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2 Total energy, wave function, and electron density matrix in LCAO formulation

Denisty functional total energy Fiy considered in this document is
Eiot = Exin + Ena + EQ" + Esee + Exc + Escc, (1)

that is given as the sum of the kinetic energy Fki,, the electrostatic energy, Funa, Esee, Fscc, the exchange-
correlation energy E'xc, and the nonlocal pseudopotential energy EXNY. The detail of each energy component
will be described in Section 4. The OpenMX is based on the the norm-conserving pseudopotential formulation
and its valence and semi-core wave functions are expressed by the Linear Combination of Atomic Orbitals
(LCAO) with the expansion coefficients c:
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where R, is the Bravais lattice vector, and ¢ is a pseudo atomic orbital as the basis function. The indexes i, o,
« are for site, spin, and atomic orbital, respectively. Then the electron density n for spin o is

Z Z pa i jﬂéwf - ti)¢jﬁ(r —ti — Rn); 3)

where the density matrix pgg) 8 is defined as
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The integration is performed over the 1st Brillouin zone whose volume is V5. The summation is taken over the
occupied states.
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3 Basics for stress formulation

In the stress formulation of the LCAO scheme, the basis function under strain does not change its shape* but
its center moves according to the strain tensor € acting on the supercell:

¢m(r—t,~ —Rn) — (f)m (I'— (I+€) (ti —Rn)), (5)
where I is the identical matrix and the cell strain matrix is
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The cell matrix is supposed to be symmetric. Under the cell strain, an arbitrary position vector in the cell moves
as follows:
r— (I+e)-r. 7

An arbitrary position vector in the reciprocal space also moves like
k— (I+e) ! k. ®)

Equations (7) and (8) show that the exponential terms in Eqs (2) and (4) are invariant under strain. Equation (7)
also shows that the cell integration under stain is given as

/ dr — det(I+¢€) / dr 9)
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The atomic-scale stress tensor acting on a supercell is defined as the first-order expansion coefficient of the total
energy Ei(e) about a point £ = 0:

EE =B, + Z Aqpeyy + higher order, (10)
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Hereafter an operation like Eq. (11) will be expressed by 0f/0e~, (f is an arbitrary function or functional)
and we will call it the strain derivative of f. According to Eq. (11), it is easily seen that the strain derivative
satisfies the product rule:
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In addition, Eq. (7) shows that an arbitrary real-space vector under strain satisfies
al,
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This relationship is often utilized to transform the strain derivative to the deviation with respect to the atomic
coordinate, corresponding to a force acting on each atom:
0 ot o 0
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In the following section, we will derive the strain derivatives for energy components in Eq. (1) using the
operation in Eq. (11).

*This is not the case for plane-wave methods.



4 Strain derivative of each energy components

4.1 Kinetic energy component

The kinetic energy term is

P = X0 Y A, (e -

R,)). (16)

Then the strain derivative of the kinetic term is derived as
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The above expression involves the strain derivative of the electron density matrix. In the following subsections,
similar terms to this will be seen in the strain derivative for each energy component. They will be treated at the
end of this section and summed up to a term called overlap stress. About the terms in the third line, using the
following coordinate transformation r — t; — R,, — r, we have
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where only t; ,, is affected by the cell strain:

tji,n — (I + E?) . tji,n- (19)

Using the chain rule shown in Eq. (15), we can transform the strain derivative to the derivative with respect to
the atomic position:
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After the coordinate transformation,
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Inserting Eq. (21) to Eq. (17), we can obtain the strain derivative of the kinetic energy term.
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4.2 Energy component for F,,

F, is a part of the electrostatic energy:
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where the potential Vp, 7 is the sum of the local pseudopotential Vo s of atom I and the potential Vl(a) (r—tr)
(a) (I’ o

coming from the atomic electron density p;
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t7). Its strain derivative is
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As already explained, the term including the strain derivative of the electron density matrix is included in the
overlap stress. The second term in the right hand side of Eq. (23) can be expanded using a projector expansion:
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Contracting the indexes (Im() to a single index A and using (¢ia (r — t7 — Rn) | Vo, 1 RicYim) = Sian,ix, we
have
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In Eq. (25), we employed the chain rule as in Eq. (20). After some modification,
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Inserting Eq. (26) to Eq. (23), we can obtain the strain derivative of Ep,.



4.3 Non-local pseudopotential energy component

The nonlocal pseudopotential energy based on the norm-conserving pseudopotential technique is
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The strain derivative of this energy component can be obtained in a similar procedure taken in that of F,:
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The Kleinman-Bylander separated form is used to express the second term in the righthand side:
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Since this expression has a similar form to Eq. (24), its strain derivative can be obtained as done in Subsection
4.2. Using (¢ja(r — t; — Ry,) | @11) = Sia,11, We have
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Some simple modification on the derivative with respect to the atomic coordinate leads to
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Inserting Eq. (31) to Eq. (28), we can obtain the strain derivative of EQJ” .
4.4 Electrostatic energy component
The electron-electron Coulomb energy is
1
Esee = 3 on(r)dVydr. (32)
Q



This energy component represents the electrostatic interaction between difference charge én given by

(5 Zn I‘—t[ (33)

where nga) is an atomic charge density evaluated by a confinement atomic calculations associated with the

site 4. 0V is the electrostatic potential coming from dn. Considering Eq. (13), we have the following strain
derivative of this electrostatic energy:
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Note that the first term of the right-hand side is a strain derivative of the volume term shown in Eq. (9). Here,

we expand the second term:
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where we used the following equation,
o (x — t) /024y = Von'® (x — t1) (7 — 11). (36)
In Eq. (35), we need the strain derivative of the electron density:
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The strain derivatives of the PAO are
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Substituting Egs. (38) and (39) for Eq. (37), we have
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Furthermore, substituting Eq. (40) for Eq. (35) , the second term in the right-hand side of Eq. (34) turns to be
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We finally consider the third term in the right-hand side Eq. (34), which includes the strain derivative of the
Hartree potential. To calculate this term, we employ the Fourier expansion of the Hartree potential:

(41)
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As already mentioned, the exponential term is invariant under strain. To obtain Eq. (42), we used the following

expression
() = e @3)
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Then, the strain derivative of the electrostatic energy is obtained as follows:
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To obtain the above expression, we used the following relationship:
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4.5 Exchange correlation energy component

Here we consider the GGA exchange correlation energy given by

FOGA _ /Q Fxe(ne,ny, npee, Ve, Vg, Vigee)dr, (46)



where npec is a charge density used for a partial core correction (PCC). Note that the strain derivaive of the
LDA energy appears as a part of that of GGA, which is

OB _ / f Vg, Vg, Vingee)dr
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The above equation is derived by using the expression, 0 |Vn|/0Vn = Vn/|Vn| Ons/0eyy. The strain
derivative of the LDA energy will be obtained if the terms including the gradient of charges are removed from
Eq. (47). The strain derivative of the valence electron density of spin ¢ has been already shown in Eq. (37).
Since npc. is a localized function whose center locates at an atomic core position, the strain derivative of npcc
can be calculated as in Eq. (36):

OMnpee (v — t1) /0y = Vynpee(r — t1)(r" — t7) (48)
The gradient of n, in the LCAO formulation is
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In Eq. (47), the strain derivative of the gradient of electron density, Vn, appears. First we consider the expan-
sion of V7 with respect to strain &, Ven?. T The expansion of the gradient operater is
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Ve = [835%] . (50)

<11
Using [gig} = [gzﬂ and r® = [I + €] - r, we have

05 5 . 51)
— = En-
Bz, T

The strain is infinitesimal, hence [0, + 8777]_1 — [0y — €+n]. Then, Eq. (50) turns to be

Ve =1[6y; — e V. (52)
Eventually, V*n® is obtained as follows:
. e on
Von© = [0y — e V |0+ Y oy - | (53)
T Oem

The above equation gives the strain derivative of Vn,
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The stress formulation related to this term is different than that actually impremented in the OpenMX code. The formulation used
in the OpenMX is described in Appendix A.



where e, indicates the unit vector of «y direction. The above expression is understandable if we consider the
following relationship:
ExaVan ExyVyn ..V.n
ey V= | €yeVaen ey Vyn e,.V.n |. (55)
€20Van €, Vyn e..V.n

Inserting Eq.(54) to a part of Eq. (49), we have
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Using Egs. (40), (48), and (56), the strain derivative of EggA shown in Eq. (47) can be calculated.

4.6 Energy component for screened ion-ion potential
The energy coming from screened ion-ion interaction is a part of the electrostatic energy,
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Now we calculate the strain derivative of this energy component,
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The first term in the right-hand side is easily obtained using the chain rule, Eq. (14), as follows:
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To develop the second term in the right-hand side of Eq. (58) , the coordinate transformation is used as in Eq.
(18). Then we have
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Finally we obtain the strain derivative of the energy component as follows:
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4.7 Overlap component

Summing up the strain derivatives of the density matrix already appeared, we have
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The density matrix is defined in Eq. (4). Its strain derivative is
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To derive this equation, we used the expressions, 1/Vg — 1/det(I + €), dk — det(I — €)dk, and R,, - k —
R, - k. Substituting Eq. (63) for Eq. (62), we obtain
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In the above equation, © is a diagonal matrix consisting of Heaviside step functions, and €5 * indicates the
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eigenenergy of the wave function. The strain derivative of the orthonormalization condition ( c((,k)TS(k)c((,k) =1
) is
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Inserting Eq. (65) to Eq. (64), we obtain
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This is the overlap stress appearing because of the 1ncompleteness of basis functions.

A Appendix: OpenMX stress implementation of GGA

This section describes how the strain derivative term related to the gradient of electron density in Eq. (47)
is calculated in the OpenMX code. To treat this term accurately, it is necessary to formulate the derivative
term according to the discretization manner employed in this software; the GGA exchange-correlation energy
functional is integrated by using the trapezoidal rule on a real-space FFT grid:

Exc = AV Z Z fxc (ng, |[Vng |, nEe) (68)
o p

where AV is the volume per a single grid point. The function or coordinate with the index p indicates that on
the grid point p = (4, j, h), i.e., ng = n(rp), Vng = Vn?(ry), and rp = (2, Y;, 21). The strain derivative of
Eq.(68) is obtained as

O0Exc dfxc Ongy dfxc 0|Vng| ovng
= 0y A A ) ¢ 6
ey mtxc + VZG: zp: ong Doy + Vzg: zp: 9[Vng| 0Vng  0e, + [pec terms],  (69)

where [pcc terms] means terms related to the pseudo-core correction.

The problem is how to correctly calculate 9Vny /ey in the third term of the right-hand side of Eq. (69).
In the OpenMX, the gradient of a function is calculated by using a finite difference along the lattice vector: a,
b, and c. Hence, the finite difference should be transformed into that along the xyz coordinates to obtain the
gradient. First, we consider the total derivative of the density Vny,

on? on° on?

dn? =d d d 70
n xax—i-yay—i-zaz (70)

Considering a difference in the lattice vector a, differences in xyz directions are
dr = Aa,d\, dy = Aa,d),dz = Aa.dA. (71)

where Aa, Aa,, and Aa, are determined according to the grid spacing in the axis a. Then we can express the
finite difference of the density n; along the axis a using those along zyz axes:
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An‘ (a)

Figure A-1: Finite difference calculation in OpenMX

Generalizing Eq. (72) for the cases of the vectors b and ¢, we have

Aay Aay, Aa, 8(%: Lna;ga)
Ab, Ab, Ab, o =1 =W |, (73)
Ac;, Acy Ac, o’ ()

z oA

In the OpenMX, the finite difference is calculated as illustrated in Fig. A-1. Then,

on” on” o7 _

2Aa,d 2Aa,d 2Aa,d Anf(a). 74
a)\ﬁx+ ay)\ay+ ay)\ay n’(a) (74)

Note that, in Eq. (74), the gradients in zyz directions are the ones at the point a; in Fig. A-1. A generalized
form of Eq. (74) withd\ = 11is

Aa; Aay Aa, 85;: 1 An?(a)
Ab, Ab, Ab, S | =5 A ], (75)
Ac; Acy Ac, it An?(c)

Using the matrix
Aa; Aay, Aa,

F=| Ab, Ab, Ab, |, (76)
Ac; Acy Ac,
we can rewrite Eq. (75) as
1
FVn® = QAn". 77

This is the relationship between the finite differences along xyz direction and lattice vectors. Now we consider
the strain derivative of Eq. (77):
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where F~1 = G. Firstly, the second term is considered. The lattice vector a under strain becomes

Ad, 14 gy Exy €xz Aa,
Aay | = Eyx 1+ eyy Eyz Aa, |- (80)
Aag Err €2y 1+4+¢e,, Aa,

There are similar expressions for the cases of b and c¢. Then some examples for the strain derivatives of the
matrix F can be described as follows:

Aa, 0 0
F x
88 = Ab, 0 O (81)
“o Ac, 00
Aa, 0 0
OF Y
5o = | Qb 00 (82)
“y Ac, 0 0
Aa, 0 0
OF z
o= Ab, 0 0 (83)
coz Ac. 0 0
From the above equations, it is easily seen that OF /0e.,, have
Aay,
Ab, (84)
Acy,

in 7y th column and other elements are zero in 3x3 matrix. Then, the second term of the right-hand side of Eq.
(79) related to xy strain becomes 1
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3

a o

oy 2 Garar
i=1

Hereafter, the coordinates xyz are expressed by 1 z2xs, and

Aaz Aay Aa. a1 aiz a3
Abx Aby Abz — a1 a2 a3 .

Ac, Acy Ac.
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Generalizing the result, we have
one o
mn
o 21 Griai
1=

OF o 3
G 8€,Yn vn? TJ}»\/ l; GQiain . (86)

Qi

Since G is the inverse matrix of Eq. (76), Eq. (86) becomes

Oy
on? &
oy 2o Gailay (87)
i=1
3
gn” 3" Gsidsy
T =1
Returning to Eq. (79), we see that the first term of the right-hand side can be described as follows:
8An 1 Gll G12 G13 o na(i+1ajah)_ng(i_1ajah)
Goo—=5| Gu Gn Gn |3 n?(i,j +1,h) =n?(i,j — 1,h)
cn Gs1 Gs2 G33 S\ n(i,j h+ 1) —n7 (i, j,h — 1)
3
2 Gumf(+) = Z Gung(-) (88)
oo | X Gamf() - X Gung(-)
= —— n n
2 85777 = 217ty ~ 1y )
3 3
> Gami(+) — 22 Gung(-)
I=1 =1

where nf (£) means nf,, ;, if I =1,n7,,,,if I =2, and nf,, ., if I = 3. Note that the operator 0/0e,
in Eq. (88) only affects to n?. Back to Eq. (69), we see that the term related to Eq. (88) becomes

8An )

T (0
ZZZ Uhka (ZkaI — GpmS(— ))

o k 1ij,h
(39)
=D ZAWGM S 9) ) BEANELEHE
o k ijh k ij,k
A’L 1,jk’th1 8& +n z,jh z+1,jk’thlaa,w z,jh

g
v — A
J
ZZZ Azg 1thk28sﬂ, zgh Azg—l—lthkQ[)s zgh
— 9 9
o kwih \ A7 1 nGrs g — ATk, thSasw, ij.h

Considering
0A7

1
5 [AA%(CL)GM + AAZ(b)GkQ + AAZ(C)GkS] = B s 90)

we have
On

—AVZZV 8%.
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In Eq. (69), the term related to Eq. (86) becomes
A A7 -
v Z Z < 85'%7 Vn >
on? ong
= —AVZZA" [ 4 p61n+Ap2a 5277+AN(9 S3

Inserting Egs. (91) and (92) to Eq. (69), we eventually obtain
ovny

AVZZAU 8%
:_AVZZV p3€ ZZ@E P

whereAg _Aglax o1y + A P62n+A (5

D2 Oz~ p38x

15

(92)

(93)



