the

scfout file.

As an example, we show the integer-valued field n(k) on k1 = 0 in Fig. 77, which can be obtained

by the procedure explained above as ’gnuplot LCNum1.pl’. Since n(k) is the gauge dependent value,

you may find a different result in your calculation, while the Z2 invariant should be reproduced.

56.3 Input files

For user’s convenience, input files of four examples can be found in ’work/’ as follows:

• Bi2Se3-Z2.dat

Strong topological insulating case of Bi2Se3

275

• Bi2Se3 trivial-Z2.dat

Trivial insulating case of Bi2Se3

• Bi2Se3 weak-Z2.dat

Weak topological insulating case of Bi2Se3

• Bi111-Z2.dat

2D topological insulating case of the Bi111 slab

Figure 77: The example of integer-valued field n(k). Red circle indicates +1, blue circle indicates

-1, blank indicates 0. Since n(k) is the gauge dependent value, you may find a different result in your

calculation, while the Z2 invariant should be reproduced.

276

57 Absolute binding energies of core levels: XPS core level energies

57.1 General

OpenMX supports a general method to calculate absolute binding energies of core levels in metals

and insulators, based on a penalty functional and an exact Coulomb cutoff method in the framework

of density functional theory [88]. With the method the spurious interaction of core holes between

supercells is avoided by the exact Coulomb cutoff method, while the variational penalty functional

enables us to treat multiple splittings due to chemical shift, spin-orbit coupling, and exchange inter-

action on equal footing. It has been demonstrated that the absolute binding energies of core levels

for both metals and insulators are calculated by the proposed method in a mean absolute (relative)

error of 0.4 eV (0.16%) for eight cases compared to experimental values measured with x-ray photoe-

mission spectroscopy (XPS) within a generalized gradient approximation to the exchange-correlation

functional.

By considering the energy conservation for the excitation process in the XPS measurements as

schematically shown in Fig. 78, the absolute binding energies of core levels in gaseous and bulk

systems are respectively given by [88]

E
(gas)
b = E

(0)
f (N − 1)− E

(0)
i (N), (12)

E
(bulk)
b = E

(0)
f (N − 1)− E

(0)
i (N) + µ0, (13)

where E
(0)
i (N) and E

(0)
f (N − 1) are the total energies of the initial state with (N − 1)-electrons and

the final state with N -electrons, respectively, calculated by DFT, and µ0 is the chemical potential

which is obtained from the initial state calculation. E
(0)
f (N − 1) is evaluated by the method proposed

in Ref. [88]. while E
(0)
i (N) is calculated by the conventional band structure calculation. Although

φsamp

µ: Chemical

Ksamp

hν µ: Chemical

V samp: Vacuum

level

V spec: Vacuum level

Sample Spectrometer

φspec

Kspec

Common chemical

potential

Measured

photoelectron

Figure 78: Schematic energy diagram for a sample and a spectrometer in the XPS measurement, and

the definition of absolute binding energies of core levels in gaseous system, bulks, and metals.

277

Eq. (13) is applicable to both gapped and metallic systems, it should be noted that for metals Eq. (12)

can be transformed using the Janak theorem [89] as

E
(metal)
b = E

(0)
f (N)− E

(0)
i (N), (14)

For the final state one can calculate the total energy of the system with N electrons instead of the

system with (N − 1) electrons. The expression well matches to our intutive understanding that a

perfect screeing takes place in metallic systems after the creation of core hole.

57.2 Gaseous systems

Let us introduce a couple of examples to illustrate how the absolute binding energies of core levels

can be calculated below:

We try to calculate the binding energy for the 1s state of carbon atom in a C2H2 molecule. The

initial state calculation can be performed as

% mpirun -np 4 ./openmx C2H2.dat

where the input file ’C2H2.dat’ is avalilable in the directory ’work’. In the initial state calculation you

need to specify the following keyword:

scf.coulomb.cutoff on # default = off

scf.SpinPolarization on or nc # default = off

In case of ’scf.coulomb.cutoff=on’, the clasical Coulomb interaction between supercells is cut off along

all the three directions a-, b-, and c-axes using the exact Coulomb cutoff method [91]. In the calcula-

tions for the initial and final state calculations, you need to specify either ’on’ or ’nc’ for the keyword

’scf.SpinPolarization’ and keep the same option in both the initial and final state calculations, since

the system is spin-polarized after the creation of a core hole in the final state calculation. To calculate

the absolute binding energies of core levels, we need to have pseudopotentials including the relevant

core state. In the input file ’C2H2.dat’, the following pseudopotentials are specified:

<Definition.of.Atomic.Species

H H7.0-s3p2 H_PBE19

C C7.0_1s-s4p3d2 C_PBE19_1s

C1 C7.0_1s_CH-s4p3d2 C_PBE19_1s

Definition.of.Atomic.Species>

The pseudopotential of ’C PBE19 1s.vps’ actually includes the 1s, 2s, and 2p states as valence states.

The basis sets of ’C7.0 1s.pao’ and ’C7.0 1s CH’ are used for the initial and final state calculations,

respectively. In the final state calculation, the radial wave functions are largely modified due to the

core hole compared to the the state without the core hole. Thus, the basis set optimized for the state

with the core hole has to be utilized to obtain a convergent result. The pseudopotential and basis sets

for the final state calculations are available at the following website:

https://t-ozaki.issp.u-tokyo.ac.jp/vps_pao_core2019/

278

The data for only seven elements: B, C, N, O, Si, S, Ge, Pt are now available on the website. We

have been planing to develop the pseudopotentials and basis sets of the other elements for core level

excitations in the near future. The geometrical structure is specified as follows:

Atoms.Number 4

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU

<Atoms.SpeciesAndCoordinates # Unit=Ang.

1 C 0.6005 0.000 0.000 3.0 3.0

2 C -0.6005 0.000 0.000 3.0 3.0

3 H 1.8015 0.000 0.000 0.5 0.5

4 H -1.8015 0.000 0.000 0.5 0.5

Atoms.SpeciesAndCoordinates>

It should be noted that the species for atom 1 is ’C’ for which we allocate ’C7.0 1s.pao’ being the

basis set for the initial state, while we are going to create a core hole of 1s state for atom 1.

The final state calculation can be performed as

% mpirun -np 4 ./openmx C2H2-CH.dat

where the input file ’C2H2-CH.dat’ is avalilable in the directory ’work’. The geometrical structure is

specified as follows:

Atoms.Number 4

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU

<Atoms.SpeciesAndCoordinates # Unit=Ang.

1 C1 0.6005 0.000 0.000 3.0 3.0

2 C -0.6005 0.000 0.000 3.0 3.0

3 H 1.8015 0.000 0.000 0.5 0.5

4 H -1.8015 0.000 0.000 0.5 0.5

Atoms.SpeciesAndCoordinates>

The atomic positions are exactly the same as for the initial state calculation, which means that the

atomic relaxation during the excitation process is not taken into account. It is important to note that

the species for atom 1 is ’C1’ for which we allocate ’C7.0 1s CH.pao’ being the basis set for the final

state. For the final state calculation, you need to specify the following keywords:

scf.system.charge 1.0 # default=0.0

scf.coulomb.cutoff on # default = off

scf.core.hole on # default = off

<core.hole.state

1 s 1

core.hole.state>

Considering that the final state has (N−1) electrons, the number of electrons is reduced by 1 with the

keyword ’scf.system.charge’. Then, we again use the Coulomb cutoff method [91] using the keyword

’scf.coulomb.cutoff’ to avoid the spurious interaction of core holes between supercells. If the Coulomb

cutoff method is not employed, a compensation uniform charge automatically introduced to avoid the

279

Table 12: Orbital index for the collinear and non-collinear cases

Collinear

case

s 1: s ↑ 2: s ↓
p 1: px ↑ 2: py ↑ 3: pz ↑ 4: px ↓ 5: py ↓ 6: pz ↓
d 1:

d3z2−r2 ↑
2:

dx2−y2 ↑
3:

dxy ↑
4:

dxz ↑
5:

dyz ↑
6:

d3z2−r2 ↓
7:

dx2−y2 ↓
8:

dxy ↓
9:

dxz ↓
10:

dyz ↓
f 1:

f5z2−3r2 ↑
2:

f5xz2−xr2 ↑
3:

f5yz2−yr2 ↑
4:

fzx2−zy2 ↑
5:

fxyz ↑
6:

fx3−3xy2 ↑
7:

f3yx2−y3 ↑
8:

f5z2−3r2 ↓
9:

f5xz2−xr2 ↓
10:

f5yz2−yr2 ↓
11:

fzx2−zy2 ↓
12:

fxyz ↓
13:

fx3−3xy2 ↓
14:

f3yx2−y3 ↓
Non-

collinear

case

s 1:

J = 1/2

M = 1/2

2:

J = 1/2

M =−1/2

p 1:

J = 3/2

M = 3/2

2:

J = 3/2

M = 1/2

3:

J = 3/2

M =−1/2

4:

J = 3/2

M =−3/2

5:

J = 1/2

M = 1/2

6:

J = 1/2

M =−1/2

d 1:

J = 5/2

M = 5/2

2:

J = 5/2

M = 3/2

3:

J = 5/2

M = 1/2

4:

J = 5/2

M =−1/2

5:

J = 5/2

M =−3/2

6:

J = 5/2

M =−5/2

7:

J = 3/2

M = 3/2

8:

J = 3/2

M = 1/2

9:

J = 3/2

M =−1/2

10:

J = 3/2

M =−3/2

f 1:

J = 7/2

M = 7/2

2:

J = 7/2

M = 5/2

3:

J = 7/2

M = 3/2

4:

J = 7/2

M = 1/2

5:

J = 7/2

M =−1/2

6:

J = 7/2

M =−3/2

7:

J = 7/2

M =−5/2

8:

J = 7/2

M =−7/2

9:

J = 5/2

M = 5/2

10:

J = 5/2

M = 3/2

11:

J = 5/2

M = 1/2

12:

J = 5/2

M =−1/2

13:

J = 5/2

M =−3/2

14:

J = 5/2

M =−5/2

Coulomb divergence in periodic charged systems. Since the treatment leads to a spurious interaction,

the comparison between the initial and final states for the total energy cannot be simply performed.

The core hole state that we target can be specified by the keyword ’core.hole.state’. The first number

is the atomic serial index which is specified in the keyword ’Atoms.SpeciesAndCoordinates’, the second

symbol specifies the target l-channel which can be ’s’, ’p’, ’d’, or ’f ’. The last number specifies the

orbital index which can be 1 to 4l+1. The relation between the index and the state is given in Table 12.

It it noted that the target state that we create a core hole is the lowest state with the l-channel

included in the pseudopotential as valence states. In the case of C2H2 molecule, the pseudopotential

of ’C PBE19 1s.vps’ includes the 1s state as valence state. Thus, the following specification:

<core.hole.state

1 s 1

core.hole.state>

280

means that the state of |1s ↑⟩ on atom 1 is chosen as target state for ’scf.SpinPolarization=on’. When a

s-state is chosen as target state, ’scf.SpinPolarization=on’ can be specified, while ’scf.SpinPolarization=nc’

can also be employed. On the other hand, ’scf.SpinPolarization=nc’ has to be specified to include

spin-orbit coupling when a p-, d-, or f -state is chosen as target state.

After finishing the calculations for the initial and final states, you may obtain the total energies

from the out files as

Initial state: -76.787732114928 (Hartree)

Final state: -66.084858926233 (Hartree)

Then, using Eq. (12) the binding energy is found to be

E
(gas)
b = E

(0)
f (N − 1)− E

(0)
i (N),

= −66.084858926233− (−76.787732114928) = 10.702873188695(Hartree),

≈ 291.24(eV).

The obtained value of 291.24 eV is well compared to an experimental value of 291.14 eV [90]. The

other examples of calculations and input files used for the calculations can be found in the website:

https://t-ozaki.issp.u-tokyo.ac.jp/vps pao core2019/.

57.3 Bulk systems

Let us illustrate the calculation for the absolute binding energies of core levels in bulk by introducing

TiC bulk as an example. The initial state calculation can be performed by

% mpirun -np 112 ./openmx TiC216.dat | tee TiC216.std

where any special keyword is not specified, but the spin-polarized calculation is performed with

’scf.SpinPolarization=on’. The input file ’TiC216.dat’ is available in the directory ’work’. The fi-

nal state calculation can be performed by

% mpirun -np 112 ./openmx TiC216-CH3.dat | tee TiC216-CH3.std

The input file ’TiC216-CH3.dat’ is available in the directory ’work’. In the input file the atomic species

are defined by

<Definition.of.Atomic.Species

Ti Ti7.0-s3p2d2 Ti_PBE13

C C6.0_1s-s3p2d1 C_PBE17_1s

C1 C6.0_1s_CH-s3p2d1 C_PBE17_1s

Definition.of.Atomic.Species>

and the species of ’C1’ is allocated for atom 5 as

Atoms.Number 216

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU

<Atoms.SpeciesAndCoordinates

281

1 Ti 0.000000000000 0.000000000000 0.000000000000 6.0 6.0

2 Ti 2.163500000000 2.163500000000 0.000000000000 6.0 6.0

3 Ti 0.000000000000 2.163500000000 2.163500000000 6.0 6.0

4 Ti 2.163500000000 0.000000000000 2.163500000000 6.0 6.0

5 C1 2.163500000000 0.000000000000 0.000000000000 3.0 3.0

6 C 0.000000000000 2.163500000000 0.000000000000 3.0 3.0

7 C 0.000000000000 0.000000000000 2.163500000000 3.0 3.0

8 C 2.163500000000 2.163500000000 2.163500000000 3.0 3.0

....

..

Atoms.SpeciesAndCoordinates>

Then, a core hole is created for the 1s-state on atom 5 by

scf.restart on

scf.restart.filename TiC216

scf.coulomb.cutoff on

scf.core.hole on

scf.system.charge 0.0 # default=0.0

<core.hole.state

5 s 1

core.hole.state>

The Hartree potential VH in the final state calculation consists of two contributions [88]: periodic part

V
(P)
H and non-periodic part V

(NP)
H as

VH(r) = V
(P)
H (r) + V

(NP)
H (r), (15)

and the periodic part V
(P)
H is calculated by the charge density obtained in the initial state calculation

via the Poisson equation with the periodic boundary condition. One can specify the charge density

obtained in the initial state calculation by keywords ’scf.restart’ and ’scf.restart.filename’. The non-

periodic part V
(NP)
H is calculated by an exact Coulomb cutoff method [91] with the difference charge

density ∆ρ(r) = ρf(r) − ρi(r), where ρf(r) and ρi(r) are charge densities of final and initial states,

respectively, and the cutoff radius for the Coulomb interaction is set to the half of the lenght of the

shortest lattice vector. You need to switch on the keyword ’scf.coulomb.cutoff’ to enable the exact

Coulomb cutoff method. The core hole is created by the keywords ’scf.core.hole’ and ’core.hole.state’.

In this case, a core hole for the 1s state on atom 5 is created. It should be noted that the keyword

’scf.system.charge’ is set to 0.0, since the TiC bulk is a metal. When you treat a gapped system,

’scf.system.charge’ has to be set to 1.0.

After finishing the calculations for the initial and final states, you may obtain the total energies

from the out files as

Initial state: -10499.900104007471 (Hartree)

Final state: -10489.553360141708 (Hartree)

282

Figure 79: Calculated binding energies, relative to the most converged value, of (a) gapped systems

and (b) a semimetal (graphene) and metals as a function of inter-core hole distance. The reference

binding energies in (a) and (b) were calculated by Eqs. (13) and (14), respectively, for the largest unit

cell for each system. In Figs. Eqs. (B) and (M) correspond to Eqs. (13) and (14), respectively. (c)

Difference charge density in silicon, induced by the creation of a core hole in the 2p states, where the

unit cell contains 1000 atoms and the intercore hole distance is 27.15 Å.

Then, using Eq. (14) the binding energy is found to be

E
(metal)
b = E

(0)
f (N − 1)− E

(0)
i (N),

= −10489.553360141708− (−10499.900104007471) = 10.346743865763(Hartree),

≈ 281.55(eV).

The obtained value of 281.55 eV is well compared to an experimental value of 281.5 eV [92].

As an example of gapped systems, let us introduce calculations for bulk silicon. One can perform

the initial and final state calculations as

% mpirun -np 256 ./openmx Si-4-SOI.dat | tee Si-4-SOI.std

% mpirun -np 256 ./openmx Si-4-CH-SOI1.dat | tee Si-4-CH-SOI1.std

% mpirun -np 256 ./openmx Si-4-CH-SOI6.dat | tee Si-4-CH-SOI6.std

The input file of ’Si-4-SOI.dat’ is for the initial state calculation, while ’Si-4-CH-SOI1.dat’ and ’Si-4-

CH-SOI6.dat’ are for the final state calculations with a core hole for the 2p state on Si atom specified

by 2p3/2(J = 3/2,M = 3/2) and 2p1/2(J = 1/2,M = −1/2), respectively. To take account of the

spin-orbit interaction in the 2p state on the Si atom the non-collinear calculations are performed by

specifying the following keywords:

283

scf.SpinPolarization nc # On|Off|NC

scf.SpinOrbit.Coupling on # On|Off, default=off

After finishing the calculations for the initial and final states, you may obtain the total energies

from the out files as

Initial state: -34820.483255130872 (Hartree)

Final state for SOI1: -34816.628201335407 (Hartree)

Final state for SOI6: -34816.601864921540 (Hartree)

and the chemical potential can be obtained from the initial state calculation. Then, using Eq. (13)

the binding energies for SOI1 and SOI6 are found to be

For 2p3/2

E
(bulk)
b = E

(0)
f (N − 1)− E

(0)
i (N − 1) + µ0,

= −34816.628201335− (−34820.483255131)− 0.201641583 = 3.65341221(Hartree),

≈ 99.41(eV),

For 2p1/2

E
(bulk)
b = E

(0)
f (N − 1)− E

(0)
i (N − 1) + µ0,

= −34816.601864922− (−34820.483255131)− 0.201641583 = 3.6797486(Hartree),

≈ 100.13(eV).

The obtained values of 99.41 and 100.13 eV are well compared to an experimental value of 99.2 and

99.8 eV for 2p3/2 and 2p1/2, respectively [92], where the degeneracies of 2p3/2 and 2p1/2 are 4 and 2,

repectively, as can be seen from Table 12. It should be noted that for gapped systems the convergence

of the absolute binding energies of core levels is slow with repect to the cell size. In Figs. 79(a) and (b),

the relative binding energies are shown as a function of inter-core hole distance for gapped systems

and metals, respectively. It is found that the convergence is slow for the gapped systems, implying

that a large supercell needs to be used to obtain the convergence result. On the other hand, we see

that for metals the binding energies quickly converges at a relatively small inter-core hole distance.

In Fig. 79(c) we show difference charge density in silicon bulk, induced by the creation of a core hole

in the 2p state. To screen the potential produced by the core hole, a charge redistribution takes place

up to around ∼ 7 Å from the core hole. The slow convergence found in gapped systems is attributed

to the charge redistribution. On the other hand, in metals the charge redistribution is relatively short

range, resulting in the fast convergence as shown in Fig. 79(b).

The other examples of calculations and input files used for the calculations can be found in the

website: https://t-ozaki.issp.u-tokyo.ac.jp/vps pao core2019/. Also, applications of the method for

silicene, borophene, and single Pt atoms dispersed on graphene can be found in Refs. [93, 94, 95].

57.4 Examples

For user’s convenience, input files for three examples can be found in the directory ’work’ as follows:

• C2H2.dat, C2H2-CH.dat

Calculation of the absolute binding energy of 1s state on C atom in a gaseous C2H2 molecule.

284

• TiC216.dat, TiC216-CH3.dat

Calculation of the absolute binding energy of 1s state on C atom in metallic TiC216 bulk.

• Si-4-SOI.dat, Si-4-CH-SOI1.dat, Si-4-CH-SOI6.dat

Calculation of the absolute binding energies of 2p3/2 and 2p1/2 state on Si atom in Si bulk.

The other examples of calculations and input files used for the calculations can be found in the

website: https://t-ozaki.issp.u-tokyo.ac.jp/vps pao core2019/.

285

58 Ionization potential and electron affinity of gaseous systems

The ionization potential and electron affinity of gaseous systems can be calculated by a delta SCF

method with an exact Coulomb cutoff method [91]. With the exact Coulomb cutoff method, a calcu-

lation for a charged isolated system is possible even in the periodic boundary condition. What you

need is to perform two calculations for the ground and ionized states of an isolated system, and to

calculate the difference of the total energies between them. Let us illustrate calculations for ionization

potential of gaseous systems. The first example is a water molecule. One can perform a calculation

for the ground state as

% mpirun -np 3 ./openmx H2O+0.dat | tee h2o+0.std

The input file ’H2O+0.dat’ is available in the directory ’work’. The geometry structure was optimized

with the same computational condition before the calculation. To avoid the Coulomb interaction

between the supercells the exact Coulomb cutoff method [91] is employed by the following keyword:

scf.coulomb.cutoff on # default=off, on|off

Even if the method is employed, where the cutoff radius for the Coulomb interaction is set to the half

of the lenght of the shortest lattice vector, the cell size has to be large enough so that the Coulomb

interaction in the central cell can be properly calculated.

The calculation for the ionized state can be performed as

% mpirun -np 3 ./openmx H2O+1.dat | tee h2o+1.std

The input file ’H2O+1.dat’ is available in the directory ’work’. Compared to ’H2O+0.dat’ the following

keywords need to be changed:

scf.system.charge 1.0 # default=0.0

scf.coulomb.cutoff on # on|off, default=off

scf.SpinPolarization on # On|Off|NC

The system is positively charged up by the keyword ’scf.system.charge’. The Coulomb divergence in the

charged systems can be eliminated by using the exact Coulomb cutoff method with ’scf.coulomb.cutoff’.

The system may be spin-polarized after the ionization. Thus, ’scf.SpinPolarization’ is switched on.

After finishing the two caculations you may obtain the total energies from the out files as

Ground state: -17.477268421216 (Hartree)

Charged state of +1: -17.010776518028 (Hartree)

Then, the ionization potential IP, defined to be (total energy of charged state of +1) - (total energy

of the ground state), is calculated as

IP = −17.010776518028− (−17.477268421216) = 0.466491903188(Hartree),

≈ 12.69(eV).

The obtained value of 12.69 eV is well compared to an experimental value of 12.65 eV [96]. As well

as the ionization potential, one can calculate the electron affinity, defined to be (total energy of the

ground state) - (total energy of charged state of -1), of gaseous systems by specifying

286

Table 13: Calculated ionization potential and electron affinity of gaseous systems. All the

geometrical structures were optimized with the same computational condition before the cal-

culations. All the input files, which are listed below, used the calculations are available in the

directory ’work’.

Ionization potential

System Expt. (eV) Calc. (eV) Input files

H2O 12.65 [96] 12.69 H2O+0.dat, H2O+1.dat

C2H2 11.43 [97] 11.47 C2H2+0.dat, C2H2+1.dat

C2H2 10.55 [97] 10.57 C2H4+0.dat, C2H4+1.dat

O2 12.04 [97] 12.85 O2+0.dat, O2+1.dat

CO 14.01 [97] 13.85 CO+0.dat, CO+1.dat

Electron affinity

System Expt. (eV) Calc. (eV) Input files

OH 1.81 [97] 1.82 OH-0.dat, OH-1.dat

O2 0.41 [97] -0.29 O2-0.dat, O2-1.dat

Cl2 2.37 [97] 0.96 Cl2-0.dat, Cl2-1.dat

CN 3.88 [97] 3.51 CN-0.dat, CN-1.dat

SiH 1.27 [97] 1.17 SiH-0.dat, SiH-1.dat

scf.system.charge -1.0 # default=0.0

With ’scf.system.charge=-1.0’, the system is negatively charged up by one additional electron.

The results for benchmark calculations of the ionization potential and electron affinity of gaseous

systems are shown in Table 13. We see that the calculated results of ionization potential are well

compared to experimental data, while the calculated electron affinities of some systems seem to deviate

from the experimental values especially for O2 and Cl2.

287

59 Optical conductivity and dielectric function

59.1 General

In OpenMX Ver. 3.9, the conductivity and dielectric function can be calculated based on the Kubo-

Greenwood formula [98]. Starting from the Born approximation, the complex tensor of conductivity

and dielectric function which are frequency dependent are calculated within a linear response to a

perturbing frequency dependent electric field. Other physical quantities such as absorption, extinc-

tion, transmission, reflection, and refractive index are also calculated, which are all derived from the

conductivity. The functionality is compatible with only the collinear calculations. The extension of

the functionality to the non-collinear case will be supported in the future release. Since the multi-

level parallelization has been implemented, it is possible to perform large-scale calculations of systems

including more than 1000 atoms on massively parallel computers.

59.2 Si case

Let us illustrate the calculation using an input file ’Si2 k50x50x50.dat’ stored in the directory ’work’.

The input file is for a calculation of Si bulk including 2 atoms in the unit cell, where 10 × 10 × 10

k-points and 50×50×50 k-points are used for the SCF calculation and the calculation of conductivity,

respectively. One can perform the calculation as

% mpirun -np 112 ./openmx Si2_k50x50x50.dat

After finishing the SCF calculation normally, the relevant calculation ’<Optical calculation start>’
starts as shown in the standard output below:

******************* MD= 1 SCF=17 *******************

<Poisson> Poisson’s equation using FFT...

<Set_Hamiltonian> Hamiltonian matrix for VNA+dVH+Vxc...

<Band> Solving the eigenvalue problem...

KGrids1: -0.45000 -0.35000 -0.25000 -0.15000 -0.05000 0.05000 0.15000

KGrids2: -0.45000 -0.35000 -0.25000 -0.15000 -0.05000 0.05000 0.15000

KGrids3: -0.45000 -0.35000 -0.25000 -0.15000 -0.05000 0.05000 0.15000

<Band_DFT> Eigen, time=0.028573

<Band_DFT> DM, time=0.024604

1 Si MulP 2.0000 2.0000 sum 4.0000

2 Si MulP 2.0000 2.0000 sum 4.0000

Sum of MulP: up = 4.00000 down = 4.00000

total= 8.00000 ideal(neutral)= 8.00000

<DFT> Total Spin Moment (muB) = 0.000000000000

<DFT> Mixing_weight= 0.020000000000

<DFT> Uele = -2.418066179485 dUele = 0.000000000118

<DFT> NormRD = 0.000000000011 Criterion = 0.000000001000

<Optical calculation start>

CDDF.KGrids1: -0.49000 -0.47000 -0.45000 -0.43000 -0.41000 -0.39000 -0.37000

CDDF.KGrids2: -0.49000 -0.47000 -0.45000 -0.43000 -0.41000 -0.39000 -0.37000

CDDF.KGrids3: -0.49000 -0.47000 -0.45000 -0.43000 -0.41000 -0.39000 -0.37000

<Optical calculations end, time=24.31524 (s)>

<MD= 1> Force calculation

Force calculation #1

Force calculation #2

288

Force calculation #3

Force calculation #4

Force calculation #5

<MD= 1> Total Energy

Force calculation #6

....

...

In this case, it is found from the standard output that the computational time of the relevant

calculation is about 24 second. After all the calculations finish, you obtain the following output files

relevant to the functionality:

Si2_k50x50x50.cd_re real part of optical conductivity tensor

Si2_k50x50x50.cd_im imaginary part of optical conductivity tensor

Si2_k50x50x50.df_re real part of dielectric function tensor

Si2_k50x50x50.df_im imaginary part of dielectric function tensor

Si2_k50x50x50.absorption absorption tensor

Si2_k50x50x50.extinction extinction tensor

Si2_k50x50x50.transmission transmission tensor

Si2_k50x50x50.reflection reflection tensor

Si2_k50x50x50.refractive_index refractive index tensor

The format of each file can be found in the header part of the file, where the unit for each phys-

ical quantity is also provided. For example, ’Si2 k50x50x50.cd re’ storing the real part of optical

conductivity tensor σ can be seen as shown below:

conductivity tensor (real part) , unit = Siemens/meter = Mho/meter = 1/(Ohm*meter)

index: energy-grid=1, xx=2, xy=3, xz=4, yx=5, yy=6, yz=7, zx=8, zy=9, zz=10, trace=11

#energy-grid(eV) xx xy xz yx yy yz zx zy zz (xx+yy+zz)/3

0.00000 16877.3220211 -227.5621843 -227.5697597 -227.5625069 16877.3919038 -227.5042335 -227.5702078 -227.5041190 16877.3911375 16877.3683541

0.00100 16877.3325817 -227.5625199 -227.5700960 -227.5628426 16877.4024628 -227.5045682 -227.5705442 -227.5044537 16877.4016971 16877.3789139

0.00200 16877.3431423 -227.5628556 -227.5704323 -227.5631782 16877.4130218 -227.5049028 -227.5708805 -227.5047883 16877.4122567 16877.3894736

0.00300 16877.3602570 -227.5634100 -227.5709878 -227.5637327 16877.4301338 -227.5054554 -227.5714360 -227.5053409 16877.4293698 16877.4065869

0.00400 16877.3839257 -227.5641832 -227.5717624 -227.5645058 16877.4537989 -227.5062261 -227.5722106 -227.5061116 16877.4530363 16877.4302536

......

...

The first column is the photon energy (eV), and from the second columns onward, the components

of tensor such as σxx and σxy are stored. In the last column the average value of the diagonal

components σxx, σyy, and σzz is given. The other output files also follow the same format as in

’Si2 k50x50x50.cd re’. By plotting the first column as horizontal axis and the second column as vertical

axis of ’Si2 k50x50x50.cd re’, ’Si2 k50x50x50.cd im’, ’Si2 k50x50x50.df re’, and ’Si2 k50x50x50.df im’,

one can obtain the optical conductivity σxx and dielectric function εxx as shown in Fig. 80.

59.3 Relevant keywords

The specification of each keyword relevant to calculations of conductivity tensor and dielectric function

is given below.

CDDF.start

Switch on the calculations of conductivity tensor and dielectric function when you want to perform

them. The default is ’off’. In case of ’off’, the calculation of conductivity tensor and dielectric function

is turned off.

289

0 5 10

−1

0

1

2

[×10
+6

]

0 5 10

0

25

50

Photon energy (eV)

O
p

ti
c
a

l
c
o

n
d

u
c
ti
v
it
y
 (

S
ie

m
e

n
s
/m

e
te

r)

Photon energy (eV)
D

ie
le

c
tr

ic
 f
u
n
c
ti
o
n

(a) (b) Real
Imaginary

Real
Imaginary

Figure 80: (a) The optical conductivity σxx and (b) dielectric function εxx of Si bulk. The sec-

ond column as vertical axis of ’Si2 k50x50x50.cd re’, ’Si2 k50x50x50.cd im’, ’Si2 k50x50x50.df re’,

and ’Si2 k50x50x50.df im’ are plotted as a function of the first column in each file. The input file

’Si2 k50x50x50.dat’ used for the calculation is available in the directory ’work’.

CDDF.start on # on|off, default=off

CDDF.FWHM

Setting the full width at half maximum of conductivity and dielectric function. The default is ’0.2’ in

eV. The Lorentian function is smeared out with the parameter.

CDDF.FWHM 0.2 # default = 0.2 (eV)

CDDF.maximum energy

Setting the maximum energy of optical spectra for calculations of conductivity and dielectric function.

The default is ’10.0’ in eV. The energy range begins from 0.0 eV.

CDDF.maximum_energy 10.0 # default = 10.0 (eV)

CDDF.additional maximum energy

Setting the additional energy range in the frequency domain. Although the energy range for the output

of conductivity and dielectric function is specified by ’CDDF.maximum energy’, for the calculations

the states beyond the energy range of the output are also taken into account, since the states beyond

the energy range of the output may contribute because of the broadening of Lorentzian function. The

energy range for the calculations can be controlled by a keyword ’CDDF.additional maximum energy’.

For example, when the maximum energy is 10 eV, which is specified by ’CDDF.maximum energy’,

290

Table 14: Computational time of conductivity and dielectric function of Si crystal.

of Si atoms Supercell Diagonalization k-Grid
Total time (s)

(CPUs=128)

Total time (s)

(CPUs=256)

Total time (s)

(CPUs=512)

Total time (s)

(CPUs=1024)

Total time (s)

(CPUs=2048)

512 atoms 4x4x4 Cluster 1x1x1 3367.16826 1755.60797 919.21912 464.27761 253.32210

4x4x4 ScaLAPACK 2x1x1 6819.30193 3499.51872 1838.64406 948.87978 513.79250

4x4x4 Band 2x2x2 15300.58350 10217.17765 5953.19907 3518.84650 1747.20171

1000 atoms 5x5x5 Cluster 1x1x1 6900.35370 3511.85143 1778.33693

5x5x5 ScaLAPACK 2x1x1 12994.17818 6817.43990 3460.76787

5x5x5 Band 2x2x2 43676.20392 26055.12739 13318.14587

and the additional energy range is set to 1.0 eV by ’CDDF.additional maximum energy’, then the

total energy range becomes 11.0 (10.0+1.0) eV. The default value is 0.0 eV.

CDDF.additional_maximum_energy 1.0 # default = 0.0 eV

CDDF.frequency.grid.total number

Setting the total number of grids for conductivity and dielectric function. The default number of grids

is ’10000’. And, the interval in the energy grid is given by (Maximum energy - 0.0) / total number

of energy-grid, e.g. (10.0− 0.0)/10000 = 0.0010 (eV).

CDDF.frequency.grid.total_number 10000 # default = 10000

CDDF.Kgrid

Setting a set of numbers (n1,n2,n3) of grids to discretize the first Brillouin zone in the k-space, which

is used for the calculations of conductivity and dielectric function. For the reciprocal vectors ã, b̃,

and c̃ in the k-space, please provide a set of numbers (n1,n2,n3) of grids as ’n1 n2 n3’. According to

the (n1,n2,n3), a regular mesh in the first Brillouin zone will be generated. It does not need to be the

same as scf.Kgrid which is used for the SCF calculation. So, one may use a rather coarse grid for the

SCF calculation, and change to a finer grid for the calculations of conductivity and dielectric function

to reduce the computational cost.

CDDF.material type

Setting the type of material: metal or insulator. 0 is for insulator, and 1 is for insulator and metal.

CDDF.material_type 0 # Default=0

59.4 Benchmark calculations

A couple of examples as benchmark calculations are shown below:

Si

The real part of dielectric function of Si bulk is shown for a series of k-grids in Fig. 81. We see that

as increasing k-grid from 10× 10× 10 to 100× 100× 100, the real part of dielectric function is getting

converged. It is found that we need to have a fine grid for the k-points to obtain a well converged

result. In Tables 14 and 15, we show the computational time and parallel efficiency in the calculation

of the conductivity and dielectric function for supercells of Si bulk. The results suggest that it might

be possible to treat systems including 1000 atoms if 1000 CPU cores are available.

β-PVDF

The real part of dielectric function of β-PVDF (polyvinylidene fluoride) is shown for a series of k-grids

in Fig. 82. We see that the k-grid of 6×9×21 is required to get the convergent result. In Tables 16 and

291

−20

−10

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

ε
(t

ra
ce

)

−hω (eV)

εre,k−grid=10x10x10
εim,k−grid=10x10x10
εre,k−grid=20x20x20
εim,k−grid=20x20x20
εre,k−grid=30x30x30
εim,k−grid=30x30x30
εre,k−grid=50x50x50
εim,k−grid=50x50x50
εre,k−grid=75x75x75
εim,k−grid=75x75x75

εre,k−grid=100x100x100
εim,k−grid=100x100x100

Figure 81: The dielectric function of Si crystal (primitive cell, 2 atoms) with 6 different K-grids:

10× 10× 10, 20× 20× 20, 30× 30× 30, 50× 50× 50, 75× 75× 75, and 100× 100× 100. The blue and

red lines are real and imaginary parts of dielectric function, respectively, where CDDF.FWHM=0.2

eV was used.

17, we show the computational time and parallel efficiency in the calculation of the conductivity and

dielectric function for supercells of β-PVDF. It is confirmed that the parallel efficiency is reasonably

good, and the elapsed time is less than one hour when the CPU cores of 256 are used. In Fig. 82, we

show the xx, yy, and zz components of real part of dielectric function of β-PVDF for your reference.

VO2 in the R phase

The real and imaginary parts of dielectric function of VO2 in the R phase are shown for a series of k-

grids in Fig. 84. We see that the k-grid of 16×16×16 is required to get the convergent result. Tables 18

and 19 show the computational time and parallel efficiency in the calculation of the conductivity and

dielectric function for supercells of VO2 in the R phase. It is confirmed that the parallel efficiency is

reasonably good, allowing us to treat large-scale systems in an elapsed time of 1 hour.

59.5 Codes

Routines relevant to the calculations of conductivity and dielectric function are listed below:

Band_DFT_Col_Optical.c Band_DFT_Col_Optical_ScaLAPACK.c

Band_DFT_NonCol_Optical.c Calc_optical.c

292

−2

−1

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20

ε r
e

(t
ra

ce
)

−hω (eV)

k−grid=2x3x7
k−grid=4x6x14
k−grid=6x9x21

k−grid=8x12x28
k−grid=10x15x35
k−grid=12x18x42

Figure 82: The real part of dielectric function of β-PVDF (polyvinylidene fluoride) consisting of 6

atoms in the 1× 1× 1 cell for a series of k-grids. CDDF.FWHM=0.2 eV was used.

−3

−2

−1

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20

ε r
e

−hω (eV)

εre (xx)
εre (yy)
εre (zz)

Figure 83: The xx, yy, and zz components of real parts of dielectric function of β-PVDF (6 atoms,

1× 1× 1 cell).

293

Table 15: Calculation time of conductivity and dielectric function of Si crystal (512 atoms, 4× 4× 4

supercell, k-grid=1× 1× 1). The speed-up ratio with repect to the case with 128 CPU cores is shown

in the last column.

of CPUs
Total time of calculating

conductivity and dielectric function (s)

Ratio of

total time by # of CPUs

to total time by 128 CPUs

128 3367.16826 1.000

256 1755.60797 1.918

512 919.21912 3.663

1024 464.27761 7.252

2048 253.32210 13.292

0

20

40

60

80

100

0 1 2 3 4 5 6 7

ε
re
(t
ra
ce
)

−hω (eV)

k�grid=8� 8� 8
k�grid=16� 16� 16
k�grid=32� 32� 32
k�grid=48� 48� 48

0

20

40

60

80

100

0 1 2 3 4 5 6 7

ε
im
(t
ra
ce
)

−hω (eV)

k�grid=8� 8� 8
k�grid=16� 16� 16
k�grid=32� 32� 32
k�grid=48� 48� 48(a) (b)

Figure 84: The real and imaginary parts of dielectric function of VO2 (R phase, 6 atoms, 1 × 1 × 1

cell) with a series of k-grids.

Cluster_DFT_Optical.c Cluster_DFT_Optical_ScaLAPACK.c

DFT.c Get_Cnt_dOrbitals.c

Get_dOrbitals.c Input_std.c

NabraMatrixElements.c Set_dOrbitals_Grid.c

59.6 Examples

For user’s convenience, input files for five examples can be found in the directory ’work/cddf examples’

as follows:

Table 16: Total time of calculating conductivity and dielectric function of β-PVDF (polyvinylidene

fluoride) consisting of 540 atoms which corresponds to the 3× 3× 5 supercell.

Diagonalization k-Grid
Total time (s)

(CPUs=128)

Total time (s)

(CPUs=256)

Total time (s)

(CPUs=512)

Total time (s)

(CPUs=1024)

Total time (s)

(CPUs=2048)

Cluster 1x1x1 4215.67238 2086.76841 1061.06835 565.92209 329.42010

ScaLAPACK 1x1x2 3330.66855 1711.98413 877.61705 599.73266 330.11080

Band 2x2x2 12854.63816 7244.26768 3591.33618 1866.03405 998.07756

294

Table 17: Calculation time of conductivity and dielectric function of β-PVDF (polyvinylidene fluoride)

consisting of 540 atoms which corresponds to the 3 × 3 × 5 supercell, where k-grid of 1 × 1 × 1 was

used. The speed-up ratio with repect to the case with 128 CPU cores is shown in the last column.

of CPUs
Total time of calculating

conductivity and dielectric function (s)

Ratio of

total time by # of CPUs

to total time by 128 CPUs

128 4215.67238 1.000

256 2086.76841 2.020

512 1061.06835 3.973

1024 565.92209 7.449

2048 329.42010 12.797

Table 18: Calculation time of conductivity and dielectric function of VO2 (R phase, 384 atoms, 4×4×4

supercell)

Diagonalization k-Grid
Total time (s)

(CPUs=128)

Total time (s)

(CPUs=256)

Total time (s)

(CPUs=512)

Total time (s)

(CPUs=1024)

Total time (s)

(CPUs=2048)

Cluster 1x1x1 5328.56778 2719.77511 1382.56556 704.32679 360.64294

ScaLAPACK 1x1x2 5276.74287 2755.58509 1395.48266 718.42770 368.24621

Band 2x2x2 21031.96431 10686.37446 5586.12815 2781.05698 1431.91243

• Febcc-Col k30x30x30.dat

Calculation of conductivities and dielectric functions for bcc iron with 30× 30× 30 k-points.

• Mn12.dat

Calculation of conductivities and dielectric functions for a Mn12 molecular magnet with 1×1×1

k-points.

• Si2 k10x10x10.dat

Calculation of conductivities and dielectric functions for a silicon bulk with 10×10×10 k-points.

• Si2 k1xk1xk1.dat

Calculation of conductivities and dielectric functions for a silicon bulk with 1× 1× 1 k-points.

Table 19: Total time of calculating conductivity and dielectric function of VO2 (R phase, 384 atoms,

4× 4× 4 supercell, k-grid=1× 1× 1). The speed-up ratio with repect to the case with 128 CPU cores

is shown in the last column.

of CPUs
Total time of calculating

conductivity and dielectric function (s)

Ratio of

total time by # of CPUs

to total time by 128 CPUs

128 5328.56778 1.000

256 2719.77511 1.959

512 1382.56556 3.854

1024 704.32679 7.565

2048 360.64294 14.775

295

• VO2R-k16xk16x16.dat

Calculation of conductivities and dielectric functions for VO2-R phase with 16×16×16 k-points.

59.7 Automatic running test

To check whether the functionality of the conductivity and dielectric function calculations is properly

installed or not, an automatic running test for the functionality can be performed by

For the MPI parallel running

% mpirun -np 112 ./openmx -runtestCDDF

For the MPI/OpenMP parallel running

% mpirun -np 56 ./openmx -runtestCDDF -nt 2

Then, OpenMX will run with five test cases, and compare calculated results with the reference re-

sults which are stored in ’work/cddf example’. The comparison (absolute difference in the dielectric

function) is stored in a file ’runtestCDDF.result’ in the directory ’work’. The reference results were

calculated using a Xeon cluster machine. If the difference is less than 0.1, we may consider that the

installation is successful.

296

60 Interface with BoltzTraP

OpenMX is interfaced with BoltzTraP [99] which calculates electron transport coefficients based on

the Boltzmann theory from the wave number dependence of the energy eigenvalues in the Kohn-Sham

equation. The interface [100] with BoltzTraP enables us to calculate physical properties such as the

Seebeck coefficient, electrical conductivity, electronic thermal conductivity, and the Hall coefficient.

The functionality is compatible with not only the collinear calculations, but also the non-collinear

calculations. When you publish a paper using the functionality, we would like to appreciate your

citation of Ref. [100]. The interface with BoltzTraP2 will be released in the next version. The

interface, which bridges between OpenMX and BoltzTraP, can be used by copying MX TRAP.sh

which is stored in the directory ’source’ to the directory ’work’ and executing it. As an example, let

us introduce a calculation of non-doped Si bulk. One can perform the SCF calculation using an input

file ’Si BoltzTraP.dat’ which is available in the directory ’work’ as follows:

% mpirun -np 28 ./openmx Si_BoltzTraP

After the SCF calculation finishes normally, you obtain the out file ’Si BoltzTraP.out’. Then, you

need to copy MX TRAP.sh which is stored in the directory ’source’ to the directory ’work’. After

that, you can perform MX TRAP.sh as follows:

% sh MX_TRAP.sh

Then, the name of the ’out’ files in the directory is listed as may be shown below.

=========================Outputfile List==========================

Si_BoltzTraP.out

==

Please enter the outputfile name ; Outputfile name =

Then, please enter the file name of the ’out’ file after ”Outputfile name =” and execute it by typing

enter. Here we take Si BoltzTraP.out as an example, and you may enter as

Please enter the output file name: Outputfile name = Si_BoltzTraP.out

When you press the enter key, the following message will be displayed:

..

....

Nospin::kloop kx ky kz:1681/1686

Nospin::kloop kx ky kz:1682/1686

Nospin::kloop kx ky kz:1683/1686

Nospin::kloop kx ky kz:1684/1686

Nospin::kloop kx ky kz:1685/1686

Nospin::kloop kx ky kz:1686/1686

.energy file for BoltzTraP has been generated.

.struct file for BoltzTraP has been generated.

297

Figure 85: Computational protocol of the electron transport caculation by OpenMX and BoltzTraP.

.intrans file for BoltzTraP has been generated.

Conversion has been finished.

Directory is Si_BoltzTraP

After the above message is displayed, a directory named ’Si BoltzTraP’ is created, and four files such as
’Si BoltzTraP.energy’,’Si BoltzTraP.intrans’, and ’Si BoltzTraP.struct’ will be stored in the directory
as shown below:

% cd Si_BoltzTraP

% ls

Si_BoltzTraP.out Si_BoltzTraP.energy Si_BoltzTraP.struct Si_BoltzTraP.intrans

The ’.out’ file is a copy of the out file which was analyzed by the conversion. The ’.energy’ file

is a file of energy eigenvalues. If the keyword ’scf.SpinPolarization’ in the ’.out’ file is ’ON’, then

the ’.energyup’ and ”.energydn” files are output, while ’.energyso’ file is output if the keyword ’scf.

SpinPolarization’ in the ’.out’ file is ’NC’. The ’.struct’ file is a file of unit lattice vectors. The unit is

converted automatically into atomic units. The ’.intrans’ file describes input parameters necessary for

electronic transport calculation. For details, please refer to the pdf manual enclosed with BoltzTraP

package. The numerical value of the first item in the third line is the chemical potential µ calculated by

OpenMX (unit is Ryd). The value of 10 in the fifth line is the Fourier interpolation factor of the band,

which is set to 10 by default. The numerical value in the eighth row is the electron temperature of the

298

Figure 86: (a) Seebeck coefficient S, and (b) the electric conductivity στ−1
el of non-doped Si in

the diamond structure as a function of the chemical potential at 300 K obtained by OpenMX and

BoltzTraP. The Fourier interpolation factor was set to 25. The input file ’Si BoltzTraP.dat’ used for

the calculation is available in the directory ’work’.

Fermi distribution. The first item is the maximum temperature. The second item is the temperature

step size when calculating the temperature dependence. If the temperature dependence is not to be

calculated, then enter the same value as the first item. By default, the temperature specified by

’scf.ElectronicTemperature’ in the ’.out’ file is entered. If ’scf.ElectronicTemperature’ is not specified,

T = 300K will be assigned.

Next, please move to the directory ’Si BoltzTraP’ and type BoltzTraP as shown below. The

procedure from this point is the same as the normal BoltzTraP calculation. Therefore, please refer to

the PDF manual enclosed in the BoltzTraP package for details.

% cd Si_BoltzTraP

% ’path to BoltzTrap’/boltztrap-1.2.5/sr/x_trans BoltzTraP

If the stored energy eigenvalue file is ’.energyup’, ’.energydn’ or ’.energyso’, please add ’-up’, ’-dn’, or

’-so’ as an option after x trans BoltzTraP, and execute it. Then, electron transport calculations are

performed for the energy eigenvalue file specified by the option. When the calculation is completed

normally, the following message will be displayed:

========================== BoltzTraP vs 1.2.5 =============

99.786 u 0.076 s 1: 40.04 99.8\% 0 + 0 k 0 + 1612 0 io 0 pf + 0 w

The average values of the electron transport properties over the x-, y-, and z-axes are stored in

’Si BoltzTraP.trace.’, while the electron transport properties of the x-, y-, and z-axes are stored in

’Si BoltzTraP.condtens’. Figure 85 summarizes the computational protocol of the electron transport

calculation by OpenMX and BoltzTraP. In Fig. 86 we show the Seebeck coefficient S and chemi-

cafnl potential µ dependence of electrical conductivity στ−1
el of non-doped Si bulk. The input file

’Si BoltzTraP.dat’ used for the calculation is available in the directory ’work’.

Extensitve benchmark calculations using the functionality are found in the supplementary material:

’11664 2017 6020 MOESM1 ESM.pdf’ of Ref. [100]. Among the benchmark calculations we show in

299

- 2.0 - 1.5 - 1.0 - 0.5 0.5 1.0 1.5 2.00
- 1500

- 1000

- 500

0

500

1000

1500

S
/

m
V

K
-
1

m / eV

T = 300 K

GaCuS2_mp- 5238_symmetrized_SOC

(a) (b)

� �
- 2.0 - 1.5 - 1.0 - 0.5 0.5 1.0 1.5 2.00

5.0x1019

1.0x1020

1.5x1020

0

s
t

-
1

/
W

-
1
m

-
1
s-

1

m / eV

T = 300 K

GaCuS2_mp- 5238_symmetrized_SOC

�
�

��

Figure 87: (a) Seebeck coefficient S, and (b) electric conductivity στ−1
el of GaCuS2 bulk as a function

of the chemical potential at 300 K obtained by OpenMX and BoltzTraP. The Fourier interpolation

factor was set to 10. The input file ’GaCuS2 mp-5238 symmetrized SOC.dat’ used for the calculation

is available in the directory ’work’.

Fig. 87 a computational result for GaCuS2 bulk in which the non-collinear calculation with spin-

orbit coupling was performed. The input file ’GaCuS2 mp-5238 symmetrized SOC.dat’ used for the

calculation is available in the directory ’work’.

300

61 Calculation of Energy vs. lattice constant

61.1 Energy vs. lattice constant

The calculation of Energy vs. lattice constant is supported by the following keywords:

MD.Type EvsLC #

MD.EvsLC.Step 0.4 # default=0.4%

MD.maxIter 32 # default=1

MD.EvsLC.flag 1 1 1 # default=1 1 1

(0: fixed, 1:expansion, -1:contraction)

When ’MD.Type’ is set to ’EvsLC’, the total energy is calculated step by step by changing unit cell

vectors, a, b, and c. The change of unit cell vectors is done uniformly by expanding them by a

percentage, where the reference is the initial vectors, specified with ’MD.EvsLC.Step’. The number

of steps is specified by the keyword ’MD.maxIter’. If you want to fix some of lattice vectors, the

keyword ’MD.EvsLC.flag’ is available, where the default setting is ’1 1 1’ corresponding to the uniform

expansion of a-, b-, c-axes, respectively. The flag ’0’ means no change of the corresponding axis, and

’-1’ the uniform contraction. After the calculation, you will obtain a file ’System.Name.EvsLC’, where

’System.Name’ is ’System.Name’. The columns in the file ’System.Name.EvsLC’ are arranged in order

of ax, ay, az, bx, by, bz, cx, cy, cz in Å, and the total energy in Hartree, where a(b, c)x, a(b, c)y, and

a(b, c)z are x-, y-, and z-coordinates of the a(b,c) vector, respectively. As an example, calculation of

Energy vs. lattice for the fcc Mn bulk is shown in Fig. 88, where the equilibrium lattice constant

and bulk modulus were evaluated by fitting the data to the Murnaghan equation of state with a code

’murn.f’ provided on the website [148].

61.2 Delta factor

As well as ’EvsLC’, a similar functionality is provided as

MD.Type DF

by which OpenMX automatically calculates the total energy of the system with volumes of -6, -4, -2,

0, 2, 4, and 6 %, where the original structure given in the input file is taken to be the reference. The

regulation of volume is simply performed by considering uniform change of lattice vectors, a-, b-, and

c-axes. The volume and the corresponding total energy are output to a file ’System.Name.DF’. The

data can be used to calculate the delta factor proposed in Ref. [40].

301

3.3 3.4 3.5 3.6 3.7
0

0.1

0.2

0.3

0.4

0.5

Lattice constant (Ang.)

T
o

ta
l
E

n
e

rg
y
 (

e
V

/a
to

m
) a0=3.507 Ang, B0=280 GPa

a0=3.502 Ang, B0=280 GPa

a0=3.505 Ang, B0=277 GPa

Wien2k

Mn6.0-s3p3d3
Mn6.0-s3p3d3f1

Functional: GGA-PBE

Figure 88: Total energy vs. lattice constant for the fcc Mn bulk calculated by the keyword ’EvsLC’.

The input file used for the calculation is ’Mnfcc-EvsLC.dat’ in the directory ’work’.

62 Fermi surface

The Fermi surface is visualized by XCrySDen [105] and FermiSurfer [143, 144]. When you perform

calculations of the density of states by the following keywords:

Dos.fileout on # on|off, default=off

Dos.Erange -20.0 20.0 # default = -20 20

Dos.Kgrid 61 61 61 # default = Kgrid1 Kgrid2 Kgrid3

FermiSurfer.fileout on # default = off, on/off

you will obtain a file ’System.Name.FermiSurf0.bxsf’ which is readable by XCrySDen [105] and a

file ’System.Name.FermiSurf s0 aA.frmsf’ which is readable by FermiSurfer [143, 144], where ’Sys-

tem.Name’ is ’System.Name’, and A is the serial number of atoms. To obtain the files readable

by FermiSurfer, you need to switch on the keyword ’FermiSurfer.fileout’. As well as ’Dos.Fileout’,

’DosGauss.fileout’ can also be used for the purpose, while the files readable by FermiSurfer are not

generated in the case of ’DosGauss.fileout’. In case of spin-polarized calculations, for XCrySDen two

files ’System.Name.FermiSurf0.bxsf’ and ’System.Name.FermiSurf1.bxsf’ are generated for spin-up and

spin-down states, respectively, and for FermiSurfer two files ’System.Name.FermiSurf s0 aA.frmsf’

and ’System.Name.FermiSurf s1 aA.frmsf’ are generated for spin-up and spin-down states, respec-

tively. The data file for FermiSurfer can be used to display the color plot of the contribution from

each atoms. For example, if we plot the character of atomic orbitals of the atom 1, we read ’Sys-

302

(a) (b) (c)

Figure 89: Fermi surfaces of the fcc Ca bulk visualized by XCrySDen [105] in (a) and (b). Since two

sorts of bands intersect with the Fermi energy (chemical potential), two Fermi surfaces are shown in

(a) and (b). (c) The color plot of the Fermi velocity of the material: the plot is visualized by using

FermiSurfer [143, 144]. The input file used for the calculation is ’Cafcc FS.dat’ in the directory ’work’.

tem.Name.FermiSurf s0 a1.frmsf’. In case of non-collinear calculations, a file ’System.Name.FermiSurf.bxs’

and ’System.Name.FermiSurf aA.frmsf’ are generated. It is noted that a large number of k-points

should be used in order to obtain a smooth Fermi surface. As an example, Fermi surfaces of the fcc

Ca bulk are shown in Fig. 89. The input file used for the calculation is available as ’Cafcc FS.dat’ in

the directory ’work’.

303

63 Analysis of difference in two Gaussian cube files

A utility tool is provided to generate a Gaussian cube file which stores the difference between two

Gaussian cube files for total charge density, spin density, and potentials. If you analyze the difference

between two states, this tool would be useful.

(1) Compiling of diff gcube.c

There is a file ’diff gcube.c’ in the directory ’source’. Compile the file as follows:

% gcc diff_gcube.c -lm -o diff_gcube

When the compile is completed normally, then you can find an executable file ’diff gcube’ in the

directory ’source’. Please copy the executable file to the directory ’work’.

(2) Calculation of the difference

If you want to know the difference between two Gaussian cube files ’input1.cube’ and ’input2.cube’,

and output the result to a file ’output.cube’, then perform the executable file as follows:

% ./diff_gcube input1.cube input2.cube output.cube

The difference is output to ’output.cube’ in the Gaussian cube format. Thus, you can easily visualize

the difference using many software, such XCrySDen [105], VESTA [103], and Molekel [104]. In fact,

Fig. 28 in the Section ’Electric field’ was made by this procedure.

304

64 Analysis of difference in two geometrical structures

A utility tool is provided to analyze the difference between two geometrical coordinates in two xyz files

which store Cartesian coordinates. The following three analyses are supported: a root mean square

of deviation (RMSD) between two Cartesian coordinates defined by

RMSD =

√∑Natom
i (Ri −R0

i)
2

Natom

a mean deviation (MD) between two Cartesian coordinates defined by

MD =

∑Natom
i |Ri −R0

i |
Natom

and a mean deviation between bond lengths (MDBL) defined by

MDBL =

∑Nbond
i |BLi −BL0

i |
Nbond

where Natom and Nbond are the number of atoms and the number of bonds with bond length (BL)

within a cutoff radius. Also, the deviation vector between xyz coordinate of each atom is output to a

xsf file ’dgeo vec.xsf’ in the XCrySDen format. If you analyze the difference between two geometries,

this tool would be useful.

(1) Compiling of diff gcube.c

There is a file ’diff gcube.c’ in the directory ’source’. Compile the file as follows:

% gcc diff_geo.c -lm -o diff_geo

When the compile is completed normally, then you can find an executable file ’diff geo’ in the directory

’source’. Please copy the executable file to the directory ’work’.

(2) Calculation of the difference

You can find the following usage in the header part of diff geo.c.

usage:

./diff_geo file1.xyz file2.xyz -d rmsd

option

-d rmsd a root mean square of deviation

-d md a mean deviation

-d mdbl 2.2 a mean deviation between bond lengths,

2.2 (Ang) means a cutoff bond length which

can be taken into account in the calculation

If you want to know RMSD between two Cartesian coordinates, run as follows:

% ./diff_geo file1.xyz file2.xyz -d rmsd

305

(a) (b)

(a) (b)

Figure 90: (a) Vectors corresponding to the deviation of atomic coordinates in optimized struc-

tures and (b) the difference of total charge density between a neutral and one electron doped glycine

molecule. These figures were visualized by XCrySDen. In Fig. (b) blue and red colors indicate the

decrease and increase of total charge density, respectively.

The calculated result appears in the standard output (your display). Also, a xsf file ’dgeo vec.xsf’ is

generated in the XCrySDen format, which stores the difference between Cartesian coordinates of each

atom in a vector form. This file can be visualized using ’Display→Forces’ in XCrySDen. When MDBL

is calculated, please give a cutoff bond length (Å). Bond lengths below the cutoff bond length are taken

into account for the RMSD calculation. Figure 90 shows vectors corresponding to the deviation of

atomic coordinates in optimized structures and the difference of total charge density between a neutral

and one electron doped glycine molecule. We see that the large structural change seems to take place

together with the large charge deviation. This example illustrates that the tool would be useful when

we want to know how the structure is changed by the charge doping and the electric field.

306

65 Analysis of difference charge density induced by the interaction

The redistribution of charge (spin) density induced by the interaction between two systems A and B

can be analyzed by the following procedure:

(i) Calculate the composite system consisting of A and B

Then, you will have a cube file for charge (spin) density. Let it be ’AB.cube’. Also, you will find

’Grid Origin’ in the standard output which gives x-, y-, and z-components of the origin of the regular

grid as:

Grid_Origin xxx yyy zzz

The values will be used in the following calculations (ii) and (iii).

(ii) Calculate the system A

This calculation must be performed by the same calculation condition with the same unit cell as in

the composite system consisting of A and B. Also, the coordinates of the system A must be the same

as in the calculation (i). To use the same origin as in the calculation (i) rather than the use of an

automatically determined origin, you have to include the following keyword in your input file:

scf.fixed.grid xxx yyy zzz

where ’xxx yyy zzz’ is the coordinate of the origin you got in the calculation (i). Then, you will have

a cube file for charge (spin) density. Let it be ’A.cube’.

(iii) Calculate the system B

As well as the calculation (ii), this calculation must be performed by the same calculation condition

with the same unit cell as in the composite system consisting of A and B. Also, the coordinates of the

system B must be the same as in the calculation (i). To use the same origin as in the calculation (i)

rather than the use of an automatically determined origin, you have to include the following keyword

in your input file:

scf.fixed.grid xxx yyy zzz

where ’xxx yyy zzz’ is the coordinate of the origin you got in the calculation (i). Then, you will have

a cube file for charge (spin) density. Let it be ’B.cube’.

(iv) Compile two codes

compile two codes as follows:

% gcc diff_gcube.c -lm -o diff_gcube

% gcc add_gcube.c -lm -o add_gcube

(v) Generate a cube file for difference charge (spin) density

First, generate a cube file for the superposition of two charge (spin) densities of the systems A and B

by

% ./add_gcube A.cube B.cube A_B.cube

307

The file ’A B.cube’ is the cube file for the superposition of charge (spin) density of two isolated systems.

Then, you can generate a cube file for the difference charge (spin) density induced by the interaction

as follows:

% ./diff_gcube AB.cube A_B.cube dAB.cube

The file ’dAB.cube’ is the cube file for the difference charge (spin) density induced by the interaction,

where the difference means (AB - A B).

308

66 Automatic determination of the cell size

When you calculate an isolated system, you are required to provide a super cell so that the isolated

system does not overlap with the image systems in the repeated cells via basis orbitals. The larger

cell size can cause a numerical inefficiency, since a larger number of grids are used in the solution of

the Poisson’s equation in this case. Therefore, the use of the minimum cell size is desirable in terms of

computational efficiency. OpenMX supports the requirement. If you remove the specification for the

cell size, that is, from ’<Atoms.UnitVectors’ to ’Atoms.UnitVectors>’, then OpenMX automatically

determines an appropriate cell which does not overlap the next cells and fulfills the required cutoff

energy. The determined cell vectors are displayed in the standard output like this:

<Set_Cluster_UnitCell> automatically determined UnitCell(Ang.)

<Set_Cluster_UnitCell> from atomic positions and Rc of PAOs (margin= 10.00%)

<Set_Cluster_UnitCell> 6.614718 0.000000 0.000000

<Set_Cluster_UnitCell> 0.000000 6.041246 0.000000

<Set_Cluster_UnitCell> 0.000000 0.000000 6.614718

widened unit cell to fit energy cutoff (Ang.)

A = 6.744142 0.000000 0.000000 (48)

B = 0.000000 6.322633 0.000000 (45)

C = 0.000000 0.000000 6.744142 (48)

309

67 Interface for developers

An interface for developers is provided. The matrix elements for the Hamiltonian, overlap, density

matrix, position operator, and momentum operator, which are all obtained from the SCF calculation,

can be accessed from your post processing code using the functionality. It should be also noted that

from the OpenMX Ver. 3.9, the data format for the relevant codes ’SCF2File.c’, ’read scfout.c’,

’read scfout.h’, and ’analysis example.c’ have been changed so that the full information of density

matrix, and the matrices for the position operator and momentum operator can be included in the

scfout file. So, the scfout files generated by the older versions of OpenMX cannot be analyzed by Ver.

3.9. These data can be utilized by the following steps:

1. Generation of ’HS.fileout’

Include the keyword ’HS.fileout’ in your input file as follows:

HS.fileout on # on|off, default=off

and perform a convetional OpenMX calculation. Then, these data are output to a file ’Sys-

tem.Name.scfout’ where System.Name means System.Name in your input file.

2. make analysis example

In the directory ’source’ compile by

% make analysis_example

Then, an executable file ’analysis example’ is generated in the directory ’work’.

3. ./analysis example System.Name.scfout

Move to the directory ’work’, and then perform the program as follows:

% ./analysis_example System.Name.scfout

or

% ./analysis_example System.Name.scfout > HS.out

You can find the elements of the Hamiltonian, the overlap, and the density matrices in a file

’HS.out’

4. explanation of analysis example

In a file ’analysis example.c’ you can find a detailed description for these data. A part of the

description is as follows:

**

You can utilize a filename.scfout which is generated by the SCF

calculation of OpenMX by the following procedure:

1. Define your main routine as follows:

310

int main(int argc, char *argv[])

2. Include a header file, "read_scfout.h", in your main routine

(if you want, also in other routines) as follows:

#include "read_scfout.h"

3. Call a function, read_scfout(), in the main routine as follows:

read_scfout(argv);

**

It is noted that ’polB’, ’jx’, and ’kSpin’ have been developed using the functionality as post

processing code.

311

68 Calling OpenMX as library or computational engine

Note: I (Ozaki) had misunderstood how MPI Comm spawn works at the moment of the release of

OpenMX Ver. 3.9 (Dec. 3, 2019). So, a part of the desctription below is not correct. Please use the

capability at your own risk.

OpenMX can be utilized as library or computational engine from your program using MPI Comm spawn.

You may mpirun your program and may want to call OpenMX with different input files from the pro-

gram in different MPI groups at the same time. In such cases the functionality may be useful. Let

us illustrate the functionality by introducing ’example mpi spawn.c’ which is stored in the directory

’source’. The code ’example mpi spawn.c’ can be compiled as

% make example_mpi_spawn

Then, you may obtain the executable file of ’example mpi spawn’ in the directory ’work’. Please move

to the directory ’work’ and perform as

% mpirun -np 24 -machinefile machine0 --oversubscribe ./example_mpi_spawn

Setting the number of MPI processes, the machinefile, and the parameters may be changed depending

on your computational environment. In some enviroment, you may need to attach ’–oversubscribe’ as

option for mpirun in order to access the full physical cores on your machine. In the test calculation, the

MPI processes of 24 are divided to three groups, each of which consists of 8 MPI processes, and in each

group having 8 MPI processes OpenMX runs with an input file: ’Methane.dat’, ’C60.dat’, or ’Fe2.dat’.

Starting from the example code as shown below, you may be able to develop a host program which

calls OpenMX as child process. In the code ’Make Comm Worlds’ creates three MPI communicaition

groups, and ’MPI Comm spawn’ calls OpenMX with one of the input files as argument. Note that

OpenMX called by ’MPI Comm spawn’ will not display most of standard output but write them in

’System.Name.std’ to avoid appearence of too much information as standard output in such a case

that OpenMX is multiply called by ’MPI Comm spawn’ at the same time.

/**

example_mpi_spawn.c:

An example of calling OpenMX as library by MPI_Comm_spawn, where

a given MPI processes are grouped to three new MPI communication

groups and OpenMX runs with an input file: ’Methane.dat’, ’C60.dat’,

or ’Fe2.dat’ in each MPI group.

Log of example_mpi_spawn.c:

25/Sep./2019 Released by Taisuke Ozaki

***/

#include "mpi.h"

312

#include <stdio.h>

#include <stdlib.h>

void Make_Comm_Worlds(

MPI_Comm MPI_Curret_Comm_WD,

int myid0,

int numprocs0,

int Num_Comm_World,

int *myworld1,

MPI_Comm *MPI_CommWD, /* size: Num_Comm_World */

int *NPROCS1_ID, /* size: numprocs0 */

int *Comm_World1, /* size: numprocs0 */

int *NPROCS1_WD, /* size: Num_Comm_World */

int *Comm_World_StartID /* size: Num_Comm_World */

);

int main(int argc, char *argv[])

{

int i,j;

int numprocs0,myid0,ID0;

int numprocs1,myid1;

int num;

int Num_Comm_World1;

int myworld1;

int *NPROCS1_ID,*NPROCS1_WD;

int *Comm_World1;

int *Comm_World_StartID;

MPI_Comm *MPI_CommWD;

MPI_Comm comm;

MPI_Comm *intercomm;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs0);

MPI_Comm_rank(MPI_COMM_WORLD,&myid0);

/* set Num_Comm_World1 */

Num_Comm_World1 = 3;

/* allocation of arrays */

NPROCS1_ID = (int*)malloc(sizeof(int)*numprocs0);

Comm_World1 = (int*)malloc(sizeof(int)*numprocs0);

NPROCS1_WD = (int*)malloc(sizeof(int)*Num_Comm_World1);

313

Comm_World_StartID = (int*)malloc(sizeof(int)*Num_Comm_World1);

MPI_CommWD = (MPI_Comm*)malloc(sizeof(MPI_Comm)*Num_Comm_World1);

intercomm = (MPI_Comm*)malloc(sizeof(MPI_Comm)*Num_Comm_World1);

/* Make_Comm_Worlds */

Make_Comm_Worlds(MPI_COMM_WORLD, myid0, numprocs0, Num_Comm_World1,

&myworld1, MPI_CommWD,

NPROCS1_ID, Comm_World1, NPROCS1_WD, Comm_World_StartID);

/* get numprocs1 and myid1 */

MPI_Comm_size(MPI_CommWD[myworld1],&numprocs1);

MPI_Comm_rank(MPI_CommWD[myworld1],&myid1);

/*

printf("numprocs0=%2d myid0=%2d myworld1=%2d numprocs1=%2d myid1=%2d\n",

numprocs0,myid0,myworld1,numprocs1,myid1);

*/

/* MPI_Comm_spawn */

char command[] = "./openmx";

char **argvin;

char *inputfiles[] = { "Methane.dat", "C60.dat", "Fe2.dat" };

argvin=(char **)malloc(2 * sizeof(char *));

argvin[0] = inputfiles[myworld1];

argvin[1] = NULL;

MPI_Comm_spawn(command, argvin, numprocs1, MPI_INFO_NULL, 0,

MPI_CommWD[myworld1], &intercomm[myworld1], MPI_ERRCODES_IGNORE);

/* MPI_Barrier */

MPI_Barrier(MPI_COMM_WORLD);

/* freeing of arrays */

free(NPROCS1_ID);

free(Comm_World1);

free(NPROCS1_WD);

free(Comm_World_StartID);

free(MPI_CommWD);

314

free(intercomm);

/* MPI_Finalize() */

fflush(stdout);

MPI_Finalize();

return 0;

}

void Make_Comm_Worlds(

MPI_Comm MPI_Curret_Comm_WD,

int myid0,

int numprocs0,

int Num_Comm_World,

int *myworld1,

MPI_Comm *MPI_CommWD, /* size: Num_Comm_World */

int *NPROCS1_ID, /* size: numprocs0 */

int *Comm_World1, /* size: numprocs0 */

int *NPROCS1_WD, /* size: Num_Comm_World */

int *Comm_World_StartID /* size: Num_Comm_World */

)

{

int i,j,is,ie;

int ID0;

int numprocs1,myid1;

int num;

double avnum;

int *new_ranks;

MPI_Group new_group,old_group;

.....

}

315

69 Automatic force tester

An effective way of assuring the reliability of implementation of many functionalities is to compare

analytic and numerical forces. If any program bug is introduced, they will not be consistent with each

other. To do this, one can run an automatic tester by

For serial running

% ./openmx -forcetest 0

For parallel running

% ./openmx -forcetest 0 "mpirun -np 4 openmx"

where ’0’ is a flag to specify energy terms to be included in the consistency check, and one can change

0 to 8. Each number corresponds to

flag 0 1 2 3 4 5 6 7 8

Kinetic 1 0 1 0 0 0 0 0 0

Non-local 1 0 0 1 0 0 0 0 0

Neutral atom 1 0 0 0 1 0 0 0 0

diff Hartree 1 0 0 0 0 1 0 0 0

Ex-Corr 1 0 0 0 0 0 1 0 0

E. Field 1 0 0 0 0 0 0 1 0

Hubbard U 1 0 0 0 0 0 0 0 1

where ’1’ means that it is included in the force consistency check. In a directory ’work/force example’,

there are 36 test inputs which are used for the force consistency check. After finishing the test, a file

’forcetest.result’ is generated in the directory ’work’. You will see results of the comparison as follows:

force_example/C2_GGA.dat

flag= 0

Numerical force= -(Utot(s+ds)-Utot(s-ds))/(2*ds)

ds= 0.0003000000

Forces (Hartree/Bohr) on atom 1

x y z

Analytic force -1.676203071292 -1.397113794193 -1.117456296887

Numerical force -1.676101156844 -1.397036485449 -1.117288361652

diff -0.000101914447 -0.000077308744 -0.000167935235

force_example/C2_LDA.dat

flag= 0

Numerical force= -(Utot(s+ds)-Utot(s-ds))/(2*ds)

......

....

316

70 Automatic memory leak tester

In OpenMX, the memory used is dynamically allocated when it is required. However, the dynamic

memory allocation causes often a serious memory leak which wastes the memory used as the MD steps

increase. To check the memory leak, one can run OpenMX as follows:

For serial running

% ./openmx -mltest

For parallel running

% ./openmx -mltest "mpirun -np 4 openmx"

By monitoring VSZ and RSS actually used at the same monitoring point in the program code for 14

test inputs in a directory ’work/ml example’, one can find whether the memory leak takes place or

not. After finishing the run, a file ’mltest.result’ is generated in the directory ’work’. You will see the

monitored VSZ and RSS as a function of MD steps as follows:

1 ml_example/DIA8.dat

CPU (%) VSZ (kbyte) RSS (kbyte)

MD_iter= 1 68.300 397396 123076

MD_iter= 2 96.400 436264 131916

MD_iter= 3 99.000 436264 131916

MD_iter= 4 97.900 436264 131916

MD_iter= 5 98.800 436264 131916

MD_iter= 6 99.300 436264 131916

MD_iter= 7 98.800 436264 131916

MD_iter= 8 99.200 436264 131916

MD_iter= 9 99.500 436264 131916

MD_iter= 10 99.100 436264 131916

MD_iter= 11 99.400 436264 131916

MD_iter= 12 99.500 436264 131916

MD_iter= 13 99.300 436260 131916

MD_iter= 14 99.500 436264 131916

MD_iter= 15 99.300 436264 131916

MD_iter= 16 99.500 436260 131916

MD_iter= 17 99.600 436264 131916

MD_iter= 18 99.400 436264 131916

MD_iter= 19 99.600 436264 133848

MD_iter= 20 99.400 436264 133848

MD_iter= 21 99.500 436264 133848

MD_iter= 22 99.600 436264 133848

MD_iter= 23 99.500 436264 133848

MD_iter= 24 99.500 436264 133848

317

MD_iter= 25 99.700 436264 133848

MD_iter= 26 99.500 436264 133848

MD_iter= 27 99.600 436264 133848

MD_iter= 28 99.500 436264 133848

MD_iter= 29 99.600 436264 133848

MD_iter= 30 99.600 436264 133848

2 ml_example/DIA8_DC.dat

CPU (%) VSZ (kbyte) RSS (kbyte)

MD_iter= 1 101.000 412508 136448

MD_iter= 2 100.000 516940 210312

MD_iter= 3 98.200 517016 210440

MD_iter= 4 98.900 517016 210440

MD_iter= 5 99.300 517016 210440

MD_iter= 6 99.500 517016 210440

......

....

318

71 Analysis of memory usage

The memory usage can be found by analyzing files ’*.memory0’, ’*.memory1’,..., and ’*.memory#’,

where ’*’ is the file name specified by the keyword ’System.Name’ and the number in the file extension

corresponds to process ID in the MPI parallelization. The files are output by setting the keyword

’memory.usage.fileout’ as

memory.usage.fileout on # default=off, on|off

As an example ’met.memory0’ is shown below

Memory: SetPara_DFT: Spe_PAO_XV 0.01 MBytes

Memory: SetPara_DFT: Spe_PAO_RV 0.01 MBytes

Memory: SetPara_DFT: Spe_Atomic_Den 0.01 MBytes

Memory: SetPara_DFT: Spe_PAO_RWF 0.57 MBytes

Memory: SetPara_DFT: Spe_RF_Bessel 1.03 MBytes

Memory: SetPara_DFT: Spe_VPS_XV 0.01 MBytes

Memory: SetPara_DFT: Spe_VPS_RV 0.01 MBytes

Memory: SetPara_DFT: Spe_Vna 0.01 MBytes

Memory: SetPara_DFT: Spe_VH_Atom 0.01 MBytes

Memory: SetPara_DFT: Spe_Atomic_PCC 0.01 MBytes

Memory: SetPara_DFT: Spe_VNL 0.11 MBytes

Memory: SetPara_DFT: Spe_VNLE 0.00 MBytes

Memory: SetPara_DFT: Spe_VPS_List 0.00 MBytes

.....

....

...

Memory: Poisson: array0 4.00 MBytes

Memory: Poisson: array1 4.00 MBytes

Memory: Poisson: request_send 0.00 MBytes

Memory: Poisson: stat_send 0.00 MBytes

Memory: Poisson: request_recv 0.00 MBytes

Memory: Poisson: stat_recv 0.00 MBytes

Memory: Force: Hx 0.00 MBytes

Memory: Force: Hy 0.00 MBytes

Memory: Force: Hz 0.00 MBytes

Memory: Force: CDM0 0.00 MBytes

Memory: Data_Grid_Copy_B2C_1: Work_Array_Snd_Grid_B2C 0.72 MBytes

Memory: Data_Grid_Copy_B2C_1: Work_Array_Rcv_Grid_B2C 0.72 MBytes

Memory: total 256.99 MBytes

The file can be obtained by setting the keyword in the input file ’Methane.dat’ and performing a single

process. Note that memory usages for most of arrays are listed in the file, but the list is not complete.

319

72 Output of large-sized files in binary mode

Large-scale calculations produce large-sized files in text mode such as cube files. The IO access to

output such files can be very time consuming in machines of which IO access is not fast. In such a

case, it is better to output those large-sized files in binary mode. The procedure is supported by the

following keyword:

OutData.bin.flag on # default=off, on|off

Then, all large-sized files will be output in binary mode. The default is ’off’.

The output binary files are converted using a small code ’bin2txt.c’ stored in the directory ’source’

which can be compiled as

gcc bin2txt.c -lm -o bin2txt

As a post processing, you will be able to convert as

./bin2txt *.bin

The functionality will be useful for machines of which IO access is not fast.

320

73 Converting of Gaussian cube format to periodic XSF format

When we use a volumetric data-visualization software (such as VESTA and XCrysDen), the acceptable

operation is dependent on the data format and the keyword. The current version of VESTA (at 2015/8)

cannot display a periodic structure with the Gaussian cube format input file; we have to use a periodic

XSF format-input file to display a periodic structure. OpenMX produces Gaussian cube format files of

the charge/spin density, Kohn-Sham orbitals, eiggenchannels, and so on; A tool (cube2xsf) to convert

the Gaussian cube format to the periodic XSF format is prepared.

The usage of it is as follows:

$ cube2xsf a.cube

$ cube2xsf b.cube.bin

$ cube2xsf a.cube b.cube.bin

$ cube2xsf *.cube.bin

Then, files that have .xsf extention are generated.

321

74 Examples of the input files

For your convenience, the input files of examples shown in the manual are available in the directory
’work’ as listed below:

Molecules or clusters

C60.dat SCF calc. of a C60 molecule

C60_DC.dat DC calc. of a C60 molecule

CG15c_DC.dat DC calc. of DNA

Cr2_CNC.dat Constrained DFT calc. of a Cr2 dimer

Doped_NT.dat SCF calc. of doped carbon nanotube

Fe2.dat SCF calc. of a Fe2 dimer

Gly_NH.dat Nose-Hoover MD of a glycine molecule

Gly_VS.dat Velocity scaling MD of a glycine molecule

H2O.dat Geometry opt. of a water molecule

MCCN.dat DC calc. of a a multiply connected carbon nanotube

Methane2.dat Geometry opt. of a distorted methane molecule

Methane.dat SCF calc. of a methane molecule

Methane_OO.dat Orbital optimization of a methane molecule

Methane_ED.dat Total energy decomposition of a methane molecule

Mn12.dat SCF calc. of a single molecular magnet, Mn12

Mol_MnO_NC.dat Non-collinear SCF calc. of a MnO molecule

Nitro_Benzene.dat SCF calc. of a nitro benzene molecule under E-field

Pt13.dat SCF calc. of a Pt13 cluster

Pt63.dat SCF calc. of a Pt63 cluster

SialicAcid.dat SCF calc. of a sialic acid molecule

Valorphin_DC.dat DC calc. of valorphin molecule

Valorphin_MO.dat Molecular obital calculations

C2H4_NEB.dat NEB calc. of C2H4 dimer

C60_LO.dat Low-order scaling calc. of a C60 molecule

Fe_Cluster_jx.dat jx calculation of a Fe dimer

H2O+0.dat SCF calc. of a neutral water molecule

H2O+1.dat SCF calc. of a plus 1 water molecule

C2H2.dat Initial state calculation of C2H2 for XPS

C2H2-CH.dat Final state calculation of C2H2 for XPS

Bulk

Cdia.dat SCF calc. of bulk diamond

MnO_NC.dat Non-collinear SCF calc. of bulk MnO

FeO_NC.dat Non-collinear SCF calc. of bulk FeO

CoO_NC.dat Non-collinear SCF calc. of bulk CoO

NiO_NC.dat Non-collinear SCF calc. of bulk NiO

Crys-NiO.dat SCF calc. of bulk NiO

NiO-cFLL.dat LDA+U calc. of NiO by the cFLL scheme

NiO-sFLL.dat LDA+U calc. of NiO by the sdcFLL scheme

NiO-Yukawa.dat LDA+U calc. of NiO to estimate J and F^4/F^2

DIA64_Band.dat SCF calc. of bulk diamond including 64 atoms

DIA8_DC.dat DC calc. of bulk diamond including 8 atoms

DIA64_DC.dat DC calc. of bulk diamond including 64 atoms

DIA216_DC.dat DC calc. of bulk diamond including 216 atoms

DIA512_DC.dat DC calc. of bulk diamond including 512 atoms

DIA512-1.dat Krylov O(N) calc. of bulk diamond including 512 atoms

Febcc2.dat SCF calc. of bcc Fe

Fefcc-SpinSpiral.dat SCF calc. of fcc Fe for spin spiral calculation

GaAs.dat Non-collinear calc. of bulk gallium arsenide

322

NaCl.dat SCF calc. of bulk NaCl

NaCl_FC.dat SCF calc. of bulk NaCl with a Cl-site vacancy

Si8.dat Geometry opt. of distorted Si bulk

Si8-pV.dat Enthalpy opt. of Si bulk under 10 GPa

Si8-LNO.dat O(N) DC-LNO calc. of silicon crystal including 8 atom

NdCo5_4f.dat E vs. lattice constant calc. of NcCo4 bulk including the 4f states

NdCo5_4f+U.dat E vs. lattice constant calc. of NcCo4 bulk including the 4f states with plus U

NdCo5_OC.dat E vs. lattice constant calc. of NcCo4 bulk with a Nd open core pseudopotential

Al-Si111_ESM.dat ESM calc. of Al-Si interface

Cafcc_FS.dat Fermi surface calc. of the fcc Ca bulk

Graphite_STM.dat STM image of graphene

Mnfcc-EvsLC.dat E vs. lattice constant calc. of the fcc Mn bulk

Si8_NEB.dat NEB calc. for hydrogen in Si

DIA8-VA.dat Virtual atom SCF calc. of diamond crystal

FePt.dat SCF calc. of L10-FePt within collinear DFT

FePt-NC-SCF.dat SCF calc. of L10-FePt within non-collinear DFT

FePt-NC.dat One-shot diagonalization of L10-FePt with SOI

Fe_Bulk_jx.dat jx calculation of bcc Fe

GaCuS2_mp-5238_symmetrized_SOC.dat SCF calculation for BoltzTrap calculation

Si_BoltzTraP.dat SCF calculation of Si bulk for BoltzTrap calculation

Si2_k50x50x50.dat Optical conductivity for Si bulk

TiC216.dat Initial state calculation of TiC for XPS

TiC216-CH3.dat Final state calculation of TiC for XPS

Si-4-SOI.dat Initial state calculation of Si for XPS

Si-4-CH-SOI1.dat Final state (j=3/2) calculation of Si for XPS

Si-4-CH-SOI6.dat Final state (j=1/2) calculation of Si for XPS

Au111Surface_FL.dat spin texture analysis of Au111 by the FermiLoop scheme

Au111Surface_GC.dat spin texture analysis of Au111 by the GridCalc scheme

Au111Surface_BD.dat spin texture analysis of Au111 by the BandDispersion scheme

Au111Surface_MO.dat spin texture analysis of Au111 by the MulPOnly scheme

SiC_Primitive_BD.dat spin texture analysis of SiC by the BandDispersion scheme

323

75 Known problems

• Overcompleteness of basis functions

When a large number of basis functions is used for dense bulk systems with fcc, hcp, and bcc

like structures, the basis set tends to be overcomplete. In such a case, you may observe erratic

eigenvalues. To avoid the overcompleteness, a small number of optimized basis functions should

be used. Another way to avoid the problem is to switch off the keyword ’scf.ProExpn.VNA’ as

scf.ProExpn.VNA off # on|off, default = on

In this case, you may need to increase the cutoff energy for the numerical grid in real space by

the keyword ’scf.energycutoff’.

• Difficulty in getting the SCF convergence

For large-scale systems with a complex (non-collinear) magnetic structure, a metallic electric

structure, or the mixture, it is quite difficult to get the SCF convergence. In such a case, one

has to mix the charge density very slowly, indicating that the number of SCF steps to get the

convergence becomes large unfortunately.

• Difficulty in getting the optimized structure

For weak interacting systems such as molecular systems, it is not easy to obtain a completely

optimized structure, leading that the large number of iteration steps is required. Although the

default value of criterion for geometrical optimization is 10−4 Hartree/Bohr for the largest force,

it would be a compromise to increase the criterion from 10−4 to 5× 10−4 in such a case.

324

76 OpenMX Forum

For discussion of technical issues on OpenMX and ADPACK, there is a forum (http://www.openmx-

square.org/forum/patio.cgi). It is expected that the forum is utilized for sharing tips in use of

OpenMX and for further code development. Points of concern for use of this forum can be found

in http://www.openmx-square.org/forum/note.html

325

77 Other sources of information about OpenMX

Several websites provide information related to OpenMX as listed below. We hope that you may find

a proper information depending on your tastes.

• Lecture materials at Oregon State University.

http://physics.oregonstate.edu/ tatej/COURSES/ph575/doku.php?id=openmx

• Lecture materials at Tokyo Institute of Technology

https://www.slideshare.net/cms initiative/open-mx-lecture

• Lecture materials at Kanazawa University

http://f-ishii.w3.kanazawa-u.ac.jp/ja/index.cgi?page=%B7%D7%BB%BB%CA%AA%C0%AD%B2%CA%B3%D82018

• Tutorial by HPCI

http://www.hpci-office.jp/pages/appli openmx

• Tutorial by Dr. Toyoda

https://sites.google.com/site/mtoyodacmp/openmx-memo

• Tutorial by Dr. Ito

http://www-fps.nifs.ac.jp/ito/memo/openmx04.html

• Information by MateriApps

https://ma.issp.u-tokyo.ac.jp/app/594

• Information by Dr. Inukai

https://www5.hp-ez.com/hp/calculations/page114

• Tutorial material by Prof. Kato

https://www.slideshare.net/cms initiative/materiapps-openmx

• Benchmark by Dr. Larsson

https://www.nsc.liu.se/ pla/blog/2014/06/11/openmx/

• Benchmark by HPC Technologies

https://www.hpc-technologies.co.jp/openmx-benchmarks

326

78 Linkage to other tools

Linkage to other tools is summarized here.

• Trial use

Some of you might want the quick trial use of OpenMX. The following is one of such tools.

– MateriApps LIVE!:

http://ma.cms-initiative.jp/en/whats-materiapps/try apps/about-materiapps-live?set language=en

MateriApps LIVE! offers an environment where one can try out computational materials

science simulation freely, using a notebook PC, etc. All environment required to begin

tutorials, such as MateriApps applications, OS (Debian GNU/Linux), editors, and visual-

ization tools, is provided in a USB memory stick. Since OpenMX is available as one of

simulation tools in MateriApps LIVE!, you might be able to consider MateriApps LIVE!

as an environment for the trial use of OpenMX.

• Binary distribution

The binary distribution of OpenMX on LINUX environments is available as follows.

– Debian: https://packages.debian.org/search?keywords=openmx

– Ubuntu: https://launchpad.net/ubuntu/+source/openmx

• Graphical User Interface (GUI) and/or job scheduling environment

A couple of GUIs and job scheduling environments for OpenMX calculations are available as

follows.

– ASE: https://wiki.fysik.dtu.dk/ase/ase/calculators/openmx.html

– sisl: http://zerothi.github.io/sisl/docs/latest/api-generated/sisl.io.html

– OMXTool: https://github.com/Ncmexp2717/OMXTool

– Winmostar: https://winmostar.com/jp/manual jp/V9/html/winmos/solid/winmos openmx.html

• Visualization in general

OpenMX generates cube, md, xyz, xsf, axsf, and cif files. These files can be visualized by many

software. The following is some of them.

– OpenMX Viewer: http://www.openmx-square.org/viewer/

– XCrySDen: http://www.xcrysden.org/

– VESTA: http://jp-minerals.org/vesta/en/

– Molekel: http://www.cscs.ch/molekel/

• Visualization of Fermi surfaces

The Fermi surfaces can be visualized by FermiSurfer.

– FermiSurfer: http://fermisurfer.osdn.jp/

327

• Analysis of molecular dynamics simulations

You might want to analyze the trajectory generated by molecular dynamics simulations in

OpenMX. The following is one of such tools.

– ASAP: http://www.mch.rwth-aachen.de/

• A tool to read and operate OpenMX Kohn-Sham Hamiltonian

A tool by Dr. Artem Pulkin is available to read and operate OpenMX Kohn-Sham Hamiltonian

at the following website:

– openmx-hks: https://github.com/pulkin/openmx-hks

• Tight Binding Studio

Software package to construct Tight Binding (TB) model in combination with first-principles

calculations including the OpenMX code.

– Tight Binding Studio: https://tight-binding.com/

• Thermoelectric properties

Thermoelectric properties can be calculated by BoltzTraP via an interface with OpenMX or an

external tool: QTWARE based on an NEGF method.

– BoltzTraP: https://doi.org/10.1016/j.cpc.2006.03.007

– QTWARE: http://www.rs.tus.ac.jp/takahiro/QTWare.html

• Jx: An open source software for calculating magnetic interactions based on magnetic force theory,

which is interfaced with OpenMX code. Though the original OpenMX code also supports a

similar calculation, the Jx code is a post processing code which has been developed by the Prof.

M.J. Han group in KAIST, and released independently.

– Jx: https://doi.org/10.1016/j.cpc.2019.106927

• Physical properties derived from Wannier functions

Maximally localized Wannier functions can be utilized to efficiently and accurately calculate a

wide variety of physical properties. OpenMX provides an interface with an post processing code:

Wannier90.

– Wannier90: http://wannier.org/

The post processing code enables us to constructs maximally localized Wannier functions

using results from a first-principles SCF calculation, and calculates physical properties

such as Wannier projected DOS and bandstructure, Fermi surface, Berry phase related

properties (anomalous Hall conductivity, optical conductivity, and orbital magnetization),

and thermoelectric properties. See the details for the section ’Interface with Wannier90’.

328

• Phonon related properties

To calculate phonon related properties such as phonon dispersion and thermal conductivity,

OpenMX can be combined with ALAMODE as explained in the following website:

– ALAMODE: https://alamode.readthedocs.io/en/latest/tutorial.html

• DCore: DMFT solver interfaced with DFT codes

DCore based on dynamical mean-field theory (DMFT) has an interfaces with OpenMX as ex-

plained in the following website:

– DCore: https://issp-center-dev.github.io/DCore/master/tutorial/srvo3 openmx/openmx.html#

329

79 Others

Program

The program package is written in the C and F90 languages, including one makefile

makefile,

34 header files

BandDispersion.h Circular_Search.h EigenValue_Problem.h Eigen_HH.h GetOrbital.h

Inputtools.h Tools_BandCalc.h Tools_Search.h exx.h exx_debug.h exx_def_openmx.h

exx_file_eri.h exx_file_overlap.h exx_index.h exx_interface_openmx.h

exx_log.h exx_rhox.h exx_step1.h exx_step2.h exx_vector.h exx_xc.h f77func.h

jx.h jx_LNO.h jx_config.h jx_quicksort.h jx_tools.h jx_total_mem.h

lapack_prototypes.h mimic_sse.h openmx_common.h read_scfout.h tran_prototypes.h

tran_variables.h

and 350 routines

ADIIS_Mixing_DM.c ADenBand.c Allocate_Arrays.c AngularF.c BandDispersion.c Band_DFT_Col.c

Band_DFT_Col_NEGF.c Band_DFT_Col_Optical_ScaLAPACK.c Band_DFT_Dosout.c Band_DFT_MO.c

Band_DFT_NonCol.c Band_DFT_NonCol_GB.c Band_DFT_NonCol_Optical.c Band_DFT_kpath.c

Band_DFT_kpath_LNO.c Band_Dispersion.c Bench_MatMul.c BentNT.c BroadCast_ComplexMatrix.c

BroadCast_ReMatrix.c Calc_optical.c Circular_Search.c Cluster_DFT_Col.c Cluster_DFT_Dosout.c

Cluster_DFT_LNO.c Cluster_DFT_NonCol.c Cluster_DFT_ON2.c Cluster_DFT_OptOrb.c

Cluster_DFT_Optical.c Cluster_DFT_Optical_ScaLAPACK.c Cluster_DFT_ScaLAPACK.c Cont_Matrix0.c

Cont_Matrix1.c Cont_Matrix2.c Cont_Matrix3.c Cont_Matrix4.c Contract_Hamiltonian.c

Contract_iHNL.c Coulomb_Interaction.c Cutoff.c DFT.c DFTD3vdW_init.c DFTDvdW_init.c

DIIS_Mixing_DM.c DIIS_Mixing_Rhok.c Divide_Conquer.c Divide_Conquer_Dosout.c

Divide_Conquer_LNO.c DosMain.c Dr_KumoF.c Dr_RadialF.c Dr_VH_AtomF.c Dr_VNAF.c

EGAC_DFT.c Eff_Hub_Pot.c EigenBand_lapack.c EigenValue_Problem.c Eigen_HH.c Eigen_PHH.c

Eigen_PReHH.c Eigen_lapack.c Eigen_lapack2.c Eigen_lapack3.c Embedded_GFM.c EulerAngle_Spin.c

FT_NLP.c FT_PAO.c FT_ProExpn_VNA.c FT_ProductPAO.c FT_VNA.c FermiLoop.c File_CntCoes.c

Find_CGrids.c Force.c Force_test.c Free_Arrays.c Fuzzy_Weight.c GR_Pulay_DM.c Gaunt.c

Gauss_Legendre.c Generate_Wannier.c Generating_MP_Special_Kpt.c GetOrbital.c

Get_Cnt_Orbitals.c Get_Cnt_dOrbitals.c Get_OneD_HS_Col.c Get_Orbitals.c Get_dOrbitals.c

GridCalc.c Hamiltonian_Band.c Hamiltonian_Band_NC.c Hamiltonian_Band_NC_Hs2.c

Hamiltonian_Cluster.c Hamiltonian_Cluster_Hs.c Hamiltonian_Cluster_NC.c

Hamiltonian_Cluster_NC_Hs2.c Hamiltonian_Cluster_SO.c Hamiltonian_NC_Hs2.c

Init_List_YOUSO.c Initial_CntCoes.c Initial_CntCoes2.c Input_std.c Inputtools.c

Inputtools_kSpin.c Kerker_Mixing_Rhok.c Krylov.c KumoF.c LNO.c LU_inverse.c

Lapack_LU_inverse.c MD_pac.c MTRAN_EigenChannel.c Make_Comm_Worlds.c Make_FracCoord.c

Make_InputFile_with_FinalCoord.c Maketest.c Matrix_Band_LNO.c Memory_Leak_test.c

Merge_LogFile.c Mio_tester.c Mio_tester2.c Mixing_DM.c Mixing_H.c Mixing_V.c

MulPCalc.c MulPOnly.c Mulliken_Charge.c NBO_Cluster.c NBO_Krylov.c NabraMatrixElements.c

Nonlocal_Basis.c Nonlocal_RadialF.c Occupation_Number_LDA_U.c Opt_Contraction.c

OpticalConductivityMain.c Orbital_Moment.c OutData.c OutData_Binary.c Output_CompTime.c

Output_Energy_Decomposition.c Overlap_Band.c Overlap_Band_NC_Ss2.c Overlap_Cluster.c

Overlap_Cluster_LNO.c Overlap_Cluster_NC_Ss2.c Overlap_Cluster_Ss.c PhiF.c

Poisson.c Poisson_ESM.c Population_Analysis_Wannier.c Population_Analysis_Wannier2.c

Pot_NeutralAtom.c PrintMemory.c PrintMemory_Fix.c QuickSort.c RF_BesselF.c

RadialF.c ReLU_inverse.c RestartFileDFT.c Runtest.c SCF2File.c SetPara_DFT.c

Set_Aden_Grid.c Set_Allocate_Atom2CPU.c Set_ContMat_Cluster_LNO.c Set_CoreHoleMatrix.c

Set_Density_Grid.c Set_Hamiltonian.c Set_Initial_DM.c Set_Nonlocal.c Set_OLP_Kin.c

330

Set_OLP_p.c Set_Orbitals_Grid.c Set_ProExpn_VNA.c Set_Vpot.c Set_XC_Grid.c

Set_dOrbitals_Grid.c Show_DFT_DATA.c SigmaEK.c Simple_Mixing_DM.c Smoothing_Func.c

Spherical_Bessel.c Stress.c Stress_test.c TRAN_Add_ADensity_Lead.c TRAN_Add_Density_Lead.c

TRAN_Allocate.c TRAN_Allocate_NC.c TRAN_Apply_Bias2e.c TRAN_Band.c TRAN_Band_Col.c

TRAN_CDen_Main.c TRAN_Calc_CentGreen.c TRAN_Calc_CentGreenLesser.c TRAN_Calc_CurrentDensity.c

TRAN_Calc_GridBound.c TRAN_Calc_Hopping_G.c TRAN_Calc_OneTransmission.c TRAN_Calc_SelfEnergy.c

TRAN_Calc_SurfGreen.c TRAN_Calc_SurfGreen_Sanvito.c TRAN_Channel_Functions.c TRAN_Channel_Output.c

TRAN_Check_Input.c TRAN_Check_Region.c TRAN_Check_Region_Lead.c TRAN_Credit.c TRAN_DFT.c

TRAN_DFT_Dosout.c TRAN_DFT_NC.c TRAN_Deallocate_Electrode_Grid.c TRAN_Deallocate_RestartFile.c

TRAN_Distribute_Node.c TRAN_Input_std.c TRAN_Input_std_Atoms.c TRAN_Input_std_Atoms0.c

TRAN_Input_std_Atoms2.c TRAN_Main_Analysis.c TRAN_Main_Analysis_NC.c TRAN_Output_HKS.c

TRAN_Output_HKS_Write_Grid.c TRAN_Output_Trans_HS.c TRAN_Poisson.c TRAN_Print.c TRAN_Print_Grid.c

TRAN_Read.c TRAN_RestartFile.c TRAN_Set_CentOverlap.c TRAN_Set_CentOverlap_NC.c

TRAN_Set_Electrode_Grid.c TRAN_Set_IntegPath.c TRAN_Set_MP.c TRAN_Set_SurfOverlap.c

TRAN_Set_SurfOverlap_NC.c TRAN_Set_Value.c TRAN_adjust_Ngrid.c Tetrahedron_Blochl.c Timetool.c

Tools_BandCalc.c Tools_Search.c Total_Energy.c Unfolding_Bands.c VH_AtomF.c VNAF.c

Voronoi_Charge.c Voronoi_Orbital_Moment.c XANES0.c XC_CA_LSDA.c XC_Ceperly_Alder.c XC_EX.c

XC_PBE.c XC_PW92C.c Z2FH.c add_gcube.c analysis_example.c bandgnu13.c bin2txt.c calB.c

check_lead.c cube2xsf.c dampingF.c deri_dampingF.c diff_gcube.c diff_geo.c dtime.c esp.c

example_mpi_spawn.c expao.c exx.c exx_debug.c exx_file_eri.c exx_file_overlap.c exx_index.c

exx_interface_openmx.c exx_log.c exx_rhox.c exx_step1.c exx_step2.c exx_vector.c exx_xc.c

find_Emin.c find_Emin0.c find_Emin2.c find_Emin_withS.c frac2xyz.c gcube2oned.c gen_defile.c

init.c init_alloc_first.c intensity_map.c io_tester.c iterout.c iterout_md.c jx.c jx_LNO.c

jx_band_indiv.c jx_band_psum.c jx_cluster.c jx_config.c jx_quicksort.c jx_tools.c kSpin.c

lapack_dstedc1.c lapack_dstedc2.c lapack_dstedc3.c lapack_dstegr1.c lapack_dstegr2.c

lapack_dstegr3.c lapack_dsteqr1.c lapack_dstevx1.c lapack_dstevx2.c lapack_dstevx3.c

lapack_dstevx4.c lapack_dstevx5.c malloc_multidimarray.c md2axsf.c mimic_sse.c mpao.c

mpi_multi_world.c mpi_multi_world2.c mpi_non_blocking.c neb.c neb_check.c neb_run.c

openmx.c openmx_common.c outputfile1.c pdb2pao.c polB.c read_scfout.c readfile.c rmmpi.c

rot.c test_mpi.c test_mpi2.c test_mpi3.c test_mpi4.c test_openmp.c test_openmp2.c

test_openmp3.c tp.c truncation.c unit2xyz.c xyz2spherical.c zero_cfrac.c zero_fermi.c

elpa1.f90 get_elpa_row_col_comms.f90 solve_evp_complex.f90 solve_evp_real.f90

In addition, the following library packages are linked:

lapack,

blas,

fftw,

MPICH2 or OpenMP

Copyright of the program package

The distribution of this program package follows the practice of the GNU General Public License

version 3 (GPLv3) [102]. Moreover, the author, Taisuke Ozaki, possesses the copyright of the original

version of this program package. We cannot offer any guarantee in your use of this program package.

However, when you report program bugs, we will cooperate and work well as much as possible together

with you to remove the problems.

Acknowledgment

One of us (T.O.) would like to thank many colleagues in JRCAT, RICS-AIST, JAIST, and ISSP for

helpful their suggestions and comments. One of us (T.O.) was partly supported by the following

331

national projects: SYNAF-NEDO [154], ACT-JST [155], NAREGI [156], CREST-JST [157], MEXT

[158], CMSI [159], NEDO-ChouChou [160] and CDMSI [161]

References

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev.

140, A1133 (1965).

[2] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 45, 566(1980); J. P. Perdew and A. Zunger,

Phys. Rev. B 23, 5048 (1981).

[3] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

[4] J. P. Perdew and Y. Wang, Phys.Rev.B 45, 13244 (1992).

[5] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[6] A.E. Reed, L.A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988); E. D. Glendening, C. R.

Landis, and F. Weinhold, WIREs Comput. Mol. Sci. 2, 1 (2012).

[7] T. Ohwaki, M. Otani, and T. Ozaki, J. Chem. Phys. 140, 244105 (2014).

[8] U. Von. Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972).

[9] J. Kübler, K-H. Höck, J. Sticht, and A. R. Williams, J. Phys. F: Met. Phys. 18, 469 (1988).

[10] J. Sticht, K-H. Höck, and J. Kübler, J. Phys.: Condens. Matter 1, 8155 (1989).

[11] T. Oda, A. Pasquarello, and R.Car, Phys. Rev. Lett. 80, 3622 (1998).

[12] A. H. MacDonald and S. H. Vosko, J. Phys. C: Solid State Phys. 12, 2977 (1979).

[13] Ph. Kurz, F. Forster, L. Nordstrom, G, Bihlmayer, and S. Blugel, Phys. Rev. B 69, 024415 (2004).

[14] J. Harris, Phys. Rev. B 31, 1770 (1985).

[15] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

[16] G. Theurich and N. A. Hill, Phys. Rev. B 64, 073106 (2001).

[17] A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, J. Mag. Mag. Mat.

67, 65 (1987).

[18] M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 70, 184421 (2004).

[19] A. Terasawa, M. Matsumoto, T. Ozaki, and Y. Gohda, J. Phys. Soc. Jpn. 88, 114706 (2019).

[20] M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 74, 045110 (2006).

[21] S. Ryee and M.J. Han, J. Phys:Condens. Matter 30, 275802 (2018).

[22] S. Ryee and M.J. Han, Scientific Reports 8, 9559 (2018).

332

[23] http://www.openmx-square.org/tech notes/tech6-1 0.pdf

[24] http://www.openmx-square.org/tech notes/DFTU notes OpenMX.pdf

[25] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57,

1505 (1998).

[26] A.I. Liechtenstein, V.I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).

[27] A. N. Yaresko, V. N. Antonov, and P. Fulde, Phys. Rev. B 67, 155103 (2003).

[28] L. Vaugier, H. Jiang, and S. Biermann, Phys. Rev. B 86, 165105 (2012).

[29] F. Bultmark, F. Cricchio, O. Gr̊anäs, and L. Nordström, Phys. Rev. B 80, 035121 (2009).

[30] L. V. Woodcock, Chem. Phys. Lett. 10 ,257 (1971).

[31] S. Nose, J. Chem. Phys. 81, 511 (1984); S. Nose, Mol. Phys. 52, 255 (1984); G. H. Hoover, Phys.

Rev. A 31, 1695 (1985)).

[32] G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B 26, 4199 (1982).

[33] N. Troullier and J. L. Martine, Phys. Rev. B 43, 1993 (1991).

[34] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

[35] P. E. Blochl, Phys. Rev. B 41, 5414 (1990).

[36] I. Morrison, D.M. Bylander, L. Kleinman, Phys. Rev. B 47, 6728 (1993).

[37] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

[38] H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

[39] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Kraemer, B. Lang, and H.

Lederer, P. R. Willems, Parallel Computing 27, 783 (2011).

[40] K. Lejaeghere, V. Van Speybroeck, G. Van Oost, and S. Cottenier, Critical Reviews in Solid State

and Materials Sciences 39, 1 (2014); K. Lejaeghere et al., Science 351, aad3000 (2016).

[41] T. Ozaki, Phys. Rev. B. 67, 155108, (2003); T. Ozaki and H. Kino, Phys. Rev. B 69, 195113

(2004).

[42] T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005).

[43] T. Ozaki, Phys. Rev. B 74, 245101 (2006).

[44] T.V.T. Duy and T. Ozaki, Comput. Phys. Commun. 185, 777 (2014).

[45] T.V.T. Duy and T. Ozaki, Comput. Phys. Commun. 185, 153 (2014).

[46] S.F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

[47] S. Simon, M. Duran, and J.J. Dannenberg, J. Chem. Phys. 105, 11024 (1996).

333

[48] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. Joannopoulos, Rev. Mod. Phys. 64,

1045 (1992) and references therein.

[49] O. F. Sankey and D. J. Niklewski, Phys. Rev. B. 40, 3979 (1989)

[50] W. Yang, Phys.Rev.Lett. 66, 1438 (1991)

[51] T. Ozaki, M. Fukuda, G. Jiang, Phys. Rev. B 98, 245137 (2018).

[52] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).

[53] V. Recoules and J.-P. Crocombette, Phys. Rev. B 72, 104202 (2005).

[54] J. A. Anta and P. A. Madden, J. Phys.: Condens. Matter 11, 6099 (1999).

[55] M. Kim, K. H. Khoo, and J. R. Chelikowsky, Phys. Rev. B 86, 054104 (2012).

[56] P. Ordejon, E. Artacho, and J. M. Soler, Phys. Rev. B. 53, 10441 (1996)

[57] D. R. Bowler and M. J. Gillan, Chem. Phys. Lett. 325, 475 (2000).

[58] G. Kresse and J. Furthmeuller, Phys. Rev. B. 54, 11169 (1996)

[59] G. P. Kerker, Phys. Rev. B 23, 3082 (1981).

[60] T. A. Arias, M. C. Payne, and J. D. Joannopoulos, Phys. Rev. B 45, 1538 (1992).

[61] D. Alfe, Comp. Phys. Commun. 118, 32 (1999).

[62] P. Csaszar and P. Pulay, J. Mol. Struct. (Theochem) 114, 31 (1984).

[63] J. Baker, J. Comput. Chem. 7, 385 (1986)

[64] A. Banerjee, N. Adams, J. Simons, R. Shepard, J. Phys. Chem. 89, 52 (1985)

[65] C. G. Broyden, J. Inst. Math. Appl. 6, 76 (1970); R. Fletcher, Comput. J. 13, 317 (1970); D.

Goldrarb, Math. Comp. 24, 23 (1970); D. F. Shanno, Math. Comp. 24, 647 (1970).

[66] H.B. Schlegel, Theoret. Chim. Acta (Berl.) 66, 333 (1984); J.M. Wittbrodt and H.B. Schlegel, J.

Mol. Struc. (Theochem) 398-399, 55 (1997).

[67] P. E. Blochl, O. Jepsen and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).

[68] The details of the implementation will be published elsewhere.

[69] A. D. Becke and R. M. Dickson, J. Chem. Phys. 89, 2993 (1988).

[70] A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990).

[71] J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).

[72] G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978 (2000).

[73] T. Ozaki, K. Nishio, and H. Kino, Phys. Rev. 81, 035116 (2010).

334

[74] T. Ozaki, Phys. Rev. B 75, 035123 (2007).

[75] M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401

(2002)

[76] G. C. Liang, A. W. Ghosh, M. Paulsson, and S. Datta, Phys. Rev. B. 69, 115302 (2004).

[77] H. Weng, T. Ozaki, and K. Terakura, Phys. Rev. B 79, 235118 (2009).

[78] H. Kotaka, F. Ishii, and M. Saito, Jpn. J. Appl. Phys. 52, 035204 (2013).; N. Yamaguchi and F.

Ishii, Appl. Phys. Express 10, 123003 (2017).

[79] T.B. Prayitno and F. Ishii, J. Phys. Soc. Jpn. 87, 114709 (2018).

[80] T.B. Prayitno and F. Ishii, J. Phys. Soc. Jpn. 88, 054701 (2019).

[81] T. Fukui, Y. Hatsugai and H. Suzuki J. Phys. Soc. Jpn. J. Phys. Soc. Jpn. 74, 1674 (2005).

[82] W. Feng, J. Wen, J. Zhou, D. Xiao, and Y. Yao, Comput. Phys. Commun. 183, 1849 (2012).

[83] T. Kato, H. Kotaka, and F. Ishii, JPS Conf. Proc. 5, 011022 (2015).

[84] H. Sawahata, N. Yamaguchi, H. Kotaka, and F. Ishii, Jpn. J. Appl. Phys. 57, 030309 (2018).

[85] https://t-ozaki.issp.u-tokyo.ac.jp/meeting16/OMX-Sawahata-2016Nov.pdf

[86] L.M. Sandratskii, Adv. Phys. 4
¯
7, 91 (1998).

[87] V.M. Garćıa-Suárez, C.M. Newman, C.J. Lambert, J.M. Pruneda, and J. Ferrer, J. Phys.: Con-

dens. Matter 16, 5453 (2004).

[88] T. Ozaki and C.C. Lee, Phys. Rev. Lett. 118, 026401 (2017).

[89] J.F. Janak, Phys. Rev. B 18, 7165 (1978).

[90] W.L. Jolly, K.D. Bomben, C.J. Eyermann, At. Data Nul. Data Tables 31, 433 (1984).

[91] M. R. Jarvis, I. D. White, R. W. Godby, and M. C. Payne, Phys. Rev. B 56, 14972 (1997).

[92] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Mullenberg, Handbook of

X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Minnesota, 1979).

[93] C.-C. Lee, J. Yoshinobu, K. Mukai, S. Yoshimoto, H. Ueda, R. Friedlein, A. Fleurence, Y. Yamada-

Takamura, and T. Ozaki, Phys. Rev. B 95, 115437 (2017).

[94] C.-C Lee, B. Feng, M. D’angelo, R. Yukawa, R-Y Liu, T. Kondo, H. Kumigashira, I. Matsuda,

and T. Ozaki, Phys. Rev. B 97, 075430 (2018).

[95] K. Yamazaki, Y. Maehara, C-C Lee, J. Yoshinobu, T. Ozaki, and K. Gohara, J. Phys. Chem. C

122, 27292 (2018).

[96] K.B.Snow and T.F. Thomas, Int. J. Mass Spectrom. Ion Processes 96, 49 (1990).

[97] M. Ernzerhof and G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999).

335

[98] http://www.openmx-square.org/tech notes/Dielectric Function YTL.pdf

[99] G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

[100] M. Miyata, T. Ozaki, T. Takeuchi, S. Nishino, M. Inukai, and M. Koyano, J. Elec. Mater.47,

3254 (2017).

[101] https://www.imc.tuwien.ac.at//forschungsbereich theoretische chemie/forschungsgruppen

/prof dr gkh madsen theoretical materials chemistry/boltztrap/

[102] http://www.gnu.org/

[103] http://jp-minerals.org/vesta/en/

[104] http://www.cscs.ch/molekel/

[105] http://www.xcrysden.org/

[106] T. Lis, Acta Crystallogra. B 36, 2042 (1980).

[107] T. P. Davis T. J. Gillespie, F. Porreca, Peptides 10, 747 (1989).

[108] A. Goldstein, S. Tachibana, L. I. Lowney, M. Hunkapiller, and L. Hood, Proc. Natl. Acad. Sci.

U. S. A. 76, 6666 (1979).

[109] U. C. Singh and P. A. Kollman, J. Comp. Chem. 5, 129(1984).

[110] L. E. Chirlian and M. M. Francl, J. Com. Chem. 8, 894(1987).

[111] B. H. Besler, K. M. Merz Jr. and P. A. Kollman, J. Comp. Chem. 11, 431(1990).

[112] http://www.webelements.com/

[113] M. Cardona, N. E. Christensen, and G. Gasol, Phys. Rev. B 38, 1806 (1988).

[114] G. Theurich and N. A. Hill, Phys. Rev. B 64, 073106 (2001).

[115] Physics of Group IV Elements and III-V Compounds, edited by O.Madelung, M.Schulz, and H.

Weiss, Landolt-Büornstein, New Series, Group 3, Vol. 17, Pt.a (Springer, Berlin, 1982).

[116] T. Ono and K. Hirose, Phys. Rev. B 72, 085105 (2005).

[117] W. N. Mei, L. L. Boyer, M. J. Mehl, M. M. Ossowski, and H. T. Stokes, Phys. Rev. B 61, 11425

(2000).

[118] I. V. Solovyev. A. I. Liechtenstein, K. Terakura, Phys. Rev. Lett. 80, 5758.

[119] K. Knopfle, L. M. Sandratskii, and J. Kubler, J. Phys:Condens. Matter 9, 7095 (1997).

[120] I. S. Dhillon and B. N. Parlett, SIAM J. Matrix Anal. Appl. 25, 858 (2004).

[121] J. J. M. Cuppen, Numer. Math. 36, 177 (1981); M. Gu and S. C. Eisenstat, SIAM J. Mat. Anal.

Appl. 16, 172 (1995).

336

[122] N. Mazari and D. Vanderbilt, Phys. Rev. B 56, 12 847 (1997).

[123] I. Souza, N. Marzari and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001).

[124] T. Ozaki, Phys. Rev. B 82, 075131 (2010).

[125] M. Otani and O. Sugino, Phys. Rev. B 73, 115407 (2006).

[126] O. Sugino, I. Hamada, M. Otani, Y. Morikawa, T. Ikeshoji, and Y. Okamoto, Surf. Sci. 601,

5237 (2007).

[127] M. Otani, I. Hamada, O. Sugino, Y. Morioka, Y. Okamoto, and T. Ikeshoji, J. Phys. Soc. Jpn.

77, 024802 (2008).

[128] T. Ohwaki, M. Otani, T. Ikeshoji, and T. Ozaki, J. Chem. Phys. 136, 134101 (2012).

[129] R.M. Eastment and C.H.B. Mee, J. Phys. F: Metal Phys. 3, 1738 (1973).

[130] P.O. Gartland, S. Berge, and B.J. Slagsvold, Phys. Rev. Lett. 28, 738 (1972).

[131] M. Chelvayohan and C.H.B. Mee, J. Phys. C: Solid State Phys. 15, 2305 (1982).

[132] G.V. Hansson and S.A. Flodström, Phys. Rev. B 18, 1572 (1978).

[133] G.D. Kubiak, J. Vac. Sci. Technol. A 5, 731 (1987).

[134] G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978 (2000).

[135] S. Grimme, J. Comput. Chem. 27, 1787 (2006).

[136] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

[137] S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).

[138] J.G. Hill, J.A. Platts, and H.-J. Werner, Phys. Chem. Chem. Phys. 8, 4072 (2006).

[139] C. Li, L. Wan, Y. Wei, and J. Wang, Nanotechnology 19, 155401 (2008).

[140] L. Zhang, B. Wang, and J. Wang, Phys. Rev. B 84, 115412 (2011).

[141] M. Paulsson and M. Brandbyge, Phys. Rev. B 76, 115117 (2007).

[142] C.-C. Lee, Y. Yamada-Takamura, and T. Ozaki, J. Phys.: Condens. Matter 25, 345501 (2013).

[143] M. Kawamura, Comp. Phys. Comm. 239, 197 (2019).

[144] http://fermisurfer.osdn.jp/

[145] http://www.wannier.org/

[146] https://github.com/Ncmexp2717/OMXTool

[147] H. Makino, I. H. Inoue, M. J. Rozenberg, I. Hase, Y. Aiura, and S. Onari, Phys. Rev. B 58, 4384

(1998).

337

[148] http://www.fhi-berlin.mpg.de/th/fhi98md/Murn/readme murn.html

[149] http://www.openmx-square.org/

[150] http://www.netlib.org/lapack/

[151] http://www.openmx-square.org/viewer/

[152] Y.-T Lee and T. Ozaki, Journal of Molecular Graphics and Modelling 89, 192 (2019).

[153] http://www.nanotec.es/

[154] http://www.nanoworld.jp/synaf/

[155] http://act.jst.go.jp/

[156] http://ccinfo.ims.ac.jp/nanogrid/

[157] http://www.jst.go.jp/

[158] http://computics-material.jp/index-e.html

[159] http://www.cms-initiative.jp/ja

[160] A project commissioned by the New Energy and Industrial Technology Development Organiza-

tion of Japan (NEDO) Grant (P16010).

[161] https://cdmsi.issp.u-tokyo.ac.jp/

338

	About OpenMX
	Related papers
	Installation
	Including libraries
	Serial version
	MPI version
	MPI/OpenMP version
	FFTW3
	Other options
	-Dnosse
	-Dkcomp

	Platforms
	Tips for installation
	Options for make

	Test calculation
	Automatic running test
	Automatic running test with large-scale systems
	Input file
	An example: methane molecule
	Keywords

	Output files
	Functional
	Basis sets
	General
	Primitive basis functions
	Optimized basis functions provided by the database Ver. 2019
	Optimization of PAO by yourself
	Empty atom scheme
	Specification of a directory storing PAO and VPS files

	Pseudopotentials
	Conventional pseudopotentials
	Open core pseudopotentials
	Pseudopotentials for core level excitations

	Cutoff energy: grid fineness for numerical integrations
	Convergence
	A tip for calculating the energy curve for bulks
	Fixing the relative position of regular grid

	SCF convergence
	General
	Automatic determination of Kerker's factor
	On-the-fly control of SCF mixing parameters

	Restarting
	General
	Extrapolation scheme during MD and geometry optimization
	Input file for the restart calculation

	Geometry optimization
	Steepest decent optimization
	EF, BFGS, RF, and DIIS optimizations
	Initial Hessian for the RF and EF optimizers
	Constrained relaxation
	Restart of geometry optimization

	Variable cell optimization
	General
	Stress tensor
	Constraint for cell vectors
	Optimization of enthalpy

	Molecular dynamics
	NVE molecular dynamics (NVE)
	NVT molecular dynamics by a velocity scaling (NVT_VS)
	NVT molecular dynamics by the Nose-Hoover method (NVT_NH)
	Multi-heat bath molecular dynamics (NVT_VS)
	Constraint molecular dynamics
	Initial velocity
	User definition of atomic mass
	Converting the file format: md2axsf

	Visualization
	Band dispersion
	Density of states
	Conventional scheme
	For calculations with lots of k-points

	Orbitally decomposed total energy
	Orbital optimization
	Order(N) method
	Divide-conquer method
	Divide-conquer method with localized natural orbitals (DC-LNO) method
	Krylov subspace method
	User definition of FNAN+SNAN

	MPI parallelization
	O(N) calculation
	Cluster calculation
	Band calculation
	Fully three dimensional parallelization
	Maximum number of processors

	MPI/OpenMP hybrid parallelization
	Large-scale calculations
	Conventional scheme
	Combination of the O(N) and conventional schemes

	Electric field
	Charge doping
	Virtual atom with fractional nuclear charge
	LCAO coefficients
	Molecular orbitals
	Charge analysis
	Mulliken charge
	Voronoi charge
	Electro-static potential fitting

	Natural population analysis
	Non-collinear DFT
	Relativistic effects
	Fully relativistic
	Controling of spin-orbit coupling strength
	Scalar relativistic treatment

	Orbital magnetic moment
	DFT+U methods
	Standard setting
	Choice of DFT+U scheme; simplified or general
	Choice of the double-counting
	Orbital polarization

	Additional functionalities
	Varying the ratio of two Slater integrals (F4/F2)
	Estimation of J and F4/F2 from input parameter U

	Constraint DFT for non-collinear spin orientation
	Second variational method: Magnetic Anisotropy Energy (MAE)
	Zeeman terms
	Zeeman term for spin magnetic moment
	Zeeman term for orbital magnetic moment

	Macroscopic polarization by Berry's phase
	Exchange coupling parameter
	General
	Compilation of jx
	OpenMX calculation to generate jx input
	Preparation of config file for jx
	Execution of jx and MPI parallelization
	Examples

	Electric transport calculations
	General
	Step 1: The calculations for leads
	Step 2: The NEGF calculation
	Step 3: The transmission, current (density), and eigenchannel
	Transmission, total current, and conductance
	Real-space charge/spin current density
	Eigenchannel analysis

	Running again the step 3 only
	Periodic system under zero bias
	Interpolation of the effect by the bias voltage
	Parallelization of NEGF
	NEGF method for the non-collinear DFT
	Examples
	Automatic running test of NEGF

	Maximally Localized Wannier Function
	General
	Analysis
	Monitoring optimization of spread function
	Examples for generating MLWFs
	Output files
	Automatic running test of MLWF

	Interface with Wannier90
	Numerically exact low-order scaling method for diagonalization
	Effective screening medium method
	General
	Example of test calculation

	Calculations of work functions
	Nudged elastic band (NEB) method
	General
	How to perform
	Examples and keywords
	Restarting the NEB calculation
	User defined initial path
	Monitoring the NEB calculation
	Parallel calculation
	Other tips

	STM image by the Tersoff-Hamann scheme
	DFT-D2 and DFT-D3 for vdW interaction
	DFT-D2 method
	DFT-D3 method

	Unfolding method for band structures
	Analysis of band structures
	Unfolding of band structures
	The origin of the reference unit cell
	Intensity map of unfolded spectral weight
	In case of non-collinear DFT calculations
	Examples

	Analysis of spin texture in the k-space
	General
	FermiLoop: Calculation on a constant-energy level
	GridCalc: Calculation on a k-point grid
	BandDispersion: Calculation on the band dispersion relation
	MulPOnly: Calculation on user-specified k-points
	MulPCalc: k-space spin density matrix resolved to each atom
	MPI parallelization of kSpin

	Spin spiral calculations
	Computing Chern number and Berry curvature by the Fukui-Hatsugai-Suzuki method
	General
	Example

	Computing Z2 invariant by the Fukui-Hatsugai method
	General
	Example
	Input files

	Absolute binding energies of core levels: XPS core level energies
	General
	Gaseous systems
	Bulk systems
	Examples

	Ionization potential and electron affinity of gaseous systems
	Optical conductivity and dielectric function
	General
	Si case
	Relevant keywords
	Benchmark calculations
	Codes
	Examples
	Automatic running test

	Interface with BoltzTraP
	Calculation of Energy vs. lattice constant
	Energy vs. lattice constant
	Delta factor

	Fermi surface
	Analysis of difference in two Gaussian cube files
	Analysis of difference in two geometrical structures
	Analysis of difference charge density induced by the interaction
	Automatic determination of the cell size
	Interface for developers
	Calling OpenMX as library or computational engine
	Automatic force tester
	Automatic memory leak tester
	Analysis of memory usage
	Output of large-sized files in binary mode
	Converting of Gaussian cube format to periodic XSF format
	Examples of the input files
	Known problems
	OpenMX Forum
	Other sources of information about OpenMX
	Linkage to other tools
	Others

