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1 Non-collinear spin density functional

A two component spinor wave function is defined by

W) = lela)+ |elB), (1)

where |¢%a) = |p%)|a) with a spatial function |¢%) and a spin function |@). In the notes we consider
non-Bloch functions, but the generalization of the description to the Bloch function is straightforward.
Then, a density operator is given by

A= 3 fult) (W),
= YL (lega) +1608)) (5ol + (281) 2)

where f, should be a step function, but it is replaced by the Fermi function in the implementation of
OpenMX. With the definition of density operator 7, a non-collinear electron density in real space is
given by

Nger = (ro|i|ra’),

= S fupded (3)

where 0,0’ = a. or 3, and |r) is a position eigenvector. The up- and down-spin densities n’T, ni at each
point are defined by diagonalizing a matrix consisting of a non-collinear electron densities as follows:
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Based on the spinor wave function Eq. (1), the non-collinear electron density Eq. (3), and the up- and
down-spin densities, the total energy non-collinear functional [1, 2] could be written by
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where the first term is the kinetic energy, the second the electron-core Coulomb energy, the third
term the electron-electron Coulomb energy, and the fourth term the exchange-correlation energy,
respectively. Also the total electron density n' at each point is the sum of up- and down-spin densities



n’T, ni Alternatively, the total energy FEiy can be expressed in terms of the Kohn-Sham eigenenergies

¢, as follows:
1
I / n'Virdy — / T (Vien)dv + Exc, (6)

where Vi, is a non-collinear exchange-correlation potential which will be discussed later on. Consid-
ering an orthogonality relation among spinor wave functions, let us introduce a functional F"

F = Ei+ Z vt (Ouwr — (Pulthr)) - (7)
vv!
The variation of F' with respect to the spatial wave function ¢ is found as:
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By setting the variation of F' with respect to the spatial wave function ¢ to zero, and considering a
unitary transformation of ¢f so that €,, can be diagonalized, we can obtain the non-collinear Kohn-

Sham equation as follows:
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We see that the off-diagonal potentials produce explicitly a direct interaction between « and [
spin components in this a-8 coupled equation. The off-diagonal potentials consist of the exchange-
correlation potential V. and the other contributions w such as spin-orbit interactions.

The U-matrix in Eq. (4) which relates the non-collinear electron densities to the up- and down-spin

densities is expressed by a rotation operator D [4]:

D = exp (y) (12)

with Pauli matrices

() () ()

where h is a unit vector along certain direction, and ¢ a rotational angle around h. Then, consider
the following two-step rotation of a unit vector (1,0) along the z-axis:

e First, rotate 6 on the y-axis — exp (—i%a)

e Second, rotate ¢ on the z-axis — exp (—z%“b)



The unit vector (1,0) along the z-axis is then transformed as follows:

( (1) ) = exp <—i%¢> exp (—i%9> ( (1) ) (14)

03¢ 090\ exp(—ig) 0 cos(%) —sin(¥)
€xp <_ZT> exp <_ZT> - ( 0 ’ exp(i%) ) ( Sin(é) COS(%Q) >
)

_ <exp(_'%)cos(g) —exp(—i% sin(g) ) (15)

where

exp(i%) sin(4) exp(i%) cos(?)

Thus, if the direction of the spin is specified by the Euler angle (6, ¢), the U-matrix in Eq. (4) is given
by the conjugate transposed matrix of Eq. (15).

_ exp(i%)cos(g) exp(—i%)sin(%))
U (—exp(i%)sin(g) exp(-i%)cos(%) (16)

The meaning of Eq. (4) becomes more clear when it is written in a matrix form as follows:

Un Ut = U{Zﬁ(ig)(@f}’* soﬁ’*)}tﬂ (17)

We see that the U-matrix diagonalizes the total (average) non-collinear spin matrix rather than the
non-collinear spin matrix of each state v. Since the exchange-correlation term is approximated by the
LDA or GGA, once the non-collinear spin matrix n is diagonalized, the diagonal up- and down-densities
are used to evaluate the exchange-correlation potentials Vi, within LDA or GGA:
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VXC = VXC 0 s
0 Vi
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= E(ch + ch)I + §(ch - VXC)J?H
= VII+ AVieos. (18)
Then, the potential Vi is transformed to the non-collinear exchange-correlation potential V. as
follows:
ch = UTchUa
= VI + AV, Ulosl,
= VXUCI—i- AVi.03,
B VI 4+ AViecos()  AVie exp(—i@) sin(6) (19)
B AVicexp(ig)sin(0) V& — AVi. cos(6) ’
where
5y — c'os(H.) exp(—ig¢) sin(6) ‘ (20)
exp(i¢) sin(f) —cos(6)

The Euler angle (6, ¢) and the up- and down-spin densities (n}, n/) are determined from the non-
collinear electron densities so that the following relation can be satisfied:

!
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After some algebra, they are given by

(22)

(23)

(24)

(25)

Im n,
¢ = —arctan (;Z Zﬁ)
0 — arctan (2(Re Nap cos(@) — Im ngp sin(qﬁ)))
Naa — Npp
1 1
n,T = 5(710“l +ngg) + §(naa —ngg) cos(f) + (Re nqpg cos(¢) — Im nyp sin(¢)) sin(0)
1 1
n| = 5(“0«1 +ngg) — §(naa —ngg) cos(f) — (Re nqpgcos(¢) — Im nypsin(¢)) sin(0)
Then, it is noted that the effective potential Vg in Eq. (11) can be written in Pauli matrices as
follows:
Vest Vooo + AVicos + W,
V()Jo +b-6+ W,
where
Vir + Vi,
W ( Waa Wap ) :
W Wpg
b1 AV sin(0) cos (o),
by AVie sin(0) sin(¢),
b3 AVie cos(0),
o = (0’1,0’2,0’3).

As well, the non-collinear spin density can be also written in Pauli matrices as follows:

(N(r)og + m(r) - o)

DN | =

n(r) =
with

N@r) = 3 fdbe)tu(r),

m(r) = éjfywl(r)awu(r),

where o( i1s a 2 X 2 unit matrix.



2 Spin-orbit coupling

In OpenMX, the spin-orbit coupling is incorporated through j-dependent pseudo potentials [3]. Under
a spherical potential, a couple of Dirac equations for the radial part is given by

dGni;i K 2 P

dr : ;G"U T T T Enlj V(r)| Frj =0, (36)
dFy;; K

d:la B ;Fnlj +alen; = V(r)] Gy =0, (37)

where G and L are the majority and minority components of the radial wave function. a = 1/¢
(1/137.036 in a.uw.). k=1and k = —(I+1) for j =1 — 3 and j = [+ 1, respectively. Combining both
Eqgs. and eliminating F', we have the following equation for G:

1 d? a’> dV d a? kdV  k(k+1)
oM () \dr2 T 2M(r) dr dr " 2M(r) r dr 12 nij — V| Gnij =0 38
[QM(T) <d7’2 " 2M(r) dr dr * 2M(r) r dr r2 T Enlj lj (38)
with
2
M(r) = 1+M_ (39)
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By solving numerically Eq. (38) and generating j-dependent pseudo potential VjpS by the Troullier and
Martine (TM) scheme, we can define a general pseudopotential by
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The (I>f}/[ and '1)]}/,[ " are constituents of the eigenfunction of Dirac equation. Since —J < M < J and
—J' < M' < J', the degeneracies of J and J' are 2(I + 1) and 2I, respectively. In the use of the
pseudopotential defined by Eq. (40), it is transformed to a separable form. By introducing a local
potential V* which approaches —% as r increases, the j-dependent pseudo potential is divided into

two contributions:

1 1
V? = VT4, (43)

-3 -1
Va7 = Vi + W (44)

. I+1 -1 s . .
The non-local potentials Vl\{iL_2 and Vy;? are non-zero within a certain radius. Then, the pseudopo-

tential defined by Eq. (40) is written by

I+1 N E M
Vo = Vit S| @Y 4 @ VR @ (43
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The non-local part is transformed by the Blochl projector into a separable form:
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where Cjc = R JCVI\ZIJ£2 and R is an orthonormal set defined by a norm [ errRV;IJ£2 R', and is calcu-

lated by the following Gram-Schmidt orthogonalization:

Similarly,
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Moreover, by unitary transforming the complex spherical harmonics functions Y into the real spherical

harmonics function Y, we obtain the following expressions:

with
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00 0 0 0 0 0
00 -10 0 0 0
01 0 0 0 0 0

Gl = %I—% 00 0 0 20 0 |, (86)
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where the real spherical harmonics functions Y are denoted by (z,y, 2), (322 — 2,22 — y?, zy, z2,y2),
and (522 — 3125222 — ar?, 5y2? — yr?, za? — 2y, xyz, 3 — 32y?, 3ya? — y?) for p-, d-, and f-orbitals,

respectively.



3 Non-collinear LDA+U

In conjunction with the on-site exchange term of the unrestricted Hartree-Fock theory, the total energy
of a non-collinear LDA+U method could be defined by

Eipa+u = Eipa +Ey (99)

with
Ey = % D3 Uipt [Tr(Nigt) — Tr(Nipt Nipt)]
TP
= 3 S UL TN~ TN, (100)

where 7 is a site index, [ an angular momentum quantum number, p a multiplicity number of radial
basis functions, and s an organized index of (ipl). N is an diagonalized occupation matrix with the
size of 2(21+1) x 2(21 +1). The U is the effective Coulomb electron-electron interaction energy. Also,
Erpa is given by Eq. (5). It should be noted that the occupation matrix is twice as size as the collinear
case. In this definition it is assumed that the exchange interaction arises when an electron is occupied
with a certain spin direction in each localized orbital. Considering the rotational invariance of total
energy with respect to each sub-shell s, Eq. (100) can be transformed as follows:

1
By = 53 Us [Tr(ANoAD) = Tr(4,N,ALAN, AD)
S

= % Z Us [Tr(ns) — Tr(nsns)],

= U S X | (101)
s om om,o'm’

where 0,0’ = a and 3. In this Eq. (101), although off-diagonal occupation terms in each sub-shell s are
taken into account, however, those between sub-shells are neglected. This treatment is consistent with
their rotational invariant functional by Dudarev et al.[5], and is a simple extension of the rotational
invariant functional for the case that a different U-value is given for each basis orbital indexed with
s = (ipl). In addition, the functional is rotationally invariant in the spin-space. In this simple
extension, we can not only include multiple d-orbitals as basis set, but also can easily derive the force
on atoms in a simple form as discussed later on.

The total energy Frpa+u can be expressed in terms of the Kohn-Sham eigenenergies ¢, as follows:

Eipa+v = Eipa + Evu,

= Eband + Eee + Ecc + Exc - Z<¢u|@LDA|¢u>

v

1 ! !
oo o0
= Fpana + AELpa + ) E Us E Mg mm!'Msm'm>
s om,a'm/’

= Fpand + AELpa + AFEy, (102)

+ | Eu _Z<"€/’u|@U|"€/’u> ’
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where AFE1pa and AFEy are the double counting corrections of LDA- and U-energies, respectively.
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3.1 Occupation number

The occupation number n (which is written by an italic font, while the electron density, appears in
Sec. 1, is denoted by a roman font) is defined by

smm Zfl/ ¢V|Ag(77nm",(/)ll>a (103)

where, to count the occupation number n, we define three occupation number operators given by

on-site
R0 = |simo)(sm'c!], (104)
full
ﬁgg{m, = \sma)(sm'a'\, (105)
dual
/ 1 ~
A §(\sﬁwﬂsmlo'\+\3ma><sm’o’\), (106)

where |smo) is the dual orbital of a original non-orthogonal basis orbital |smo), and is defined by
\smo) Z Ssm gy|s'm'c) (107)

with the overlap matrix S between non-orthogonal basis orbitals. Then, the following bi-orthogonal

relation is verified:
<s7ﬁa‘smlo'l> = 55ma,s’m’a’- (108)

The on-site and full occupation number operators have been proposed by Eschrig et al. [6] and Pickett
et al. [7], respectively. It is noted that these definitions do not satisfy a sum rule that the trace of
the occupation number matrix is equivalent to the total number of electrons, while only the dual
occupation number operator fulfills the sum rule as follows:

Te(n) = 3 {Te(pS) + Te(Sp)} = Nt (109
where p is the density matrix defined by
Pt = Z Foltbu vt 00,
qu e s (110)

with a density operator:

P e = |stho) (s, (111)

For three definition of occupation number operators, on-site, full, and dual, the occupation numbers

are given by

on-site

N = PG (112)

smm/ psm,sm”
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full

dual
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3.2 Effective potential

The derivative of the total energy Eq. (99) with respect to LCAO coefficient cf ;,, is given by

OFE1pA+U
801/ tn

with
on-site
full
dual

8”?7?1711’

aCu tn

OF1pA 0FEy
o.%
801/ tn V:tn
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N smm
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!
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800,* - st9mnCy sm/!s
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!
oo
ansmm S S o’
780 tn,sm sm’,t’n’cu,t’n’7
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]. ! /
_ o o
= 5 Ost0mn E Cy,t’n’St’n’,sm’ + S.Sm,tncy’sm’ .
t'n!

Substituting Eqgs. (116)-(118) for the second term of Eq. (115), we see

on-site
onge
oo’ " smm!
VU, smm’ o 0, %
smm/ v,tn
full
onge
oo’ " smm!
VU, smm’ o o, %
smm/ v,tn

> (tnol [Z 3" |sma Yo G (50! a%] 06"

o' t'n! oo’ smm/
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gIII tlnl O.IUII smm/
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! o " Ll n
v%asmm, 3 s;ﬂ:n (tno‘\ |smao! UU Smm, (sm'c"| + |smo’ )US me, (sm’ ”\] [t'n )ca piare (121)
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1 Y
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Therefore, the effective projector potentlals vy can be expressed by

on-site
vy = Z Z ‘Sma>v%?s’mm’<87ﬂ,a’|: (122)
oo’ smm/
full
vy = Z Z \sma)v%"’;mm,<sm'a'|, (123)
oo’ smm/
dual
= = Z Z {sma UU(,,sImm’<5mIUI‘ + \sma)v%i's’mm/<s77{’a’|] . (124)
0'0' smm

It is clear that the effective potentials of on-site and full are Hermitian. Also, it is verified that the
effective potential of dual is Hermitian as follows:

1 ) 1 )
(tno|iy|t'n'o’)y = D) Z V0 e Sttt + 3 Z Stnt'mVT tmn >
m
= ((t'n'a'\vﬂtna))*. (125)
It should be noted that in the full and dual the v{; of the site i can affect the different sites by the
projector potentials Eqs. (123) and (124) because of the overlap.
3.3 Force on atom

The force on atom is evaluated by

OEipa+uv _ O0Ewpa | 9Ey (126)
ORy, ORy, oRy’
The first term can be calculated in the same way as in the collinear case. The second term is evaluated
as follows:
6Rk oo smm! 8nsmm’ 8Rk
— Z acf 8”?7?1711’
Uy ,smm/’ aRk s

oo’ smm/

U* aco./
= ST 5 e oloolt e+ im0

oo’ tn,t'n’

o 8<tno®Ut’n’a’>}

+Cz,’:n Cu,t’n’ 8Rk (127)

13



Considering He, = ,S¢, and CTSC =1, the first and second terms in Eq. (127) can be transformed
into derivatives of the overlap matrix. The third term in Eq. (127) means that only the differentiation
for the overlap matrix is considered, And it is analytically differentiated, since it contains just two-

center integrals.

3.4 Enhancement of orbital polarization

The LDA4U functional can possess multiple stationary points due to the degree of freedom in the
configuration space of occupation ratio for degenerate orbitals. If electrons are occupied with a nearly
same occupancy ratio in degenerate orbitals at the first stage of SCF steps, the final electronic state
often converges a stationary minimum with non-orbital polarization after the SCF iteration. Also, it
is often likely that electrons are disproportionately occupied in some of degenerate orbitals due to the
exchange interaction, which is so-called ’orbital polarization’. As an example of the multiple minima,
we can point out a cobalt oxide (CoO) bulk in which d-orbitals of the cobalt atom are split to to4 and
eq states, and the five of seven d-electrons are occupied in #5, and e, states of the majority spin, and
remaining two d-electrons are occupied in the t, state of the minority spin. Then, it depends on the
initial occupancy ratios for the £, states of the minority spin how the remaining two d-electrons are
occupied in three #9, states. If the initial occupancy ratios are uniform, we may arrive at the non-orbital
polarized state. In fact, unless any special treatment is considered for the initial occupancy ratios, we
see the non-orbital polarized state of the CoO bulk. In order to explore the degree of freedom for the
orbital occupation, therefore, it is needed to develop a general method which explicitly induces the
orbital polarization. To induce the orbital polarization, a polarized redistribution scheme is proposed

as follows:
diagonalize dy =Vinv  dy: ascending order (128)
2(20+1)
summation D = Z dsm (129)
m=1

redistribution  dj; 5 =1,
dillJrl = ]-a

veny

d =D—(4l+2—m),

d,_1=0,.. (130)
where D = Zd;n (131)
m
back trasform  n'y = Vd',, V1 (132)

After diagonalizing each sub-shell matrix consisting of occupation numbers, we introduce a polarized
redistribution scheme given by Eq. (130) while keeping Eq. (129). Then, by a back transformation
Eq. (130), we can obtain a polarized occupation matrix for each sub-shell. This polarized redistribution
scheme is applied during the first few SCF steps, and then no modification is made during subsequent
SCF steps. This proposed scheme maybe applicable to a general case: any crystal field, any number
of electrons in the sub-shell, and any orbitals: p,d.f,...
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3.5 Density of states

Define

PZ.”U Z chv mck:/,i’n’si'li’,iné(E - 5uk)- (133)
Then, the density of states, D, is given by

1 1
DI(E) = (P + )+ S (Pe* = Pl cos(0)) + (Re P5 cos(¢q) — Im Pyl sin(@)) sin(8:), (134)

DL(E) = =(Poo+ PPy — L(Pao = PPP) cos(8y) — (Re P2 cos(i) — Tm P22 sin(én)) sin(6:). (135)
1K 2 1K 2

Also, the Mulliken populations, ), are given by

/dEf E)PZ (E). (136)
The local spin direction is determined by
ap
b = —arctan(codi), (137)
Re@);
2(Re Q7 —Tm Q¢
92 — arctan ( ( € QZ COS((ZS ) I;I/BQ Sln((lbl)) (138)
QP — Q;
3.6 Zeeman term
The contribution to the total energy arising the Zeeman term is given by
E, = E,s+ E,, (139)
where
Z B: - Z (Bjysiz + Bjysiy + Bj,siz), (140)
7
1 o 1 o o o
= 5 2B =53 (Bhlia+ Bijly + BllLi:). (141)
i i
The vector components of the spin magnetic moment are given by
Lot - M s
Siz = E(N — N¥)sin(6;) cos(¢;), (142)
14 1y o .
Siy = E(N — N¥)sin(6;) sin(¢i), (143)
1
Siy = E(NT — N cos(6;) (144)
with
1 1
Ni’T = §(Niao¢ + Nigg) + §(Nio¢a — Nigg) cos(6;) + (Re Njqp cos(¢i) — Im Njagsin(¢;)) sin(6;), (145)

15



2 (Niaa — Nigg) cos(6;) — (Re Niag cos(dy) — Tm Nigs sin(6y) sin(6,), (146)

1
N, = §(Nz'aa + Nigg) — 5

where N,,, is given by

!

Niggl = Tr(n;” ) (147)
After some alegebra we have
1
Siz = §(Nia,8 + Niga), (148)
i
Siy = §(Nio¢,8 - Ni,@a)a (149)
1
Siy, = §(Nma — Nw[g). (150)

The vector components of the orbital magnetic moment are given by

he = [ 4B S SE) Waliia)d(E - aw)
k Vv
=[S 1B) [(etuliolein) + o llef)] O(E - e,
k v

= Zz.f(gkv [Z ckymckum ¢m|l ‘¢zn> kumckum< ‘l |¢m> ’

KK

= mem d’m‘l |¢m> Pik m< |l ‘¢ > (151)

where v = x, y,or z. Noting that

. 1. .
o= g0+, (152)
~ 1 - o
= (-0 1
v = myn, (154)
LY = - m) 1+ m+ )y (155)
Y = \JU+m)-m+ )y (156)

and considering a unitary transformation of the spherical harmonic functions into a set of real harmonic

functions defined by

1 _
Yoo = BTN, (157)
1
Y, = —(Y7'4+Y] 158
Py zﬁ( . YD), (158)
Y, = -Y), (159)
it can be shown that
(Vie| 00 0
<Yzﬂy| lm(|YED$>7‘Y})y>a|YEDZ>) = 1 00 -1 ) (160)
(Y| 01 0
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(Ypal 0 0 1
<Y;Dy| ly(\%x>a|Y:oy>a|sz>) = 1 0 00 ’ (161)
(Y| -1 00
(Ypal 0 -1 0
<Y})y| lz(|}/bz>a‘)/;1y>a|1/bz>) = 1 1 0 0 . (162)
(Ve 0 0 0

It is noted that the expectation values of I, in terms of the real harmonic functions are purely imaginary
numbers. The unitary transformation for the other L-components can be found in a subroutine
'Set_Comp2Real()’ in 'SetPara_DFT.c’. Thus, one can obtain the matrix representation for [, in

terms of the real harmonic functions.
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