
OpenFFT Version 1.1 User Guide

Truong Vinh Truong Duy and Taisuke Ozaki

December 18, 2014

Contents

1 Introduction . 1
2 Features . 2
3 Download . 2
4 Installation . 3
5 Directory Structure . 4
6 Sample Programs . 4
7 Domain Decomposition . 6
8 Tuning of Communication . 7
9 Calling OpenFFT from a C User Program 8
10 Calling OpenFFT from a Fortran User Program 10
11 Complex-to-complex and Real-to-complex Transforms 12
12 Benchmarks . 13

1 Introduction

OpenFFT is an open source parallel package for computing three-dimensional
Fast Fourier Transforms (3-D FFTs) of both real and complex numbers of
arbitrary input size. It originates from OpenMX (Open source package for
Material eXplorer, http://www.openmx-square.org/). OpenFFT adopts a
communication-optimal domain decomposition method that is adaptive and
capable of localizing data when transposing from one dimension to another
for reducing the total volume of communication [1, 2]. It is written in C and
MPI, with support for Fortran through the Fortran interface, and employs
FFTW3 for computing 1-D FFTs.

OpenFFT is developed by Truong Vinh Truong Duy and Taisuke Ozaki
at the University of Tokyo.

1

2 Features

• Domain decomposition method: OpenFFT adopts a 2-D decomposition
method that is capable of localizing data when transposing from one
dimension to another for reducing the total volume of communication.
Also, the decomposition is adaptive, and can automatically switch be-
tween 1-D and 2-D depending on the number of processes and data
size. Please refer to the publications for detail.

• Support for fast parallel complex-to-complex and real-to-complex trans-
forms of 3-D FFTs with arbitrary input size.

• Tuning of communication with an auto-tuning feature.

• Portable, tested on various general-purpose Linux clusters and pop-
ular supercomputers, including Cray XC30, SGI Altix UV1000, SGI
InfiniBand cluster, FX10, and the K computer.

• Written in C and MPI, with support for Fortran through the Fortran
interface.

• Open source package, released under the GNU General Public License
(GPL).

3 Download

OpenFFT version 1.1 is the latest vesion of OpenFFT, and is downloadable
from http://www.openmx-square.org/openfft/. Please note that the API of
OpenFFT1.1 is incompatible with that of OpenFFT1.0 due to the additions
of the auto-tuning feature and r2c interface. Upgrade to OpenFFT1.1 from
OpenFFT1.0 is highly recommended.

RELEASE NOTES

• OpenFFT version 1.1 (November 11, 2014)

– Download: http://www.openmx-square.org/openfft/openfft1.1.tar.gz.
Manual: http://www.openmx-square.org/openfft/manual1.1.html.

– The c2c interface is changed from openfft initialize() and openfft execute()
to openfft init c2c 3d() and openfft exec c2c 3d() for initialization
and execution, respectively.

2

– Addition of the r2c interface comprised of openfft init r2c 3d()
and openfft exec r2c 3d().

– Addition of the tuning of communication to the c2c and r2c inter-
faces.

• OpenFFT version 1.0 (August 23, 2013)

– Download: http://www.openmx-square.org/openfft/openfft1.0.tar.gz.
Manual: http://www.openmx-square.org/openfft/manual1.0.html.

4 Installation

Requirements: OpenFFT requires FFTW3 (or FFTW3 wrappers such as
those provided by the Intel MKL library), a C compiler, and an MPI library.
Fortran users will also need a Fortran compiler to compile the Fortran sample
programs.

1. Step 1: Download and install FFTW3. Assume that FFTW3 is in-
stalled in /opt/fftw3. Those who already have the Intel MKL library
or FFTW3 wrappers installed can skip this step.

2. Step 2: Download and extract the OpenFFT tarball. Assume that
OpenFFT is extracted to /opt/openfft1.1.

3. Step 3: Modify CC (the C compiler) and LIB (the library path to
FFTW3) in makefile in the root folder of OpenFFT to reflect your
environment. Fortran users also need to specify FC (the Fortran com-
piler) to compile the sample programs. Samples of CC (and FC) and
LIB in several environments are given in makefile.

CC = mpicc -O3 -I/opt/3/include -I./include

LIB = -L/opt/fftw3/lib -lfftw3

FC = mpif90 -O3 -I/opt/fftw3/include -I./include

4. Step 4: Issue the make command to compile and install the OpenFFT
library. The library will be made available at /opt/openfft1.1/lib/libopenfft.a
if successful.

5. Step 5: Link the OpenFFT library to compile a user program.

3

mpicc -O3 -o userprogram userprogram.c -I/opt/fftw3/include

-I/opt/openfft1.1/include -L/opt/fftw3/lib -lfftw3

-L/opt/openfft1.1/lib -lopenfft

mpif90 -O3 -o userprogram userprogram.f90 -I/opt/fftw3/include

-I/opt/openfft1.1/include -L/opt/fftw3/lib -lfftw3

-L/opt/openfft1.1/lib -lopenfft

5 Directory Structure

Directory structure of OpenFFT1.1 is as follows:

• toplevel: this is where makefile is located, as well as README.

• source: core source files of the package.

– openfft init c2c 3d.c: initialization of complex-to-complex trans-
forms.

– openfft init r2c 3d.c: initialization of real-to-complex transforms.

– openfft exec c2c 3d.c: execution of complex-to-complex transforms.

– openfft exec r2c 3d.c: execution of real-to-complex transforms.

– openfft finalize.c: finalization of transforms.

– openfft dtime.c: built-in time measurement.

• include: C and Fortran header files.

• lib: the library file is installed here if successful.

• samples: sample programs for illustrating how to use OpenFFT.

– C: C sample programs.

– FORTRAN: Fortran sample programs.

• doc: documents on the website of OpenFFT.

6 Sample Programs

• C sample programs:

4

– check c2c 3d.c: This program illustrates how to use the c2c inter-
face. It can be executed with an arbitrary number of processes.
Its input and output should match the corresponding values in
check c2c 3d.dat. This program does not require any input pa-
rameter.

– check r2c 3d.c: This program illustrates how to use the r2c inter-
face. It can be executed with an arbitrary number of processes.
Its input and output should match the corresponding values in
check r2c 3d.dat. This program does not require any input pa-
rameter.

– timing c2c 3d.c: This program is used for benchmarking perfor-
mance of the c2c interface with timing and GFLOPS results. It
can be executed with an arbitrary number of processes. Time is
measured by MPI Wtime(). A numeric input parameter can be
provided for specifying the size of the 3 dimensions. If no input
parameter is provided, it will be executed with a default size of
1283 data points.

– timing r2c 3d.c: This program is used for benchmarking perfor-
mance of the r2c interface with timing and GFLOPS results. It
can be executed with an arbitrary number of processes. Time is
measured by MPI Wtime(). A numeric input parameter can be
provided for specifying the size of the 3 dimensions. If no input
parameter is provided, it will be executed with a default size of
1283 data points.

– breaktime c2c 3d.c: This program is used for benchmarking per-
formance of the c2c interface with timing result broken down into
several parts and GFLOPS. It can be executed with an arbitrary
number of processes. Time is measured by the built-in time mea-
surement function. A numeric input parameter can be provided
for specifying the size of the 3 dimensions. If no input parameter
is provided, it will be executed with a default size of 1283 data
points. Please note that the timing breakdown can only be cor-
rectly done with the communication pattern number 6, as other
patterns may feature communication and computation overlap.

– breaktime r2c 3d.c: This program is used for benchmarking per-
formance of the r2c interface with timing result broken down into
several parts and GFLOPS. It can be executed with an arbitrary
number of processes. Time is measured by the built-in time mea-
surement function. A numeric input parameter can be provided

5

for specifying the size of the 3 dimensions. If no input parameter
is provided, it will be executed with a default size of 1283 data
points. Please note that the timing breakdown can only be cor-
rectly done with the communication pattern number 6, as other
patterns may feature communication and computation overlap.

• Fortran sample programs:

– check c2c 3d.f90: This program illustrates how to use the c2c in-
terface. It can be executed with an arbitrary number of processes.
Its input and output should match the corresponding values in
check c2c 3d.dat. This program does not require any input pa-
rameter.

– check r2c 3d.f90: This program illustrates how to use the r2c in-
terface. It can be executed with an arbitrary number of processes.
Its input and output should match the corresponding values in
check r2c 3d.dat. This program does not require any input pa-
rameter.

– timing c2c 3d.f90: This program is used for benchmarking perfor-
mance of the c2c interface with timing and GFLOPS results. It
can be executed with an arbitrary number of processes. Time is
measured by MPI Wtime(). A numeric input parameter can be
provided for specifying the size of the 3 dimensions. If no input
parameter is provided, it will be executed with a default size of
1283 data points.

– timing r2c 3d.f90: This program is used for benchmarking perfor-
mance of the r2c interface with timing and GFLOPS results. It
can be executed with an arbitrary number of processes. Time is
measured by MPI Wtime(). A numeric input parameter can be
provided for specifying the size of the 3 dimensions. If no input
parameter is provided, it will be executed with a default size of
1283 data points.

7 Domain Decomposition

OpenFFT adopts a 2-D decomposition method that is capable of localiz-
ing data when transposing from one dimension to another to reduce the
total volume of communication. Also, the decomposition is adaptive, and
automatically switches between 1-D and 2-D depending on the number of
processes and data size. OpenFFT decomposes in the order of abc, cab, and

6

cba for performing the 1-D FFTs along the c-, b-, and a-axes, respectively
(Fig. 1). Please refer to [1] for detail. Other publications [2, 3, 4, 5, 6, 7]
may also be useful.

Figure 1: Domain decomposition.

8 Tuning of Communication

OpenFFT implements a number of communication patterns that can be se-
lected manually by users or automatically by the auto-tuning feature when
initializing with openfft init c2c 3d() or openfft init r2c 3d(). The commu-
nication patterns available are:

• 0: auto-tuning of communication, where OpenFFT automatically per-
forms tests with all of the following patterns and picks the best per-
former in run time (recommended for high performance).

• 1: MPI Alltoallv.

• 2: MPI Isend and MPI Irecv within sub-groups of 32 processes.

• 3: MPI Isend and MPI Irecv with communication-computation over-
lap.

• 4: MPI Isend and MPI Irecv within sub-groups of 32 processes with
communication-computation overlap.

• 5: MPI Sendrecv.

• 6: MPI Isend and MPI Irecv.

• Others: default communication, which is 3.

7

9 Calling OpenFFT from a C User Program

Please refer to the C sample programs which illustrate how to call OpenFFT
from a C user program. Basically, it involves several steps as follows.

1. Step 1: Include the OpenFFT header file, openfft.h, in the program.

#include <openfft.h>

2. Step 2: Initialize OpenFFT by calling openfft init c2c 3d() for the c2c
interface or openfft init r2c 3d() for the r2c interface.

openfft_init_c2c_3d(N1,N2,N3,

&My_Max_NumGrid,&My_NumGrid_In,My_Index_In,

&My_NumGrid_Out,My_Index_Out,

offt_measure,measure_time,print_memory);

OR

openfft_init_r2c_3d(N1,N2,N3,

&My_Max_NumGrid,&My_NumGrid_In,My_Index_In,

&My_NumGrid_Out,My_Index_Out,

offt_measure,measure_time,print_memory);

• Input:

– 3 dimensions of data: N1, N2, N3.

– offt measure for the tuning of communication (see Tuning of
Communication, default 0).

– measure time for the built-in time measurement function and
print memory for printing memory usage (0: disabled (de-
fault), 1: enabled).

• Output: arrays allocated and variables initialized.

– My Max NumGrid: the maximum number of grid points al-
located to a process, used for allocating local arrays.

– My NumGrid In: the number of grid points allocated to a
process upon starting.

– My Index In: the 6 indexes of grid points allocated to a pro-
cess upon starting.

8

– My NumGrid Out: the number of grid points allocated to a
process upon finishing.

– My Index Out: the 6 indexes of grid points allocated to a
process upon finishing.

3. Step 3: After openfft init c2c 3d() or openfft init r2c 3d() is called,
important variables are initialized, and can be used for allocating and
initializing local input and output data arrays.

Allocate the local input and output data arrays based on My Max NumGrid,
which is the maximum number of grid points allocated to a process dur-
ing the transformation.

input = (dcomplex*)malloc(sizeof(dcomplex)*My_Max_NumGrid);

output = (dcomplex*)malloc(sizeof(dcomplex)*My_Max_NumGrid);

OR

input = (double*)malloc(sizeof(double)*My_Max_NumGrid);

output = (dcomplex*)malloc(sizeof(dcomplex)*My_Max_NumGrid);

Initialize the local input array from the global input array. A process is
allocated (My NumGrid In) grid points continuously from AasBbsCcs
to AaeBbeCce of the 3-D global array, where:

as = My_Index_In[0];

bs = My_Index_In[1];

cs = My_Index_In[2];

ae = My_Index_In[3];

be = My_Index_In[4];

ce = My_Index_In[5];

4. Step 4: Call openfft exec c2c 3d() or openfft exec r2c 3d() to transform
input to output.

openfft_exec_c2c_3d(input, output);

OR

openfft_exec_r2c_3d(input, output);

9

5. Step 5: Obtain the result stored in the local output array. Upon exit-
ing, a process is allocated (My NumGrid Out) grid points continuously
from CcsBbsAas to CceBbeAae of the 3-D global array, where:

cs = My_Index_Out[0];

bs = My_Index_Out[1];

as = My_Index_Out[2];

ce = My_Index_Out[3];

be = My_Index_Out[4];

ae = My_Index_Out[5];

6. Step 6: Finalize the calculation by calling openfft finalize().

openfft_finalize();

10 Calling OpenFFT from a Fortran User Pro-

gram

Please refer to the Fortran sample programs which illustrate how to call
OpenFFT from a Fortran user program. Basically, it is similar to calling
from C, except for the indexes that must be incremented by 1.

1. Step 1: Include the Fortran interface and the standard iso c binding
module for defining the equivalents of C types (integer(C INT) for
int, real(C DOUBLE) for double, complex(C DOUBLE COMPLEX)
for dcomplex, etc.).

use, intrinsic :: iso_c_binding

include ’openfft.fi’

2. Step 2: Initialize OpenFFT by calling openfft init c2c 3d() for the c2c
interface or openfft init r2c 3d() for the r2c interface.

openfft_init_c2c_3d(%VAL(N1),%VAL(N2),%VAL(N3),&

My_Max_NumGrid,My_NumGrid_In,My_Index_In,&

My_NumGrid_Out,My_Index_Out,&

%VAL(offt_measure),%VAL(measure_time),%VAL(print_memory))

10

OR

openfft_init_r2c_3d(%VAL(N1),%VAL(N2),%VAL(N3),&

My_Max_NumGrid,My_NumGrid_In,My_Index_In,&

My_NumGrid_Out,My_Index_Out,&

%VAL(offt_measure),%VAL(measure_time),%VAL(print_memory))

• Input:

– 3 dimensions of data: N1, N2, N3.

– offt measure for the tuning of communication (see Tuning of
Communication, default 0).

– measure time for the built-in time measurement function and
print memory for printing memory usage (0: disabled (de-
fault), 1: enabled).

• Output: arrays allocated and variables initialized.

– My Max NumGrid: the maximum number of grid points al-
located to a process, used for allocating local arrays.

– My NumGrid In: the number of grid points allocated to a
process upon starting.

– My Index In: the 6 indexes of grid points allocated to a pro-
cess upon starting.

– My NumGrid Out: the number of grid points allocated to a
process upon finishing.

– My Index Out: the 6 indexes of grid points allocated to a
process upon finishing.

3. Step 3: After openfft init c2c 3d() or openfft init r2c 3d() is called,
important variables are initialized, and can be used for allocating and
initializing local input and output data arrays.

Allocate the local input and output data arrays based on My Max NumGrid,
which is the maximum number of grid points allocated to a process dur-
ing the transformation.

allocate(input(My_Max_NumGrid))

allocate(output(My_Max_NumGrid))

Initialize the local input array from the global input array. A process is
allocated (My NumGrid In) grid points continuously from AasBbsCcs
to AaeBbeCce of the 3-D global array, where:

11

as = My_Index_In(1) + 1

bs = My_Index_In(2) + 1

cs = My_Index_In(3) + 1

ae = My_Index_In(4) + 1

be = My_Index_In(5) + 1

ce = My_Index_In(6) + 1

4. Step 4: Call openfft exec c2c 3d() or openfft exec r2c 3d() to transform
input to output.

openfft_exec_c2c_3d(input, output);

OR

openfft_exec_r2c_3d(input, output);

5. Step 5: Obtain the result stored in the local output array. Upon exit-
ing, a process is allocated (My NumGrid Out) grid points continuously
from CcsBbsAas to CceBbeAae of the 3-D global array, where:

cs = My_Index_Out(1) + 1

bs = My_Index_Out(2) + 1

as = My_Index_Out(3) + 1

ce = My_Index_Out(4) + 1

be = My_Index_Out(5) + 1

ae = My_Index_Out(6) + 1

6. Step 6: Finalize the calculation by calling openfft finalize().

openfft_finalize();

11 Complex-to-complex and Real-to-complex

Transforms

While the sizes of the input and output arrays of the c2c transform stay
unchanged, i.e., a complex input array of size N1xN2xN3 will have a corre-
sponding complex output array of the same size N1xN2xN3, the size of the
complex output array is only about half of that of the real input array of
the r2c transform, i.e., a real input array of size N1xN2xN3 will have a cor-
responding complex output array of the size N1xN2x(N3/2+1). This means
both computational cost and memory usage of an r2c transform are only
about half those of a c2c one. Please refer to the C and Fortran examples
for illustration of input and output data manipulation.

12

12 Benchmarks

The figures below show some benchmark results with OpenFFT and a couple
of other packages taken on several machines (complex-to-complex transforms
with FFTW3 as the FFT engine, except for P3DFFT, where the r2c interface
is used with 2x real numbers for equivalence of 1x complex numbers, and
FFTE, which employs its own FFT engine). The latest official versions are
utilized, as of November 2014.

• OpenFFT: version 1.1 with auto-tuning of communication, http://www.openmx-
square.org/openfft/.

• 2DECOMP&FFT: version 1.5.847 with auto-tuning of decomposition,
http://www.2decomp.org/.

• P3DFFT: version 2.7.1, https://code.google.com/p/p3dfft/.

• FFTE: version 6.0 (pzfft3dv), http://www.ffte.jp/.

Acknowledgements

This package has its origins in OpenMX (Open source package for Material
eXplorer), and has been funded by CMSI (Computational Materials Science
Initiative) of the HPCI Strategic Program (SPIRE) of the Ministry of Edu-
cation, Culture, Sports, Science and Technology of Japan. We are thankful
to Japan Advanced Institute of Science and Technology (JAIST) for the
computational resources. We also thank Prof. Katsumi Hagita of National
Defense Academy of Japan for helpful discussions and contribution to the
r2c interface.

Feedback

Please feel free to drop us a line at duytvt@issp.u-tokyo.ac.jp (Truong Vinh
Truong Duy) or t-ozaki@issp.u-tokyo.ac.jp (Taisuke Ozaki) for questions,
comments, suggestions, and bug reports.

13

Figure 2: Theoretical and practical volumes of communication (2563). The
practical volume is reported by the MPI profiler on the K computer.

14

Figure 3: Cray XC30 (5123).

Figure 4: SGI InfiniBand Machine (5123).

15

Figure 5: Fujitsu FX10 (5123).

Figure 6: K computer(5123).

16

Bibliography

[1] T.V.T. Duy and T. Ozaki, ”A decomposition method with minimum
communication amount for parallelization of multi-dimensional FFTs”,
Computer Physics Communications, Vol. 185, Issue 1, pp. 153-164, 2014.

[2] T.V.T. Duy and T. Ozaki, ”A three-dimensional domain decomposition
method for large-scale DFT electronic structure calculations”, Computer
Physics Communications, Vol. 185, Issue 3, pp. 777-789, 2014.

[3] T.V.T. Duy and T. Ozaki, ”OpenFFT: An Open-Source Package for 3-
D FFTs with Minimal Volume of Communication”, 29th International
Supercomputing Conference (ISC’14), pp. 517-518, 2014 (Best Research
Poster Award).

[4] T.V.T. Duy and T. Ozaki, ”A decomposition method with minimal
communication volume for parallelization of multi-dimensional FFTs”,
27th International ACM Conference on Supercomputing (ICS2013), pp.
467-468, 2013.

[5] T.V.T. Duy and T. Ozaki, ”A massively parallel domain decomposi-
tion method for large-scale DFT electronic structure calculations”, 27th
International ACM Conference on Supercomputing (ICS2013), pp. 469-
470, 2013.

[6] T.V.T. Duy and T. Ozaki, ”A decomposition method with minimum
communication amount for parallelization of multi-dimensional FFTs”,
CoRR abs/1302.6189, 2013.

[7] T.V.T. Duy and T. Ozaki, ”A three-dimensional domain decompo-
sition method for large-scale DFT electronic structure calculations”,
arXiv:1209.4506, 2012.

17

