Top Page > Browsing
The strange Nan result for negf_example/Lead-L-8ZGNR-NC.dat
Date: 2016/12/27 01:04
Name: Kylin

Dear all
I just tried the NEGE examples in the openmx default work folder.
Everything looks fine (I didn't check the result with benchmark) except for Lead-R-8ZGNR-NC.dat. Especially for the image file Lead-L-8ZGNR-NC.dat, that my openmx could run through it smoothly. This problem could evenly be reproduced in both my Macbook Pro or workstation by different compiler gnu compiler and intel compiler and by different math library openblas and MKL respectively.

Fortunately, the Lead-R-8ZGNR-NC.dat could run smooth in my remote cluster with gcc + MKL.

But I still didn't know the proble of openMX. Staring from the second SCF loop, both spin-up and spin-down electron in Lead-R-8ZGNR-NC case are misiing (zero) and the Uele became nan. Thus through >120 SCF loops, the results cannot be convergent

Thus, I didn't known whether or not there is a bug for openmx or there is a problem for my
compilation. The following is the screen output for Lead-R-8ZGNR-NC and Lead-L-8ZGNR-NC in my MacbookPro with the same version of openMX (3.8.1) but totally different results.
Could someone provide some idea about it. If more info is necessary, I would try to provide it.

Cheers
Kylin



メンテ
Page: [1]

Re: The strange Nan result for negf_example/Lead-L-8ZGNR-NC.dat ( No.1 )
Date: 2016/12/27 01:06
Name: Kylin

----------------- Lead-R-8ZGNR-NC -----------------
The number of threads in each node for OpenMP parallelization is 1.


*******************************************************
*******************************************************
Welcome to OpenMX Ver. 3.8.1
Copyright (C), 2002-2014, T. Ozaki
OpenMX comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to
redistribute it under the constitution of the GNU-GPL.
*******************************************************
*******************************************************



<Input_std> Your input file was normally read.
<Input_std> The system includes 2 species and 36 atoms.

*******************************************************
PAO and VPS
*******************************************************

<SetPara_DFT> PAOs of species C were normally found.
<SetPara_DFT> PAOs of species H were normally found.
<SetPara_DFT> VPSs of species C were normally found.
C_CA13.vps is j-dependent.
In case of scf.SpinOrbit.Coupling=off,
j-dependent pseudo potentials are averaged by j-degeneracy,
which corresponds to a scalar relativistic treatment.
<SetPara_DFT> VPSs of species H were normally found.
H_CA13.vps is j-dependent.
In case of scf.SpinOrbit.Coupling=off,
j-dependent pseudo potentials are averaged by j-degeneracy,
which corresponds to a scalar relativistic treatment.

*******************************************************
Fourier transform of PAO and projectors of VNL
*******************************************************

<FT_PAO> Fourier transform of pseudo atomic orbitals
<FT_NLP> Fourier transform of non-local projectors
<FT_ProExpn_VNA> Fourier transform of VNA separable projectors
<FT_VNA> Fourier transform of VNA potentials
<FT_ProductPAO> Fourier transform of product of PAOs

*******************************************************
Allocation of atoms to proccesors at MD_iter= 1
*******************************************************

proc = 0 # of atoms= 18 estimated weight= 18.00000
proc = 1 # of atoms= 18 estimated weight= 18.00000




*******************************************************
Analysis of neighbors and setting of grids
*******************************************************

TFNAN= 1136 Average FNAN= 31.55556
TSNAN= 0 Average SNAN= 0.00000
<truncation> CpyCell= 1 ct_AN= 1 FNAN SNAN 28 0
<truncation> CpyCell= 1 ct_AN= 2 FNAN SNAN 33 0
<truncation> CpyCell= 1 ct_AN= 3 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 4 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 5 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 6 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 7 FNAN SNAN 33 0
<truncation> CpyCell= 1 ct_AN= 8 FNAN SNAN 28 0
<truncation> CpyCell= 1 ct_AN= 9 FNAN SNAN 25 0
<truncation> CpyCell= 1 ct_AN= 10 FNAN SNAN 28 0
<truncation> CpyCell= 1 ct_AN= 11 FNAN SNAN 33 0
<truncation> CpyCell= 1 ct_AN= 12 FNAN SNAN 34 0
<truncation> CpyCell= 1 ct_AN= 13 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 14 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 15 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 16 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 17 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 18 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 19 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 20 FNAN SNAN 36 0
..........
......

TFNAN= 1136 Average FNAN= 31.55556
TSNAN= 0 Average SNAN= 0.00000
<truncation> CpyCell= 2 ct_AN= 1 FNAN SNAN 28 0
<truncation> CpyCell= 2 ct_AN= 2 FNAN SNAN 33 0
<truncation> CpyCell= 2 ct_AN= 3 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 4 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 5 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 6 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 7 FNAN SNAN 33 0
<truncation> CpyCell= 2 ct_AN= 8 FNAN SNAN 28 0
<truncation> CpyCell= 2 ct_AN= 9 FNAN SNAN 25 0
<truncation> CpyCell= 2 ct_AN= 10 FNAN SNAN 28 0
<truncation> CpyCell= 2 ct_AN= 11 FNAN SNAN 33 0
<truncation> CpyCell= 2 ct_AN= 12 FNAN SNAN 34 0
<truncation> CpyCell= 2 ct_AN= 13 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 14 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 15 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 16 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 17 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 18 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 19 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 20 FNAN SNAN 36 0
..........
......

TFNAN= 1136 Average FNAN= 31.55556
TSNAN= 0 Average SNAN= 0.00000
<truncation> CpyCell= 2 ct_AN= 1 FNAN SNAN 28 0
<truncation> CpyCell= 2 ct_AN= 2 FNAN SNAN 33 0
<truncation> CpyCell= 2 ct_AN= 3 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 4 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 5 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 6 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 7 FNAN SNAN 33 0
<truncation> CpyCell= 2 ct_AN= 8 FNAN SNAN 28 0
<truncation> CpyCell= 2 ct_AN= 9 FNAN SNAN 25 0
<truncation> CpyCell= 2 ct_AN= 10 FNAN SNAN 28 0
<truncation> CpyCell= 2 ct_AN= 11 FNAN SNAN 33 0
<truncation> CpyCell= 2 ct_AN= 12 FNAN SNAN 34 0
<truncation> CpyCell= 2 ct_AN= 13 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 14 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 15 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 16 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 17 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 18 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 19 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 20 FNAN SNAN 36 0
..........
......

<Check_System> The system is chain.
lattice vectors (bohr)
A = 0.000000000000, 0.000000000000, 9.221862824265
B = 18.897259885789, 0.000000000000, 0.000000000000
C = 0.000000000000, 51.022601691631, 0.000000000000
reciprocal lattice vectors (bohr^-1)
RA = 0.000000000000, 0.000000000000, 0.681335802420
RB = 0.332491871581, 0.000000000000, 0.000000000000
RC = 0.000000000000, 0.123145137623, 0.000000000000
Grid_Origin -9.300995047544 -10.610790365924 10.649174081262
Cell_Volume = 8891.603609688429 (Bohr^3)
GridVol = 0.024120018472 (Bohr^3)
Grid_Origin -9.300995047544 -10.610790365924 10.649174081262
Cell_Volume = 8891.603609688429 (Bohr^3)
GridVol = 0.024120018472 (Bohr^3)
<UCell_Box> Info. of cutoff energy and num. of grids
lattice vectors (bohr)
A = 0.000000000000, 0.000000000000, 9.221862824265
B = 18.897259885789, 0.000000000000, 0.000000000000
C = 0.000000000000, 51.022601691631, 0.000000000000
reciprocal lattice vectors (bohr^-1)
RA = 0.000000000000, 0.000000000000, 0.681335802420
RB = 0.332491871581, 0.000000000000, 0.000000000000
RC = 0.000000000000, 0.123145137623, 0.000000000000
Required cutoff energy (Ryd) for 3D-grids = 120.0000
Used cutoff energy (Ryd) for 3D-grids = 118.8399, 113.2041, 122.8343
Num. of grids of a-, b-, and c-axes = 32, 64, 180
Grid_Origin -9.300995047544 -10.610790365924 10.649174081262
Cell_Volume = 8891.603609688429 (Bohr^3)
GridVol = 0.024120018472 (Bohr^3)
Cell vectors (bohr) of the grid cell (gtv)
gtv_a = 0.000000000000, 0.000000000000, 0.288183213258
gtv_b = 0.295269685715, 0.000000000000, 0.000000000000
gtv_c = 0.000000000000, 0.283458898287, 0.000000000000
|gtv_a| = 0.288183213258
|gtv_b| = 0.295269685715
|gtv_c| = 0.283458898287
Num. of grids overlapping with atom 1 = 21700
Num. of grids overlapping with atom 2 = 21712
Num. of grids overlapping with atom 3 = 21716
Num. of grids overlapping with atom 4 = 21708
Num. of grids overlapping with atom 5 = 21708
Num. of grids overlapping with atom 6 = 21716
Num. of grids overlapping with atom 7 = 21712
Num. of grids overlapping with atom 8 = 21698
Num. of grids overlapping with atom 9 = 21720
Num. of grids overlapping with atom 10 = 21700
Num. of grids overlapping with atom 11 = 21712
Num. of grids overlapping with atom 12 = 21740
Num. of grids overlapping with atom 13 = 21716
Num. of grids overlapping with atom 14 = 21716
Num. of grids overlapping with atom 15 = 21708
Num. of grids overlapping with atom 16 = 21716
Num. of grids overlapping with atom 17 = 21716
Num. of grids overlapping with atom 18 = 21708
Num. of grids overlapping with atom 19 = 21716
Num. of grids overlapping with atom 20 = 21716
..........
......


*******************************************************
SCF calculation at MD = 1
*******************************************************

<MD= 1> Calculation of the overlap matrix
<MD= 1> Calculation of the nonlocal matrix
<MD= 1> Calculation of the VNA projector matrix

******************* MD= 1 SCF= 1 *******************
<Band> Solving the eigenvalue problem...
KGrids1: -0.49751 -0.49254 -0.48756 -0.48259 -0.47761 -0.47264 -0.46766 -0.46269 -0.45771 -0.45274 -0.44776 -0.44279 -0.43781 -0.43283 -0.42786 -0.42288 -0.41791 -0.41293 -0.40796 -0.40298 -0.39801 -0.39303 -0.38806 -0.38308 -0.37811 -0.37313 -0.36816 -0.36318 -0.35821 -0.35323 -0.34826 -0.34328 -0.33831 -0.33333 -0.32836 -0.32338 -0.31841 -0.31343 -0.30846 -0.30348 -0.29851 -0.29353 -0.28856 -0.28358 -0.27861 -0.27363 -0.26866 -0.26368 -0.25871 -0.25373 -0.24876 -0.24378 -0.23880 -0.23383 -0.22885 -0.22388 -0.21890 -0.21393 -0.20895 -0.20398 -0.19900 -0.19403 -0.18905 -0.18408 -0.17910 -0.17413 -0.16915 -0.16418 -0.15920 -0.15423 -0.14925 -0.14428 -0.13930 -0.13433 -0.12935 -0.12438 -0.11940 -0.11443 -0.10945 -0.10448 -0.09950 -0.09453 -0.08955 -0.08458 -0.07960 -0.07463 -0.06965 -0.06468 -0.05970 -0.05473 -0.04975 -0.04478 -0.03980 -0.03482 -0.02985 -0.02487 -0.01990 -0.01492 -0.00995 -0.00497 0.00000 0.00498 0.00995 0.01493 0.01990 0.02488 0.02985 0.03483 0.03980 0.04478 0.04975 0.05473 0.05970 0.06468 0.06965 0.07463 0.07960 0.08458 0.08955 0.09453 0.09950 0.10448 0.10945 0.11443 0.11940 0.12438 0.12935 0.13433 0.13930 0.14428 0.14925 0.15423 0.15920 0.16418 0.16916 0.17413 0.17911 0.18408 0.18906 0.19403 0.19901 0.20398 0.20896 0.21393 0.21891 0.22388 0.22886 0.23383 0.23881 0.24378 0.24876 0.25373 0.25871 0.26368 0.26866 0.27363 0.27861 0.28358 0.28856 0.29353 0.29851 0.30348 0.30846 0.31343 0.31841 0.32338 0.32836 0.33333 0.33831 0.34328 0.34826 0.35323 0.35821 0.36319 0.36816 0.37314 0.37811 0.38309 0.38806 0.39304 0.39801 0.40299 0.40796 0.41294 0.41791 0.42289 0.42786 0.43284 0.43781 0.44279 0.44776 0.45274 0.45771 0.46269 0.46766 0.47264 0.47761 0.48259 0.48756 0.49254 0.49751
KGrids2: 0.00000
KGrids3: 0.00000
<Band_DFT> Eigen, time=31.855721
<Band_DFT> DM, time=46.665751
1 C MulP 1.96 1.95 sum 3.90 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00)
2 C MulP 2.03 1.95 sum 3.98 diff 0.07 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 ( 90.00 90.00)
3 C MulP 2.00 1.99 sum 3.99 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00)
4 C MulP 2.01 1.99 sum 4.00 diff 0.02 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 ( 90.00 90.00)
5 C MulP 2.01 1.99 sum 4.00 diff 0.02 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 ( 90.00 90.00)
6 C MulP 2.00 1.99 sum 3.99 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00)
7 C MulP 2.03 1.95 sum 3.98 diff 0.07 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 ( 90.00 90.00)
8 C MulP 1.96 1.95 sum 3.90 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00)
9 C MulP 2.20 1.95 sum 4.15 diff 0.25 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 ( 90.00 90.00)
10 C MulP 1.96 1.95 sum 3.90 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00)
11 C MulP 2.03 1.95 sum 3.98 diff 0.07 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 ( 90.00 90.00)
12 C MulP 2.00 1.99 sum 3.99 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00)
13 C MulP 2.01 1.98 sum 3.99 diff 0.03 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 ( 90.00 90.00)
14 C MulP 2.00 1.99 sum 3.99 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00)
15 C MulP 2.01 1.99 sum 4.00 diff 0.02 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 ( 90.00 90.00)
16 C MulP 2.00 1.99 sum 4.00 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00)
17 C MulP 2.00 1.99 sum 4.00 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00)
18 C MulP 2.01 1.99 sum 4.00 diff 0.02 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 ( 90.00 90.00)
19 C MulP 2.00 1.99 sum 3.99 diff 0.01 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 ( 90.00 90.00)
20 C MulP 2.01 1.98 sum 3.99 diff 0.03 ( 90.00 90.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 ( 90.00 90.00)
..........
......

Sum of MulP: up = 66.91761 down = 65.08239
total= 132.00000 ideal(neutral)= 132.00000
<DFT> Total Spin Moment (muB) 1.410107751 Angles 90.000000000 90.000000000
<DFT> Total Orbital Moment (muB) 0.000000000 Angles 90.000000000 0.000000000
<DFT> Total Moment (muB) 1.410107751 Angles 90.000000000 90.000000000
<DFT> Mixing_weight= 0.100000000000
<DFT> Uele = -50.509599944532 dUele = 1.000000000000
<DFT> NormRD = 1.000000000000 Criterion = 0.000000001000

******************* MD= 1 SCF= 2 *******************
<Poisson> Poisson's equation using FFT...
<Set_Hamiltonian> Hamiltonian matrix for VNA+dVH+Vxc...
<Band> Solving the eigenvalue problem...
KGrids1: -0.49751 -0.49254 -0.48756 -0.48259 -0.47761 -0.47264 -0.46766 -0.46269 -0.45771 -0.45274 -0.44776 -0.44279 -0.43781 -0.43283 -0.42786 -0.42288 -0.41791 -0.41293 -0.40796 -0.40298 -0.39801 -0.39303 -0.38806 -0.38308 -0.37811 -0.37313 -0.36816 -0.36318 -0.35821 -0.35323 -0.34826 -0.34328 -0.33831 -0.33333 -0.32836 -0.32338 -0.31841 -0.31343 -0.30846 -0.30348 -0.29851 -0.29353 -0.28856 -0.28358 -0.27861 -0.27363 -0.26866 -0.26368 -0.25871 -0.25373 -0.24876 -0.24378 -0.23880 -0.23383 -0.22885 -0.22388 -0.21890 -0.21393 -0.20895 -0.20398 -0.19900 -0.19403 -0.18905 -0.18408 -0.17910 -0.17413 -0.16915 -0.16418 -0.15920 -0.15423 -0.14925 -0.14428 -0.13930 -0.13433 -0.12935 -0.12438 -0.11940 -0.11443 -0.10945 -0.10448 -0.09950 -0.09453 -0.08955 -0.08458 -0.07960 -0.07463 -0.06965 -0.06468 -0.05970 -0.05473 -0.04975 -0.04478 -0.03980 -0.03482 -0.02985 -0.02487 -0.01990 -0.01492 -0.00995 -0.00497 0.00000 0.00498 0.00995 0.01493 0.01990 0.02488 0.02985 0.03483 0.03980 0.04478 0.04975 0.05473 0.05970 0.06468 0.06965 0.07463 0.07960 0.08458 0.08955 0.09453 0.09950 0.10448 0.10945 0.11443 0.11940 0.12438 0.12935 0.13433 0.13930 0.14428 0.14925 0.15423 0.15920 0.16418 0.16916 0.17413 0.17911 0.18408 0.18906 0.19403 0.19901 0.20398 0.20896 0.21393 0.21891 0.22388 0.22886 0.23383 0.23881 0.24378 0.24876 0.25373 0.25871 0.26368 0.26866 0.27363 0.27861 0.28358 0.28856 0.29353 0.29851 0.30348 0.30846 0.31343 0.31841 0.32338 0.32836 0.33333 0.33831 0.34328 0.34826 0.35323 0.35821 0.36319 0.36816 0.37314 0.37811 0.38309 0.38806 0.39304 0.39801 0.40299 0.40796 0.41294 0.41791 0.42289 0.42786 0.43284 0.43781 0.44279 0.44776 0.45274 0.45771 0.46269 0.46766 0.47264 0.47761 0.48259 0.48756 0.49254 0.49751
KGrids2: 0.00000
KGrids3: 0.00000
<Band_DFT> Eigen, time=18.585965
<Band_DFT> DM, time=27.763356
1 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
2 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
3 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
4 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
5 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
6 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
7 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
8 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
9 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
10 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
11 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
12 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
13 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
14 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
15 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
16 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
17 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
18 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
19 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
20 C MulP 0.00 0.00 sum 0.00 diff 0.00 ( 90.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.00 ( 90.00 0.00)
..........
......

Sum of MulP: up = 0.00000 down = 0.00000
total= 0.00000 ideal(neutral)= 132.00000
<DFT> Total Spin Moment (muB) 0.000000000 Angles 90.000000000 0.000000000
<DFT> Total Orbital Moment (muB) 0.000000000 Angles 90.000000000 0.000000000
<DFT> Total Moment (muB) 0.000000000 Angles 90.000000000 0.000000000
<DFT> Mixing_weight= 0.100000000000
<DFT> Uele = nan dUele = nan
<DFT> NormRD = nan Criterion = 0.000000001000
メンテ
Re: The strange Nan result for negf_example/Lead-L-8ZGNR-NC.dat ( No.2 )
Date: 2016/12/27 01:08
Name: Kylin

----------------- Lead-L-8ZGNR-NC -----------------
The number of threads in each node for OpenMP parallelization is 1.


*******************************************************
*******************************************************
Welcome to OpenMX Ver. 3.8.1
Copyright (C), 2002-2014, T. Ozaki
OpenMX comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to
redistribute it under the constitution of the GNU-GPL.
*******************************************************
*******************************************************



<Input_std> Your input file was normally read.
<Input_std> The system includes 2 species and 36 atoms.

*******************************************************
PAO and VPS
*******************************************************

<SetPara_DFT> PAOs of species C were normally found.
<SetPara_DFT> PAOs of species H were normally found.
<SetPara_DFT> VPSs of species C were normally found.
C_CA13.vps is j-dependent.
In case of scf.SpinOrbit.Coupling=off,
j-dependent pseudo potentials are averaged by j-degeneracy,
which corresponds to a scalar relativistic treatment.
<SetPara_DFT> VPSs of species H were normally found.
H_CA13.vps is j-dependent.
In case of scf.SpinOrbit.Coupling=off,
j-dependent pseudo potentials are averaged by j-degeneracy,
which corresponds to a scalar relativistic treatment.

*******************************************************
Fourier transform of PAO and projectors of VNL
*******************************************************

<FT_PAO> Fourier transform of pseudo atomic orbitals
<FT_NLP> Fourier transform of non-local projectors
<FT_ProExpn_VNA> Fourier transform of VNA separable projectors
<FT_VNA> Fourier transform of VNA potentials
<FT_ProductPAO> Fourier transform of product of PAOs

*******************************************************
Allocation of atoms to proccesors at MD_iter= 1
*******************************************************

proc = 0 # of atoms= 18 estimated weight= 18.00000
proc = 1 # of atoms= 18 estimated weight= 18.00000




*******************************************************
Analysis of neighbors and setting of grids
*******************************************************

TFNAN= 1136 Average FNAN= 31.55556
TSNAN= 0 Average SNAN= 0.00000
<truncation> CpyCell= 1 ct_AN= 1 FNAN SNAN 25 0
<truncation> CpyCell= 1 ct_AN= 2 FNAN SNAN 28 0
<truncation> CpyCell= 1 ct_AN= 3 FNAN SNAN 33 0
<truncation> CpyCell= 1 ct_AN= 4 FNAN SNAN 34 0
<truncation> CpyCell= 1 ct_AN= 5 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 6 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 7 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 8 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 9 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 10 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 11 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 12 FNAN SNAN 36 0
<truncation> CpyCell= 1 ct_AN= 13 FNAN SNAN 34 0
<truncation> CpyCell= 1 ct_AN= 14 FNAN SNAN 33 0
<truncation> CpyCell= 1 ct_AN= 15 FNAN SNAN 28 0
<truncation> CpyCell= 1 ct_AN= 16 FNAN SNAN 25 0
<truncation> CpyCell= 1 ct_AN= 17 FNAN SNAN 20 0
<truncation> CpyCell= 1 ct_AN= 18 FNAN SNAN 20 0
<truncation> CpyCell= 1 ct_AN= 19 FNAN SNAN 25 0
<truncation> CpyCell= 1 ct_AN= 20 FNAN SNAN 28 0
..........
......

TFNAN= 1136 Average FNAN= 31.55556
TSNAN= 0 Average SNAN= 0.00000
<truncation> CpyCell= 2 ct_AN= 1 FNAN SNAN 25 0
<truncation> CpyCell= 2 ct_AN= 2 FNAN SNAN 28 0
<truncation> CpyCell= 2 ct_AN= 3 FNAN SNAN 33 0
<truncation> CpyCell= 2 ct_AN= 4 FNAN SNAN 34 0
<truncation> CpyCell= 2 ct_AN= 5 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 6 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 7 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 8 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 9 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 10 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 11 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 12 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 13 FNAN SNAN 34 0
<truncation> CpyCell= 2 ct_AN= 14 FNAN SNAN 33 0
<truncation> CpyCell= 2 ct_AN= 15 FNAN SNAN 28 0
<truncation> CpyCell= 2 ct_AN= 16 FNAN SNAN 25 0
<truncation> CpyCell= 2 ct_AN= 17 FNAN SNAN 20 0
<truncation> CpyCell= 2 ct_AN= 18 FNAN SNAN 20 0
<truncation> CpyCell= 2 ct_AN= 19 FNAN SNAN 25 0
<truncation> CpyCell= 2 ct_AN= 20 FNAN SNAN 28 0
..........
......

TFNAN= 1136 Average FNAN= 31.55556
TSNAN= 0 Average SNAN= 0.00000
<truncation> CpyCell= 2 ct_AN= 1 FNAN SNAN 25 0
<truncation> CpyCell= 2 ct_AN= 2 FNAN SNAN 28 0
<truncation> CpyCell= 2 ct_AN= 3 FNAN SNAN 33 0
<truncation> CpyCell= 2 ct_AN= 4 FNAN SNAN 34 0
<truncation> CpyCell= 2 ct_AN= 5 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 6 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 7 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 8 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 9 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 10 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 11 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 12 FNAN SNAN 36 0
<truncation> CpyCell= 2 ct_AN= 13 FNAN SNAN 34 0
<truncation> CpyCell= 2 ct_AN= 14 FNAN SNAN 33 0
<truncation> CpyCell= 2 ct_AN= 15 FNAN SNAN 28 0
<truncation> CpyCell= 2 ct_AN= 16 FNAN SNAN 25 0
<truncation> CpyCell= 2 ct_AN= 17 FNAN SNAN 20 0
<truncation> CpyCell= 2 ct_AN= 18 FNAN SNAN 20 0
<truncation> CpyCell= 2 ct_AN= 19 FNAN SNAN 25 0
<truncation> CpyCell= 2 ct_AN= 20 FNAN SNAN 28 0
..........
......

<Check_System> The system is chain.
lattice vectors (bohr)
A = 0.000000000000, 0.000000000000, 9.221862824265
B = 18.897259885789, 0.000000000000, 0.000000000000
C = 0.000000000000, 51.022601691631, 0.000000000000
reciprocal lattice vectors (bohr^-1)
RA = 0.000000000000, 0.000000000000, 0.681335802420
RB = 0.332491871581, 0.000000000000, 0.000000000000
RC = 0.000000000000, 0.123145137623, 0.000000000000
Grid_Origin -9.300995047544 -10.610790365924 -1.134317305299
Cell_Volume = 8891.603609688429 (Bohr^3)
GridVol = 0.024120018472 (Bohr^3)
Grid_Origin -9.300995047544 -10.610790365924 -1.134317305299
Cell_Volume = 8891.603609688429 (Bohr^3)
GridVol = 0.024120018472 (Bohr^3)
<UCell_Box> Info. of cutoff energy and num. of grids
lattice vectors (bohr)
A = 0.000000000000, 0.000000000000, 9.221862824265
B = 18.897259885789, 0.000000000000, 0.000000000000
C = 0.000000000000, 51.022601691631, 0.000000000000
reciprocal lattice vectors (bohr^-1)
RA = 0.000000000000, 0.000000000000, 0.681335802420
RB = 0.332491871581, 0.000000000000, 0.000000000000
RC = 0.000000000000, 0.123145137623, 0.000000000000
Required cutoff energy (Ryd) for 3D-grids = 120.0000
Used cutoff energy (Ryd) for 3D-grids = 118.8399, 113.2041, 122.8343
Num. of grids of a-, b-, and c-axes = 32, 64, 180
Grid_Origin -9.300995047544 -10.610790365924 -1.134317305299
Cell_Volume = 8891.603609688429 (Bohr^3)
GridVol = 0.024120018472 (Bohr^3)
Cell vectors (bohr) of the grid cell (gtv)
gtv_a = 0.000000000000, 0.000000000000, 0.288183213258
gtv_b = 0.295269685715, 0.000000000000, 0.000000000000
gtv_c = 0.000000000000, 0.283458898287, 0.000000000000
|gtv_a| = 0.288183213258
|gtv_b| = 0.295269685715
|gtv_c| = 0.283458898287
Num. of grids overlapping with atom 1 = 21718
Num. of grids overlapping with atom 2 = 21698
Num. of grids overlapping with atom 3 = 21712
Num. of grids overlapping with atom 4 = 21738
Num. of grids overlapping with atom 5 = 21716
Num. of grids overlapping with atom 6 = 21718
Num. of grids overlapping with atom 7 = 21704
Num. of grids overlapping with atom 8 = 21714
Num. of grids overlapping with atom 9 = 21714
Num. of grids overlapping with atom 10 = 21704
Num. of grids overlapping with atom 11 = 21718
Num. of grids overlapping with atom 12 = 21716
Num. of grids overlapping with atom 13 = 21740
Num. of grids overlapping with atom 14 = 21712
Num. of grids overlapping with atom 15 = 21698
Num. of grids overlapping with atom 16 = 21720
Num. of grids overlapping with atom 17 = 21710
Num. of grids overlapping with atom 18 = 21710
Num. of grids overlapping with atom 19 = 21718
Num. of grids overlapping with atom 20 = 21698
..........
......


*******************************************************
SCF calculation at MD = 1
*******************************************************

<MD= 1> Calculation of the overlap matrix
<MD= 1> Calculation of the nonlocal matrix
<MD= 1> Calculation of the VNA projector matrix

******************* MD= 1 SCF= 1 *******************
<Band> Solving the eigenvalue problem...
KGrids1: -0.49751 -0.49254 -0.48756 -0.48259 -0.47761 -0.47264 -0.46766 -0.46269 -0.45771 -0.45274 -0.44776 -0.44279 -0.43781 -0.43283 -0.42786 -0.42288 -0.41791 -0.41293 -0.40796 -0.40298 -0.39801 -0.39303 -0.38806 -0.38308 -0.37811 -0.37313 -0.36816 -0.36318 -0.35821 -0.35323 -0.34826 -0.34328 -0.33831 -0.33333 -0.32836 -0.32338 -0.31841 -0.31343 -0.30846 -0.30348 -0.29851 -0.29353 -0.28856 -0.28358 -0.27861 -0.27363 -0.26866 -0.26368 -0.25871 -0.25373 -0.24876 -0.24378 -0.23880 -0.23383 -0.22885 -0.22388 -0.21890 -0.21393 -0.20895 -0.20398 -0.19900 -0.19403 -0.18905 -0.18408 -0.17910 -0.17413 -0.16915 -0.16418 -0.15920 -0.15423 -0.14925 -0.14428 -0.13930 -0.13433 -0.12935 -0.12438 -0.11940 -0.11443 -0.10945 -0.10448 -0.09950 -0.09453 -0.08955 -0.08458 -0.07960 -0.07463 -0.06965 -0.06468 -0.05970 -0.05473 -0.04975 -0.04478 -0.03980 -0.03482 -0.02985 -0.02487 -0.01990 -0.01492 -0.00995 -0.00497 0.00000 0.00498 0.00995 0.01493 0.01990 0.02488 0.02985 0.03483 0.03980 0.04478 0.04975 0.05473 0.05970 0.06468 0.06965 0.07463 0.07960 0.08458 0.08955 0.09453 0.09950 0.10448 0.10945 0.11443 0.11940 0.12438 0.12935 0.13433 0.13930 0.14428 0.14925 0.15423 0.15920 0.16418 0.16916 0.17413 0.17911 0.18408 0.18906 0.19403 0.19901 0.20398 0.20896 0.21393 0.21891 0.22388 0.22886 0.23383 0.23881 0.24378 0.24876 0.25373 0.25871 0.26368 0.26866 0.27363 0.27861 0.28358 0.28856 0.29353 0.29851 0.30348 0.30846 0.31343 0.31841 0.32338 0.32836 0.33333 0.33831 0.34328 0.34826 0.35323 0.35821 0.36319 0.36816 0.37314 0.37811 0.38309 0.38806 0.39304 0.39801 0.40299 0.40796 0.41294 0.41791 0.42289 0.42786 0.43284 0.43781 0.44279 0.44776 0.45274 0.45771 0.46269 0.46766 0.47264 0.47761 0.48259 0.48756 0.49254 0.49751
KGrids2: 0.00000
KGrids3: 0.00000
<Band_DFT> Eigen, time=34.270912
<Band_DFT> DM, time=48.431466
1 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00)
2 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
3 C MulP 2.03 1.95 sum 3.98 diff 0.07 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 (180.00 0.00)
4 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
5 C MulP 2.01 1.98 sum 3.99 diff 0.03 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 (180.00 0.00)
6 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
7 C MulP 2.01 1.99 sum 4.00 diff 0.02 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 (180.00 0.00)
8 C MulP 2.00 1.99 sum 4.00 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
9 C MulP 2.00 1.99 sum 4.00 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
10 C MulP 2.01 1.99 sum 4.00 diff 0.02 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 (180.00 0.00)
11 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
12 C MulP 2.01 1.98 sum 3.99 diff 0.03 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 (180.00 0.00)
13 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
14 C MulP 2.03 1.95 sum 3.98 diff 0.07 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 (180.00 0.00)
15 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
16 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00)
17 H MulP 0.53 0.47 sum 1.00 diff 0.05 ( 0.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.05 ( 0.00 0.00)
18 H MulP 0.53 0.47 sum 1.00 diff 0.05 ( 0.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.05 ( 0.00 0.00)
19 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00)
20 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
..........
......

Sum of MulP: up = 66.91761 down = 65.08239
total= 132.00000 ideal(neutral)= 132.00000
<DFT> Total Spin Moment (muB) 1.410107658 Angles 180.000000000 0.000000000
<DFT> Total Orbital Moment (muB) 0.000000000 Angles 90.000000000 0.000000000
<DFT> Total Moment (muB) 1.410107658 Angles 180.000000000 0.000000000
<DFT> Mixing_weight= 0.001000000000
<DFT> Uele = -50.509600151669 dUele = 1.000000000000
<DFT> NormRD = 1.000000000000 Criterion = 0.000000001000

******************* MD= 1 SCF= 2 *******************
<Poisson> Poisson's equation using FFT...
<Set_Hamiltonian> Hamiltonian matrix for VNA+dVH+Vxc...
<Band> Solving the eigenvalue problem...
KGrids1: -0.49751 -0.49254 -0.48756 -0.48259 -0.47761 -0.47264 -0.46766 -0.46269 -0.45771 -0.45274 -0.44776 -0.44279 -0.43781 -0.43283 -0.42786 -0.42288 -0.41791 -0.41293 -0.40796 -0.40298 -0.39801 -0.39303 -0.38806 -0.38308 -0.37811 -0.37313 -0.36816 -0.36318 -0.35821 -0.35323 -0.34826 -0.34328 -0.33831 -0.33333 -0.32836 -0.32338 -0.31841 -0.31343 -0.30846 -0.30348 -0.29851 -0.29353 -0.28856 -0.28358 -0.27861 -0.27363 -0.26866 -0.26368 -0.25871 -0.25373 -0.24876 -0.24378 -0.23880 -0.23383 -0.22885 -0.22388 -0.21890 -0.21393 -0.20895 -0.20398 -0.19900 -0.19403 -0.18905 -0.18408 -0.17910 -0.17413 -0.16915 -0.16418 -0.15920 -0.15423 -0.14925 -0.14428 -0.13930 -0.13433 -0.12935 -0.12438 -0.11940 -0.11443 -0.10945 -0.10448 -0.09950 -0.09453 -0.08955 -0.08458 -0.07960 -0.07463 -0.06965 -0.06468 -0.05970 -0.05473 -0.04975 -0.04478 -0.03980 -0.03482 -0.02985 -0.02487 -0.01990 -0.01492 -0.00995 -0.00497 0.00000 0.00498 0.00995 0.01493 0.01990 0.02488 0.02985 0.03483 0.03980 0.04478 0.04975 0.05473 0.05970 0.06468 0.06965 0.07463 0.07960 0.08458 0.08955 0.09453 0.09950 0.10448 0.10945 0.11443 0.11940 0.12438 0.12935 0.13433 0.13930 0.14428 0.14925 0.15423 0.15920 0.16418 0.16916 0.17413 0.17911 0.18408 0.18906 0.19403 0.19901 0.20398 0.20896 0.21393 0.21891 0.22388 0.22886 0.23383 0.23881 0.24378 0.24876 0.25373 0.25871 0.26368 0.26866 0.27363 0.27861 0.28358 0.28856 0.29353 0.29851 0.30348 0.30846 0.31343 0.31841 0.32338 0.32836 0.33333 0.33831 0.34328 0.34826 0.35323 0.35821 0.36319 0.36816 0.37314 0.37811 0.38309 0.38806 0.39304 0.39801 0.40299 0.40796 0.41294 0.41791 0.42289 0.42786 0.43284 0.43781 0.44279 0.44776 0.45274 0.45771 0.46269 0.46766 0.47264 0.47761 0.48259 0.48756 0.49254 0.49751
KGrids2: 0.00000
KGrids3: 0.00000
<Band_DFT> Eigen, time=37.292076
<Band_DFT> DM, time=48.397084
1 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00)
2 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
3 C MulP 2.03 1.95 sum 3.98 diff 0.07 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 (180.00 0.00)
4 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
5 C MulP 2.01 1.98 sum 3.99 diff 0.03 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 (180.00 0.00)
6 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
7 C MulP 2.01 1.99 sum 4.00 diff 0.02 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 (180.00 0.00)
8 C MulP 2.00 1.99 sum 4.00 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
9 C MulP 2.00 1.99 sum 4.00 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
10 C MulP 2.01 1.99 sum 4.00 diff 0.02 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.02 (180.00 0.00)
11 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
12 C MulP 2.01 1.98 sum 3.99 diff 0.03 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.03 (180.00 0.00)
13 C MulP 2.00 1.99 sum 3.99 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
14 C MulP 2.03 1.95 sum 3.98 diff 0.07 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.07 (180.00 0.00)
15 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
16 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00)
17 H MulP 0.53 0.47 sum 1.00 diff 0.05 ( 0.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.05 ( 0.00 0.00)
18 H MulP 0.53 0.47 sum 1.00 diff 0.05 ( 0.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.05 ( 0.00 0.00)
19 C MulP 2.20 1.95 sum 4.15 diff 0.25 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.25 (180.00 0.00)
20 C MulP 1.96 1.95 sum 3.90 diff 0.01 (180.00 0.00) Ml 0.00 ( 90.00 0.00) Ml+s 0.01 (180.00 0.00)
..........
......

Sum of MulP: up = 66.91749 down = 65.08251
total= 132.00000 ideal(neutral)= 132.00000
<DFT> Total Spin Moment (muB) 1.410155144 Angles 180.000000000 0.000000000
<DFT> Total Orbital Moment (muB) 0.000000000 Angles 90.000000000 0.000000000
<DFT> Total Moment (muB) 1.410155144 Angles 180.000000000 0.000000000
<DFT> Mixing_weight= 0.001000000000
<DFT> Uele = -50.537764932120 dUele = 0.028164780451
<DFT> NormRD = 5.498621424794 Criterion = 0.000000001000
メンテ
Re: The strange Nan result for negf_example/Lead-L-8ZGNR-NC.dat ( No.3 )
Date: 2016/12/27 15:04
Name: T. Ozaki

Hi,

I also reproduced the erratic behavior for Lead-R-8ZGNR-NC.dat
when using two and three MPI processes.
The error did not appear when I used four MPI processes and more.
There must be a some program bug. Once I fix it, I will let you know.

Regards,

TO
メンテ
Re: The strange Nan result for negf_example/Lead-L-8ZGNR-NC.dat ( No.4 )
Date: 2016/12/28 00:08
Name: Kylin

Dear TO

Thanks for your support. Actually I has successfully bypassed this problem by modifying the atom config in both Lead-R-8ZGNR-NC.dat and NEGF-8ZGNR-NC.dat files.
I attached the runtestNEGF.result in the following

------ Origin Atom Confige -------
1 C 0.0000005 0.7140385 6.1011879 2.5000000 1.5000000 90.0 90.0 0.0 0.0 0 off
------ Modified Atom Confige -------
1 C 0.0000005 0.7140385 6.1011879 2.5000000 1.5000000 90.0000001 90.0 0.0 0.0 0 off

It seems that in dealing with the 8th column number (some kind of degree??), certain math library may return NAN or infty for exact value of 90. Unfortunately this erratic problem may attributed to the compilation optimization process and may greatly depends on the compiler and math library or even the machine. So I wonder whether or not TO could really solve this problem.

BTW, could you explain the meaning of 8~13 columns in the Atoms.SpeciesAndCoordinates setup. I am sorry but I didn't find that in the manual only for the previous 1~7 columns

Cheers

Kylin


----------- runtestNEGF.result ---------------
1 negf_example/Lead-Au-Chain-NC. Elapsed time(s)= 28.68 diff Utot= 0.000000000186 diff Force= 0.000000002299
diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000
2 negf_example/Lead-Chain.dat Elapsed time(s)= 5.69 diff Utot= 0.000000000034 diff Force= 0.000000000000
diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000
3 negf_example/Lead-Graphene.dat Elapsed time(s)= 9.45 diff Utot= 0.000000000007 diff Force= 0.000000000000
diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000
4 negf_example/Lead-L-8ZGNR-NC.d Elapsed time(s)= 299.06 diff Utot= 0.000000000004 diff Force= 0.000000000018
diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000
5 negf_example/Lead-L-8ZGNR.dat Elapsed time(s)= 158.95 diff Utot= 0.000000000005 diff Force= 0.000000000003
diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000
6 negf_example/Lead-R-8ZGNR-NC.d Elapsed time(s)= 309.52 diff Utot= 0.000000000001 diff Force= 0.000000000018
diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000
7 negf_example/Lead-R-8ZGNR.dat Elapsed time(s)= 153.28 diff Utot= 0.000000000005 diff Force= 0.000000000001
diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000
8 negf_example/NEGF-8ZGNR-0.3.da Elapsed time(s)= 812.91 diff Utot= 0.000000000001 diff Force= 0.000000000670
diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000
9 negf_example/NEGF-8ZGNR-NC.dat Elapsed time(s)= 2123.76 diff Utot= 0.000000000036 diff Force= 0.000000000304
diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000
10 negf_example/NEGF-Au-Chain-NC. Elapsed time(s)= 497.77 diff Utot= 0.000003858401 diff Force= 0.000000001055
diff EigenChannel= 0.000004341700 diff CurrentDensity= 0.000000000000
11 negf_example/NEGF-Chain.dat Elapsed time(s)= 443.41 diff Utot= 0.000000001914 diff Force= 0.000000003178
diff EigenChannel= 0.000000000100 diff CurrentDensity= 0.000000000000
12 negf_example/NEGF-Graphene.dat Elapsed time(s)= 23.24 diff Utot= 0.000000141372 diff Force= 0.000000002245
diff EigenChannel= 0.000000000000 diff CurrentDensity= 0.000000000000


Total elapsed time (s) 4865.73
メンテ
Re: The strange Nan result for negf_example/Lead-L-8ZGNR-NC.dat ( No.5 )
Date: 2017/03/11 09:21
Name: T. Ozaki

Hi,

It turned out that the problem is caused by a math library routine, zheevx, which is
called from EigenBand_lapack.c. I have a lot of experiences that zheevx in MKL tends
to fail for matrices, especially for, having multiple degenerate eigenvalues,
while ACML is more robust for such a problem.

In fact I found that the problem happens for MKL in composer_xe_2011, but not for
ACML5.3.0.


The meaning of 8-13 columns is found at
http://www.openmx-square.org/openmx_man3.8/node99.html


Regards,

TO
メンテ

Page: [1]

Title (must) Move the thread to the top
Your Name (must)
E-Mail (must)
URL
Password (used in modification of the submitted text)
Comment (must)

   Save Cookie