|  Re: scf convergence problem of Pt(111) slab ( No.1 ) | 
|  Date: 2015/02/02 19:41 Name: Artem Pulkin  <artem.pulkin@epfl.ch>
 
Increase scf.mixing.history, decrease scf.mixing.weights. I would also go for a smaller K-grid to speed up calculations when finding convergence.
 Artem
 | 
|  Re: scf convergence problem of Pt(111) slab ( No.2 ) | 
|  Date: 2015/02/02 19:43 Name: Artem Pulkin  <artem.pulkin@epfl.ch>
 
And, of course, set the z component of your kgrid to 1 since you have vacuum there anyway.
 | 
|  Re: scf convergence problem of Pt(111) slab ( No.3 ) | 
|  Date: 2015/02/03 10:41 Name: Wang Yuanqing  <yuanqing.wang@riken.jp>
 
Thanks. I will try.
 | 
|  Re: scf convergence problem of Pt(111) slab ( No.4 ) | 
|  Date: 2015/02/03 20:46 Name: Eike Schwier
 
You may also try changing 
 scf.EigenvalueSolver krylov
 
 to
 
 scf.EigenvalueSolver band
 
 I tried krylov on my slab (Fe(001)) and while band solver works perfectly well, krylov does not converge.
 
 best,
 Eike
 
 | 
|  Re: scf convergence problem of Pt(111) slab ( No.5 ) | 
|  Date: 2015/02/03 21:11 Name: Wang Yuanqing  <yuanqing.wang@riken.jp>
 
Dear Eike,
 Thanks for your advice!!!
 
 Best,
 
 Yuanqing Wang
 | 
|  Re: scf convergence problem of Pt(111) slab ( No.6 ) | 
|  Date: 2015/02/04 00:14 Name: T. Ozaki
 
Hi, 
 > I tried krylov on my slab (Fe(001)) and while band solver works perfectly well,
 > krylov does not converge.
 
 This is not a statement applicable to general cases.
 In our experiences, the SCF convergence with the Krylov subspace method is almost
 the same as that for the conventional diagonalization if the parameters for the Krylov
 subspace method are properly selected.
 
 As for Dr. Wang's case, there is no benefit from the O(N) Krylov subspace method
 because of the small number of atoms (64 atoms). Therefore, the conventional diagonalization
 method should be used because of the system size rather than the issue of SCF convergence.
 
 As for improving the SCF convergence, scf.Kerker.factor should also be controlled when charge
 sloshing seriously happens. The default value for your system is found at the beginning of the
 standard output, and you can increase it starting from the value to suppress the charge
 sloshing.
 
 Regards,
 
 TO
 | 
|  Re: scf convergence problem of Pt(111) slab ( No.7 ) | 
|  Date: 2015/02/09 23:01 Name: Wang Yuanqing  <yuanqing.wang@riken.jp>
 
Hi, everyone, I have finished the optimization. The output file said normally complete. However, there is one problem that in the last step it shows (in *.md) 
 time= 54.000 (fs) Energy= nan (Hartree)
 Pt nan nan nan nan nan nan
 Pt nan nan nan nan nan nan
 Pt nan nan nan nan nan nan
 Pt nan nan nan nan nan nan
 Pt nan nan nan nan nan nan
 Pt nan nan nan nan nan nan
 Pt nan nan nan nan nan nan
 
 I ***********************************************************
 ***********************************************************
 History of geometry optimization
 ***********************************************************
 ***********************************************************
 
 MD_iter SD_scaling |Maximum force| Maximum step Utot
 (Hartree/Bohr) (Ang) (Hartree)
 
 1 0.94486299 0.02759150 0.01379575 -5856.91586861
 2 0.94486299 0.01606989 0.00803495 -5857.14984447
 3 0.94486299 0.01907598 0.00953799 -5856.93657253
 4 0.94486299 0.00729197 0.00364599 -5857.21061504
 5 0.94486299 0.01615617 0.00854948 -5856.93089749
 6 0.94486299 0.02375217 0.03175063 -5857.27171959
 7 0.94486299 0.01988136 0.00315597 -5856.84984541
 8 0.94486299 0.02875813 0.02146401 -5857.09521834
 9 0.94486299 0.01072951 0.00941771 -5856.78896521
 10 0.94486299 0.01096619 0.01697957 -5856.78876624
 11 0.94486299 0.01402977 0.00118832 -5856.78442288
 12 0.94486299 0.01383315 0.03175063 -5856.78479801
 13 0.94486299 0.02117774 0.03175063 -5856.77018401
 14 0.94486299 0.02934267 0.02816966 -5856.74596006
 15 0.94486299 0.03694607 0.03175063 -5856.71572710
 16 0.94486299 0.02787128 0.02346278 -5856.74965165
 17 0.94486299 0.02280401 0.02127977 -5856.76638343
 18 0.94486299 0.01824109 0.00844446 -5856.77590884
 19 0.94486299 0.01750925 0.03175063 -5856.77804686
 20 0.94486299 0.01212411 0.03175063 -5856.78769485
 21 0.94486299 0.01590588 0.02719466 -5856.78315328
 22 0.94486299 0.01127205 0.03175063 -5856.79143028
 23 0.94486299 0.01063169 0.02375255 -5856.79642091
 24 0.94486299 0.01281693 0.03175063 -5856.79884203
 25 0.94486299 0.01266900 0.03175063 -5856.80225287
 26 0.94486299 0.01086150 0.03175063 -5856.80606466
 27 0.94486299 0.00837924 0.03175063 -5856.80951555
 28 0.94486299 0.00911700 0.03175063 -5856.81236912
 29 0.94486299 0.00814020 0.03175063 -5856.81499534
 30 0.94486299 0.00634491 0.02325574 -5856.81765437
 31 0.94486299 0.00573265 0.01900838 -5856.81925946
 32 0.94486299 0.00457758 0.01320247 -5856.82059333
 33 0.94486299 0.00458463 0.02329327 -5856.82151099
 34 0.94486299 0.00394223 0.01632725 -5856.82258070
 35 0.94486299 0.00294108 0.01040009 -5856.82304907
 36 0.94486299 0.00234652 0.01690421 -5856.82333041
 37 0.94486299 0.00227785 0.01094532 -5856.82356428
 38 0.94486299 0.00158086 0.00256572 -5856.82362277
 39 0.94486299 0.00142641 0.00794105 -5856.82366014
 40 0.94486299 0.00160206 0.00329423 -5856.82374936
 41 0.94486299 0.00103458 0.00363371 -5856.82379305
 42 0.94486299 0.00101118 0.00187525 -5856.82380781
 43 0.94486299 0.00089659 0.00410220 -5856.82382358
 44 0.94486299 0.00090536 0.00422437 -5856.82385138
 45 0.94486299 0.00079277 0.00329734 -5856.82386156
 46 0.94486299 0.00067582 0.00282583 -5856.82387177
 47 0.94486299 0.00064635 0.00258873 -5856.82386955
 48 0.94486299 0.00047301 0.00155999 -5856.82388068
 49 0.94486299 0.00034814 0.00083058 -5856.82388685
 50 0.94486299 0.00033708 0.00102269 -5856.82389209
 51 0.94486299 0.00033250 0.00244315 -5856.82389823
 52 0.94486299 0.00027979 0.00141702 -5856.82390876
 53 0.94486299 0.00034983 0.00149838 -5856.82391768
 54 0.94486299 0.00042407 0.00130811 -5856.82393016
 55 0.94486299 0.00034016 0.00086016 -5856.82392574
 56 0.94486299 0.00031982 0.00114946 -5856.82392631
 57 0.94486299 0.00028552 0.00078077 -5856.82392729
 58 0.94486299 0.00034575 0.00101126 -5856.82392953
 59 0.94486299 0.00035150 0.00215855 -5856.82393137
 60 0.94486299 0.00044210 0.00062501 -5856.82394280
 61 0.94486299 0.00045145 0.00060282 -5856.82394213
 62 0.94486299 0.00045259 0.00062623 -5856.82394293
 63 0.94486299 0.00046286 0.00054825 -5856.82394323
 64 0.94486299 0.00043714 0.00028397 -5856.82394177
 65 0.94486299 0.00044944 0.00058327 -5856.82394195
 66 0.94486299 0.00040858 0.00175268 -5856.82394497
 67 0.94486299 0.00039595 0.00210916 -5856.82394736
 68 0.94486299 0.00036718 0.00181225 -5856.82395054
 69 0.94486299 0.00035589 0.00048490 -5856.82394763
 70 0.94486299 0.00041868 0.00149762 -5856.82394804
 71 0.94486299 0.00033379 0.00078205 -5856.82394898
 72 0.94486299 0.00032111 0.00062764 -5856.82394918
 73 0.94486299 0.00035179 0.00035633 -5856.82394996
 74 0.94486299 0.00031683 0.00055199 -5856.82395128
 75 0.94486299 0.00030294 0.00030488 -5856.82395183
 76 0.94486299 0.00027244 0.00032820 -5856.82395270
 77 0.94486299 0.00027800 0.00078233 -5856.82395281
 78 0.94486299 0.00034311 0.00174234 -5856.82395381
 79 0.94486299 0.00033426 0.00030745 -5856.82395628
 80 0.94486299 0.00031417 0.00036228 -5856.82395808
 81 0.94486299 0.00032500 0.00012257 -5856.82395928
 82 0.94486299 0.00031693 0.00101867 -5856.82395953
 83 0.94486299 0.00035753 0.00095990 -5856.82395630
 84 0.94486299 0.00031074 0.00036934 -5856.82395970
 85 0.94486299 0.00032070 0.00222151 -5856.82395864
 86 0.94486299 0.00034637 0.00124637 -5856.82396337
 87 0.94486299 0.00031230 0.00039361 -5856.82396227
 88 0.94486299 0.00030502 0.00044654 -5856.82396117
 89 0.94486299 0.00030776 0.00017436 -5856.82395976
 90 0.94486299 0.00030705 0.00057602 -5856.82396034
 91 0.94486299 0.00031326 0.00021038 -5856.82396039
 92 0.94486299 0.00032040 0.00025081 -5856.82396122
 93 0.94486299 0.00034254 0.00184341 -5856.82396161
 94 0.94486299 0.00048906 0.00059169 -5856.82396574
 95 0.94486299 0.00054134 0.00056914 -5856.82396782
 96 0.94486299 0.00046433 0.00008597 -5856.82396684
 97 0.94486299 0.00045067 0.00047094 -5856.82396653
 98 0.94486299 0.00040977 0.00029057 -5856.82396587
 99 0.94486299 0.00037245 0.00135650 -5856.82396519
 100 0.94486299 0.00032333 0.00030617 -5856.82396226
 101 0.94486299 0.00033768 0.00060915 -5856.82396286
 102 0.94486299 0.00034173 0.00062457 -5856.82396490
 103 0.94486299 0.00032409 0.00059394 -5856.82396449
 104 0.94486299 0.00035214 0.00000000 -5856.82396668
 105 0.94486299 0.00035214 0.00212633 -5856.82396669
 106 0.94486299 0.00049741 0.00210756 -5856.82396254
 107 0.94486299 0.00054096 0.00257494 -5856.82388909
 108 0.94486299 0.00058930 0.00000000 -5856.82390787
 109 0.94486299 0.00000000 0.00000000 nan
 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
 
 
 Is this OK?
 
  | 
|  Re: scf convergence problem of Pt(111) slab ( No.8 ) | 
|  Date: 2015/02/10 21:23 Name: T. Ozaki
 
Hi, 
 The calculation seems to be reaching almost convergence, while I don't know what happened
 at the last step. To make sure whether the calculation is proper or not, you can restart
 your calculation using the structure stored in *.md.
 
 Regards,
 
 TO
 | 
|  Re: scf convergence problem of Pt(111) slab ( No.9 ) | 
|  Date: 2015/02/10 21:27 Name: Wang Yuanqing  <yuanqing.wang@riken.jp>
 
Thank you very much!
 BTW, why does "nan" occur? What is the meaning of this sign?
 
 Best,
 
 Yuanqing Wang
 | 
|  Re: scf convergence problem of Pt(111) slab ( No.10 ) | 
|  Date: 2015/02/10 21:45 Name: T. Ozaki
 
Hi, 
 "nan" is an error message in C, and means not a number.
 This appears when an improper calculation is performed such as division by zero.
 
 Regards,
 
 TO
 |