
Non-Collinear Spin Density Fun
tional: Ver. 1.0Taisuke Ozaki, RCIS, JAISTAugust 14, 20071 Non-
ollinear spin density fun
tionalA two 
omponent spinor wave fun
tion is de�ned byj �i = j'���i+ j'���i; (1)where j'���i � j'�� ij�i with a spatial fun
tion j'�� i and a spin fun
tion j�i. In the notes we 
onsidernon-Blo
h fun
tions, but the generalization of the des
ription to the Blo
h fun
tion is straightforward.Then, a density operator is given byn̂ = X� f� j �ih � j;= X� f� �j'���i+ j'���i� �h'���j+ h'���j� ; (2)where f� should be a step fun
tion, but it is repla
ed by the Fermi fun
tion in the implementation ofOpenMX. With the de�nition of density operator n̂, a non-
ollinear ele
tron density in real spa
e isgiven by n��0 = hr�jn̂jr�0i;= X� f�'��'�0;�� ; (3)where �; �0 = � or �, and jri is a position eigenve
tor. The up- and down-spin densities n0", n0# at ea
hpoint are de�ned by diagonalizing a matrix 
onsisting of a non-
ollinear ele
tron densities as follows: n0" 00 n0# ! = Un U y;= U  n�� n��n�� n�� !U y: (4)Based on the spinor wave fun
tion Eq. (1), the non-
ollinear ele
tron density Eq. (3), and the up- anddown-spin densities, the total energy non-
ollinear fun
tional [1, 2℄ 
ould be written byEtot = X�=�;�X� f�h'�� jT̂ j'�� i+X��0 Z w��0n�0� + 12 Z Z n0(r)n0(r0)jr� r0j dvdv0 +Ex
 fn��0g ; (5)where the �rst term is the kineti
 energy, the se
ond the ele
tron-
ore Coulomb energy, the thirdterm the ele
tron-ele
tron Coulomb energy, and the fourth term the ex
hange-
orrelation energy,respe
tively. Also the total ele
tron density n0 at ea
h point is the sum of up- and down-spin densities1



n0", n0#. Alternatively, the total energy Etot 
an be expressed in terms of the Kohn-Sham eigenenergies"� as follows: Etot = Eband � 12 Z n0VHdv � Z Tr(Vx
n)dv +Ex
; (6)where Vx
 is a non-
ollinear ex
hange-
orrelation potential whi
h will be dis
ussed later on. Consid-ering an orthogonality relation among spinor wave fun
tions, let us introdu
e a fun
tional F :F = Etot +X��0 ���0 (Æ��0 � h � j �0i) : (7)The variation of F with respe
t to the spatial wave fun
tion ' is found as:ÆFÆ'�;�� = T̂ '�� +X�0 w��0'�0� + VH'�� +X�0 V ��0x
 '�0� �X� ���'�� (8)with VH = Z d(r)jr� r0jdv; (9)V ��0x
 = ÆEx
Æn�0� : (10)By setting the variation of F with respe
t to the spatial wave fun
tion ' to zero, and 
onsidering aunitary transformation of '�� so that ��� 
an be diagonalized, we 
an obtain the non-
ollinear Kohn-Sham equation as follows:ÆFÆ'�;�� = 0ÆFÆ'�;�� = 0 9>=>;)  T̂ + w�� + VH + V ��x
 w�� + V ��x
w�� + V ��x
 T̂ + w�� + VH + V ��x
 ! '��'�� ! = "�  '��'�� ! : (11)We see that the o�-diagonal potentials produ
e expli
itly a dire
t intera
tion between � and �spin 
omponents in this �-� 
oupled equation. The o�-diagonal potentials 
onsist of the ex
hange-
orrelation potential Vx
 and the other 
ontributions w su
h as spin-orbit intera
tions.The U -matrix in Eq. (4) whi
h relates the non-
ollinear ele
tron densities to the up- and down-spindensities is expressed by a rotation operator D [4℄:D � exp��i�̂ � h�2 � (12)with Pauli matri
es�1 =  0 11 0 ! ; �2 =  0 �ii 0 ! ; �3 =  1 00 �1 ! ; (13)where h is a unit ve
tor along 
ertain dire
tion, and � a rotational angle around h. Then, 
onsiderthe following two-step rotation of a unit ve
tor (1,0) along the z-axis:� First, rotate � on the y-axis ! exp ��i�2�2 �� Se
ond, rotate � on the z-axis ! exp ��i�3�2 �
2



The unit ve
tor (1,0) along the z-axis is then transformed as follows: 10 ! ) exp��i�3�2 � exp��i�2�2 � 10 ! (14)where exp��i�3�2 � exp��i�2�2 � =  exp(�i�2 ) 00 exp(i�2 ) ! 
os( �2) � sin( �2 )sin( �2) 
os( �2 ) !=  exp(�i�2 ) 
os( �2 ) � exp(�i�2 ) sin( �2 )exp(i�2 ) sin( �2) exp(i�2 ) 
os( �2 ) ! (15)Thus, if the dire
tion of the spin is spe
i�ed by the Euler angle (�; �), the U -matrix in Eq. (4) is givenby the 
onjugate transposed matrix of Eq. (15).U =  exp(i�2 ) 
os( �2 ) exp(�i�2 ) sin( �2 )� exp(i�2 ) sin( �2 ) exp(�i�2 ) 
os( �2) ! (16)The meaning of Eq. (4) be
omes more 
lear when it is written in a matrix form as follows:Un U y = U (X� f�  '��'�� !� '�;�� '�;�� �)U y (17)We see that the U-matrix diagonalizes the total (average) non-
ollinear spin matrix rather than thenon-
ollinear spin matrix of ea
h state �. Sin
e the ex
hange-
orrelation term is approximated by theLDA or GGA, on
e the non-
ollinear spin matrix n is diagonalized, the diagonal up- and down-densitiesare used to evaluate the ex
hange-
orrelation potentials �Vx
 within LDA or GGA:�Vx
 =  V "x
 00 V #x
 ! ;= 12(V "x
 + V #x
)I + 12(V "x
 � V #x
)�3;= V 0x
I +�Vx
�3: (18)Then, the potential �Vx
 is transformed to the non-
ollinear ex
hange-
orrelation potential Vx
 asfollows: Vx
 = U y �Vx
U;= V 0x
I +�Vx
U y�3U;= V 0x
I +�Vx
��3;=  V 0x
 +�Vx
 
os(�) �Vx
 exp(�i�) sin(�)�Vx
 exp(i�) sin(�) V 0x
 ��Vx
 
os(�) ! ; (19)where ��3 =  
os(�) exp(�i�) sin(�)exp(i�) sin(�) � 
os(�) ! : (20)The Euler angle (�; �) and the up- and down-spin densities (n0", n0#) are determined from the non-
ollinear ele
tron densities so that the following relation 
an be satis�ed:UnU y =  n0" 00 n0# ! : (21)
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After some algebra, they are given by� = � ar
tan Im n��Re n��! (22)� = ar
tan 2(Re n�� 
os(�)� Im n�� sin(�))n�� � n�� ! (23)n0" = 12(n�� + n��) + 12(n�� � n��) 
os(�) + (Re n�� 
os(�)� Im n�� sin(�)) sin(�) (24)n0# = 12(n�� + n��)� 12(n�� � n��) 
os(�)� (Re n�� 
os(�)� Im n�� sin(�)) sin(�) (25)Then, it is noted that the e�e
tive potential Ve� in Eq. (11) 
an be written in Pauli matri
es asfollows: Ve� = V0�0 +�Vx
��3 +W;= V0�0 + b � �̂ +W; (26)where V 0e� = VH + V 0x
; (27)W =  w�� w��w�� w�� ! ; (28)b1 = �Vx
 sin(�) 
os(�); (29)b2 = �Vx
 sin(�) sin(�); (30)b3 = �Vx
 
os(�); (31)�̂ = (�1; �2; �3): (32)As well, the non-
ollinear spin density 
an be also written in Pauli matri
es as follows:n(r) = 12 (N(r)�0 +m(r) � �) (33)with N(r) = X� f� y�(r) �(r); (34)m(r) = X� f� y�(r)�̂ �(r); (35)where �0 is a 2� 2 unit matrix.
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2 Spin-orbit 
ouplingIn OpenMX, the spin-orbit 
oupling is in
orporated through j-dependent pseudo potentials [3℄. Undera spheri
al potential, a 
ouple of Dira
 equations for the radial part is given bydGnljdr + �rGnlj � a � 2a2 + "nlj � V (r)�Fnlj = 0; (36)dFnljdr � �r Fnlj + a ["nlj � V (r)℄Gnlj = 0; (37)where G and L are the majority and minority 
omponents of the radial wave fun
tion. a � 1=
(1/137.036 in a.u.). � = l and � = �(l+ 1) for j = l� 12 and j = l+ 12 , respe
tively. Combining bothEqs. and eliminating F , we have the following equation for G:" 12M(r)  d2dr2 + a22M(r) dVdr ddr + a22M(r) �r dVdr � �(�+ 1)r2 !+ "nlj � V #Gnlj = 0 (38)with M(r) = 1 + a2("nlj � V )2 : (39)By solving numeri
ally Eq. (38) and generating j-dependent pseudo potential V psj by the Troullier andMartine (TM) s
heme, we 
an de�ne a general pseudopotential byVps = Xlm �j�MJ iV l+ 12ps h�MJ j+ j�M 0J 0 iV l� 12ps h�M 0J 0 j� ; (40)where for J = l + 12 and M = m+ 12j�MJ i = � l +m+ 12l + 1 � 12 jY ml ij�i + � l �m2l + 1� 12 jY m+1l ij�i; (41)and for J 0 = l � 12 and M 0 = m� 12j�M 0J 0 i = � l �m+ 12l + 1 � 12 jY m�1l ij�i � � l +m2l + 1� 12 jY ml ij�i: (42)The �MJ and �M 0J 0 are 
onstituents of the eigenfun
tion of Dira
 equation. Sin
e �J � M � J and�J 0 � M 0 � J 0, the degenera
ies of J and J 0 are 2(l + 1) and 2l, respe
tively. In the use of thepseudopotential de�ned by Eq. (40), it is transformed to a separable form. By introdu
ing a lo
alpotential V L whi
h approa
hes �Ze�r as r in
reases, the j-dependent pseudo potential is divided intotwo 
ontributions: V l+ 12ps = V l+ 12NL + VL; (43)V l� 12ps = V l� 12NL + VL: (44)The non-lo
al potentials V l+ 12NL and V l� 12NL are non-zero within a 
ertain radius. Then, the pseudopo-tential de�ned by Eq. (40) is written byVps = VL +Xlm �j�MJ iV l+ 12NL h�MJ j+ j�M 0J 0 iV l� 12NL h�M 0J 0 j� ; (45)= VL + V̂ l+ 12NL + V̂ l� 12NL : (46)5



The non-lo
al part is transformed by the Blo
hl proje
tor into a separable form:V̂ l+ 12NL = Xlm j�MJ iV l+ 12NL h�MJ j;= Xlm X� jV l+ 12NL �RJ��MJ i 1
J� h �RJ��MJ V l+ 12NL j;= Xl� 1
J� hP̂ J��� + P̂ J��� + P̂ J��� + P̂ J���i (47)with P̂ J��� = lXm=�l�1� l +m+ 12l + 1 � jCJ�Y ml �ihCJ�Y ml �j; (48)P̂ J��� = lXm=�l�1� l �m2l + 1� jCJ�Y m+1l �ihCJ�Y m+1l �j; (49)P̂ J��� = lXm=�l�1� l +m+ 12l + 1 � 12 � l �m2l + 1� 12 jCJ�Y ml �ihCJ�Y m+1l �j; (50)P̂ J��� = lXm=�l�1� l +m+ 12l + 1 � 12 � l �m2l + 1� 12 jCJ�Y m+1l �ihCJ�Y ml �j; (51)where CJ� � �RJ�V l+ 12NL and �R is an orthonormal set de�ned by a norm R r2drRV l+ 12NL R0, and is 
al
u-lated by the following Gram-S
hmidt orthogonalization:�RJ� = RJ� � ��1X� �RJ� 1
J� Z r2dr �RJ�V l+ 12NL RJ�; (52)
J� = Z r2dr �RJ�V l+ 12NL �RJ� ; (53)Similarly, V̂ l� 12NL = Xlm j�M 0J 0 iV l� 12NL h�M 0J 0 j;= X� jV l� 12NL �RJ 0��M 0J 0 i 1
J 0� h �RJ 0��M 0J 0 V l� 12NL j;= Xl� 1
J 0� hP̂ J 0��� + P̂ J 0��� � P̂ J 0��� � P̂ J 0��� i (54)with P̂ J 0��� = lXm=�l+1� l �m+ 12l + 1 � jCJ 0�Y m�1l �ihCJ 0�Y m�1l �j; (55)P̂ J 0��� = lXm=�l+1� l +m2l + 1� jCJ 0�Y ml �ihCJ 0�Y ml �j; (56)P̂ J 0��� = lXm=�l+1� l �m+ 12l + 1 � 12 � l +m2l + 1� 12 jCJ 0�Y m�1l �ihCJ 0�Y ml �j; (57)P̂ J 0��� = lXm=�l+1� l �m+ 12l + 1 � 12 � l +m2l + 1� 12 jCJ 0�Y ml �ihCJ 0�Y m�1l �j: (58)
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Moreover, by unitary transforming the 
omplex spheri
al harmoni
s fun
tions Y into the real spheri
alharmoni
s fun
tion �Y , we obtain the following expressions:P̂ J��� = Xmm0 jCJ� �Y ml �iF 0l;mm0hCJ� �Y m0l �j; (59)P̂ J��� = Xmm0 jCJ� �Y ml �iF 1l;mm0hCJ� �Y m0l �j; (60)P̂ J��� = Xmm0 jCJ� �Y ml �iF 2l;mm0hCJ� �Y m0l �j; (61)P̂ J��� = Xmm0 jCJ� �Y ml �iF 3l;mm0hCJ� �Y m0l �j; (62)P̂ J 0��� = Xmm0 jCJ 0� �Y ml �iG0l;mm0hCJ 0� �Y m0l �j; (63)P̂ J 0��� = Xmm0 jCJ 0� �Y ml �iG1l;mm0hCJ 0� �Y m0l �j; (64)P̂ J 0��� = Xmm0 jCJ 0� �Y ml �iG2l;mm0hCJ 0� �Y m0l �j; (65)P̂ J 0��� = Xmm0 jCJ 0� �Y ml �iG3l;mm0hCJ 0� �Y m0l �j (66)with F 00 = 1; (67)F 01 = 23I + i3 0BB� 0 �1 01 0 00 0 0 1CCA ; (68)
F 02 = 35I + i5 0BBBBBBB� 0 0 0 0 00 0 �2 0 00 2 0 0 00 0 0 0 �10 0 0 1 0

1CCCCCCCA ; (69)
F 03 = 47I + i7

0BBBBBBBBBBBB�
0 0 0 0 0 0 00 0 �1 0 0 0 00 1 0 0 0 0 00 0 0 0 �2 0 00 0 0 2 0 0 00 0 0 0 0 0 �30 0 0 0 0 3 0

1CCCCCCCCCCCCA ; (70)
F 10 = 1; (71)F 11 = (F 01 )�; (72)F 12 = (F 02 )�; (73)F 13 = (F 03 )�; (74)F 20 = 0; (75)7



F 21 = 13 0BB� 0 0 10 0 0�1 0 0 1CCA+ i3 0BB� 0 0 00 0 �10 1 0 1CCA ; (76)
F 22 = 15 0BBBBBBB� 0 0 0 �p3 00 0 0 1 00 0 0 0 1p3 �1 0 0 00 0 �1 0 0

1CCCCCCCA+ i5 0BBBBBBB� 0 0 0 0 p30 0 0 0 10 0 0 �1 00 0 1 0 0�p3 �1 0 0 0
1CCCCCCCA ; (77)

F 23 = 17
0BBBBBBBBBBBBBBB�

0 �p6 0 0 0 0 0p6 0 0 �q52 0 0 00 0 0 0 �q52 0 00 q52 0 0 0 �q32 00 0 q52 0 0 0 �q320 0 0 q32 0 0 00 0 0 0 q32 0 0
1CCCCCCCCCCCCCCCA

+ i7
0BBBBBBBBBBBBBBB�

0 0 p6 0 0 0 00 0 0 0 q52 0 0�p6 0 0 �q52 0 0 00 0 q52 0 0 0 q320 �q52 0 0 0 �q32 00 0 0 0 q32 0 00 0 0 �q32 0 0 0
1CCCCCCCCCCCCCCCA ; (78)

F 30 = 0; (79)F 31 = (F 21 )y; (80)F 32 = (F 22 )y; (81)F 33 = (F 23 )y; (82)G00 = 0; (83)G01 = 13I � i3 0BB� 0 �1 01 0 00 0 0 1CCA ; (84)
G02 = 25I � i5 0BBBBBBB� 0 0 0 0 00 0 �2 0 00 2 0 0 00 0 0 0 �10 0 0 1 0

1CCCCCCCA ; (85)
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G03 = 37I � i7
0BBBBBBBBBBBB�

0 0 0 0 0 0 00 0 �1 0 0 0 00 1 0 0 0 0 00 0 0 0 �2 0 00 0 0 2 0 0 00 0 0 0 0 0 �30 0 0 0 0 3 0
1CCCCCCCCCCCCA ; (86)

G10 = 0; (87)G11 = (G01)�; (88)G12 = (G02)�; (89)G13 = (G03)�; (90)G20 = 0; (91)G21 = F 21 ; (92)G22 = F 22 ; (93)G23 = F 23 ; (94)G30 = 0; (95)G31 = F 31 ; (96)G32 = F 32 ; (97)G33 = F 33 ; (98)where the real spheri
al harmoni
s fun
tions �Y are denoted by (x; y; z), (3z2 � r2; x2 � y2; xy; xz; yz),and (5z2 � 3r2; 5xz2 � xr2; 5yz2 � yr2; zx2 � zy2; xyz; x3 � 3xy2; 3yx2 � y3) for p-, d-, and f -orbitals,respe
tively.

9



3 Non-
ollinear LDA+UIn 
onjun
tion with the on-site ex
hange term of the unrestri
ted Hartree-Fo
k theory, the total energyof a non-
ollinear LDA+U method 
ould be de�ned byELDA+U = ELDA +EU (99)with EU = 12Xi Xp Xl Uipl [Tr(Nipl)� Tr(NiplNipl)℄ ;= 12Xs Us [Tr(Ns)� Tr(NsNs)℄ ; (100)where i is a site index, l an angular momentum quantum number, p a multipli
ity number of radialbasis fun
tions, and s an organized index of (ipl). N is an diagonalized o

upation matrix with thesize of 2(2l+1)� 2(2l+1). The U is the e�e
tive Coulomb ele
tron-ele
tron intera
tion energy. Also,ELDA is given by Eq. (5). It should be noted that the o

upation matrix is twi
e as size as the 
ollinear
ase. In this de�nition it is assumed that the ex
hange intera
tion arises when an ele
tron is o

upiedwith a 
ertain spin dire
tion in ea
h lo
alized orbital. Considering the rotational invarian
e of totalenergy with respe
t to ea
h sub-shell s, Eq. (100) 
an be transformed as follows:EU = 12Xs Us hTr(AsNsAys)� Tr(AsNsAysAsNsAys)i ;= 12Xs Us [Tr(ns)� Tr(nsns)℄ ;= 12Xs Us 24X�m n��s;mm � X�m;�0m0 n��0s;mm0n�0�s;m0m35 ; (101)where �; �0 = � and �. In this Eq. (101), although o�-diagonal o

upation terms in ea
h sub-shell s aretaken into a

ount, however, those between sub-shells are negle
ted. This treatment is 
onsistent withtheir rotational invariant fun
tional by Dudarev et al.[5℄, and is a simple extension of the rotationalinvariant fun
tional for the 
ase that a di�erent U-value is given for ea
h basis orbital indexed withs � (ipl). In addition, the fun
tional is rotationally invariant in the spin-spa
e. In this simpleextension, we 
an not only in
lude multiple d-orbitals as basis set, but also 
an easily derive the for
eon atoms in a simple form as dis
ussed later on.The total energy ELDA+U 
an be expressed in terms of the Kohn-Sham eigenenergies "� as follows:ELDA+U = ELDA +EU;= Eband + "Eee +E

 +Ex
 �X� h � jv̂LDAj �i#+ "EU �X� h � jv̂Uj �i# ;= Eband +�ELDA + 12Xs Us X�m;�0m0 n��0s;mm0n�0�s;m0m;= Eband +�ELDA +�EU; (102)where �ELDA and �EU are the double 
ounting 
orre
tions of LDA- and U-energies, respe
tively.
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3.1 O

upation numberThe o

upation number n (whi
h is written by an itali
 font, while the ele
tron density, appears inSe
. 1, is denoted by a roman font) is de�ned byn��0smm0 = X� f�h � jn̂��0s;mm0 j �i; (103)where, to 
ount the o

upation number n, we de�ne three o

upation number operators given byon-site n̂��0smm0 = j ~sm�ih ~sm0�0j; (104)full n̂��0smm0 = jsm�ihsm0�0j; (105)dual n̂��0smm0 = 12 �j ~sm�ihsm0�0j+ jsm�ih ~sm0�0j� ; (106)where j ~sm�i is the dual orbital of a original non-orthogonal basis orbital jsm�i, and is de�ned byj ~sm�i = Xs0m0 S�1sm;s0m0 js0m0�i (107)with the overlap matrix S between non-orthogonal basis orbitals. Then, the following bi-orthogonalrelation is veri�ed: h ~sm�jsm0�0i = Æsm�;s0m0�0 : (108)The on-site and full o

upation number operators have been proposed by Es
hrig et al. [6℄ and Pi
kettet al. [7℄, respe
tively. It is noted that these de�nitions do not satisfy a sum rule that the tra
e ofthe o

upation number matrix is equivalent to the total number of ele
trons, while only the dualo

upation number operator ful�lls the sum rule as follows:Tr(n) = 12 fTr(�S) + Tr(S�)g = Nele; (109)where � is the density matrix de�ned by���0sm;s0m0 = X� f�h � j�̂��0sm;s0m0 j �i;= X� f�
�;��;sm
�0�;s0m0 (110)with a density operator: �̂��0sm;s0m0 = j ~sm�ih ~s0m0�0j: (111)For three de�nition of o

upation number operators, on-site, full, and dual, the o

upation numbersare given byon-site n��0smm0 = ���0sm;sm0 ; (112)11



full n��0smm0 = Xtn;t0n0 ���0tn;t0n0Stn;smSsm0;t0n0 ; (113)dual n��0smm0 = 12Xtn n���0sm;tnStn;sm0 + Ssm;tn���0tn;sm0o ; (114)3.2 E�e
tive potentialThe derivative of the total energy Eq. (99) with respe
t to LCAO 
oeÆ
ient 
��;tn is given by�ELDA+U�
�;��;tn = �ELDA�
�;��;tn + �EU�
�;��;tn ;= �ELDA�
�;��;tn +X�0 Xsmm0 �EU�n��0smm0 �n��0smm0�
�;��;tn ;= �ELDA�
�;��;tn +X�0 Xsmm0 Us(12Æ��0Æmm0 � n�0�sm0m)�n��0smm0�
�;��;tn ;= �ELDA�
�;��;tn +X�0 Xsmm0 v��0U;smm0 �n��0smm0�
�;��;tn (115)withon-site �n��0smm0�
�;��;tn = ÆstÆmn
�0�;sm0 ; (116)full �n��0smm0�
�;��;tn = Xt0n0 Stn;smSsm0;t0n0
�0�;t0n0 ; (117)dual �n��0smm0�
�;��;tn = 12 (ÆstÆmnXt0n0 
�0�;t0n0St0n0;sm0 + Ssm;tn
�0�;sm0) : (118)Substituting Eqs. (116)-(118) for the se
ond term of Eq. (115), we seeon-site Xsmm0 v��0U;smm0 �n��0smm0�
�;��;tn = X�000 Xt0n0htn�j "X�0�00 Xsmm0 j ~sm�0iv�0�00U;smm0h ~sm0�00j# jt0n0�000i
�000�;t0n0 ; (119)full Xsmm0 v��0U;smm0 �n��0smm0�
�;��;tn = X�000 Xt0n0htn�j "X�0�00 Xsmm0 jsm�0iv�0�00U;smm0hsm0�00j# jt0n0�000i
�000�;t0n0 ; (120)
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dual Xsmm0 v��0U;smm0 �n��0smm0�
�;��;tn = X�000 Xt0n0 htn�j12 X�0�00 Xsmm0 �j ~sm�0iv�0�00U;smm0 hsm0�00j+ jsm�0iv�0�00U;smm0 h ~sm0�00j� jt0n0�000i
�000�;t0n0 : (121)Therefore, the e�e
tive proje
tor potentials v̂U 
an be expressed byon-site v̂U = X��0 Xsmm0 j ~sm�iv��0U;smm0h ~sm0�0j; (122)full v̂U = X��0 Xsmm0 jsm�iv��0U;smm0hsm0�0j; (123)dual v̂U = 12X��0 Xsmm0 hj ~sm�iv��0U;smm0hsm0�0j+ jsm�iv��0U;smm0h ~sm0�0ji : (124)It is 
lear that the e�e
tive potentials of on-site and full are Hermitian. Also, it is veri�ed that thee�e
tive potential of dual is Hermitian as follows:htn�jv̂Ujt0n0�0i = 12Xm0 v��0U;tnm0Stm0;t0n0 + 12Xm Stn;t0mv��0U;t0mn0 ;= (ht0n0�0jv̂Ujtn�i)�: (125)It should be noted that in the full and dual the v�U of the site i 
an a�e
t the di�erent sites by theproje
tor potentials Eqs. (123) and (124) be
ause of the overlap.3.3 For
e on atomThe for
e on atom is evaluated by �ELDA+U�Rk = �ELDA�Rk + �EU�Rk ; (126)The �rst term 
an be 
al
ulated in the same way as in the 
ollinear 
ase. The se
ond term is evaluatedas follows:�EU�Rk = X��0 Xsmm0 �EU�n��0smm0 �n��0smm0�Rk ;= X��0 Xsmm0 v��0U;smm0 �n��0smm0�Rk ;= X� f�X��0 Xtn;t0n0(�
�;��;tn�Rk htn�jv̂Ujt0n0�0i
�0�;t0n0 + 
�;��;tnhtn�jv̂Ujt0n0�0i�
�0�;t0n0�Rk+
�;��;tn
�0�;t0n0 �htn�jv̂Ujt0n0�0i�Rk � : (127)
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Considering H
� = "�S
� and CySC = I, the �rst and se
ond terms in Eq. (127) 
an be transformedinto derivatives of the overlap matrix. The third term in Eq. (127) means that only the di�erentiationfor the overlap matrix is 
onsidered, And it is analyti
ally di�erentiated, sin
e it 
ontains just two-
enter integrals.3.4 Enhan
ement of orbital polarizationThe LDA+U fun
tional 
an possess multiple stationary points due to the degree of freedom in the
on�guration spa
e of o

upation ratio for degenerate orbitals. If ele
trons are o

upied with a nearlysame o

upan
y ratio in degenerate orbitals at the �rst stage of SCF steps, the �nal ele
troni
 stateoften 
onverges a stationary minimum with non-orbital polarization after the SCF iteration. Also, itis often likely that ele
trons are disproportionately o

upied in some of degenerate orbitals due to theex
hange intera
tion, whi
h is so-
alled 'orbital polarization'. As an example of the multiple minima,we 
an point out a 
obalt oxide (CoO) bulk in whi
h d-orbitals of the 
obalt atom are split to t2g andeg states, and the �ve of seven d-ele
trons are o

upied in t2g and eg states of the majority spin, andremaining two d-ele
trons are o

upied in the t2g state of the minority spin. Then, it depends on theinitial o

upan
y ratios for the t2g states of the minority spin how the remaining two d-ele
trons areo

upied in three t2g states. If the initial o

upan
y ratios are uniform, we may arrive at the non-orbitalpolarized state. In fa
t, unless any spe
ial treatment is 
onsidered for the initial o

upan
y ratios, wesee the non-orbital polarized state of the CoO bulk. In order to explore the degree of freedom for theorbital o

upation, therefore, it is needed to develop a general method whi
h expli
itly indu
es theorbital polarization. To indu
e the orbital polarization, a polarized redistribution s
heme is proposedas follows: diagonalize ds = V ynsV ds : as
ending order (128)summation D = 2(2l+1)Xm=1 dsm (129)redistribution d04l+2 = 1;d04l+1 = 1;:::;d0m = D � (4l + 2�m);d0m�1 = 0; :::: (130)where D =Xm d0m (131)ba
k trasform n0s = V d0mV y (132)After diagonalizing ea
h sub-shell matrix 
onsisting of o

upation numbers, we introdu
e a polarizedredistribution s
heme given by Eq. (130) while keeping Eq. (129). Then, by a ba
k transformationEq. (130), we 
an obtain a polarized o

upation matrix for ea
h sub-shell. This polarized redistributions
heme is applied during the �rst few SCF steps, and then no modi�
ation is made during subsequentSCF steps. This proposed s
heme maybe appli
able to a general 
ase: any 
rystal �eld, any numberof ele
trons in the sub-shell, and any orbitals: p,d,f,...
14



3.5 Density of statesDe�ne P ��0i� (E) = Xk X� 
�;�k�;i�
�0k�;i0�0Si0�0;i�Æ(E � "�k): (133)Then, the density of states, D, is given byD"i�(E) = 12(P��i� + P ��i� ) + 12(P��i� � P ��i� ) 
os(�i) + �Re P��i� 
os(�i)� Im P��i� sin(�i)� sin(�i); (134)D#i�(E) = 12(P��i� + P ��i� )� 12(P��i� � P ��i� ) 
os(�i)� �Re P��i� 
os(�i)� Im P��i� sin(�i)� sin(�i): (135)Also, the Mulliken populations, Q, are given byQ��0i = X� Z dEf(E)P ��0i� (E): (136)The lo
al spin dire
tion is determined by�i = � ar
tan(ImQ��iReQ��i ); (137)�i = ar
tan 2(Re Q��i 
os(�i)� Im Q��i sin(�i))Q��i �Q��i :! (138)3.6 Zeeman termThe 
ontribution to the total energy arising the Zeeman term is given byEz = Ezs +Ezo; (139)where Ezs = Xi Bsi � si =Xi (Bsixsix +Bsiysiy +Bsizsiz); (140)Ezo = 12Xi Boi � li = 12Xi (Boixlix +Boiyliy +Boizliz): (141)The ve
tor 
omponents of the spin magneti
 moment are given bysix = 12(N " �N #) sin(�i) 
os(�i); (142)siy = 12(N " �N #) sin(�i) sin(�i); (143)siz = 12(N " �N #) 
os(�i) (144)withN 0i" = 12(Ni�� +Ni��) + 12(Ni�� �Ni��) 
os(�i) + (Re Ni�� 
os(�i)� Im Ni�� sin(�i)) sin(�i); (145)
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N 0i# = 12(Ni�� +Ni��)� 12(Ni�� �Ni��) 
os(�i)� (Re Ni�� 
os(�i)� Im Ni�� sin(�i)) sin(�i); (146)where Ni��0 is given by Ni��0 = Tr(n��0i ): (147)After some alegebra we have six = 12(Ni�� +Ni��); (148)siy = i2(Ni�� �Ni��); (149)siz = 12(Ni�� �Ni��): (150)The ve
tor 
omponents of the orbital magneti
 moment are given byliv = Z dEXk X� f(E)h k� jl̂v j k�iÆ(E � "k�);= Z dEXk X� f(E) hh'�k� jl̂vj'�k�i+ h'�k� jl̂v j'�k�ii Æ(E � "k�);= Xk X� f("k�)24X�;�0 
�;�k�;i�
�k�;i�0h��i�jl̂vj��i�0i+ 
�;�k�;i�
�k�;i�0h��i�jl̂vj��i�0i35 ;= X�;�0 ���i�;i�0h��i�jl̂vj��i�0i+ ���i�;i�0h��i�jl̂vj��i�0i; (151)where v = x; y; or z. Noting that l̂x = 12(l̂+ + l̂�); (152)l̂y = 12i(l̂+ � l̂�); (153)l̂zY ml = mY ml ; (154)l̂+Y ml = q(l �m)(l +m+ 1)Y m+1l ; (155)l̂�Y ml = q(l +m)(l �m+ 1)Y m�1l ; (156)and 
onsidering a unitary transformation of the spheri
al harmoni
 fun
tions into a set of real harmoni
fun
tions de�ned by Ypx = 1p2(�Y �11 + Y 11 ); (157)Ypy = 1ip2(Y �11 + Y 11 ); (158)Ypz = �Y 01 ; (159)it 
an be shown that 0BB� hYpxjhYpyjhYpzj 1CCA l̂x(jYpxi; jYpyi; jYpzi) = i0BB� 0 0 00 0 �10 1 0 1CCA ; (160)
16



0BB� hYpxjhYpyjhYpzj 1CCA l̂y(jYpxi; jYpyi; jYpzi) = i0BB� 0 0 10 0 0�1 0 0 1CCA ; (161)0BB� hYpxjhYpyjhYpzj 1CCA l̂z(jYpxi; jYpyi; jYpzi) = i0BB� 0 �1 01 0 00 0 0 1CCA : (162)It is noted that the expe
tation values of l̂v in terms of the real harmoni
 fun
tions are purely imaginarynumbers. The unitary transformation for the other L-
omponents 
an be found in a subroutine'Set Comp2Real()' in 'SetPara DFT.
'. Thus, one 
an obtain the matrix representation for l̂v interms of the real harmoni
 fun
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