
Non-Collinear Spin Density Funtional: Ver. 1.0Taisuke Ozaki, RCIS, JAISTAugust 14, 20071 Non-ollinear spin density funtionalA two omponent spinor wave funtion is de�ned byj �i = j'���i+ j'���i; (1)where j'���i � j'�� ij�i with a spatial funtion j'�� i and a spin funtion j�i. In the notes we onsidernon-Bloh funtions, but the generalization of the desription to the Bloh funtion is straightforward.Then, a density operator is given byn̂ = X� f� j �ih � j;= X� f� �j'���i+ j'���i� �h'���j+ h'���j� ; (2)where f� should be a step funtion, but it is replaed by the Fermi funtion in the implementation ofOpenMX. With the de�nition of density operator n̂, a non-ollinear eletron density in real spae isgiven by n��0 = hr�jn̂jr�0i;= X� f�'��'�0;�� ; (3)where �; �0 = � or �, and jri is a position eigenvetor. The up- and down-spin densities n0", n0# at eahpoint are de�ned by diagonalizing a matrix onsisting of a non-ollinear eletron densities as follows: n0" 00 n0# ! = Un U y;= U  n�� n��n�� n�� !U y: (4)Based on the spinor wave funtion Eq. (1), the non-ollinear eletron density Eq. (3), and the up- anddown-spin densities, the total energy non-ollinear funtional [1, 2℄ ould be written byEtot = X�=�;�X� f�h'�� jT̂ j'�� i+X��0 Z w��0n�0� + 12 Z Z n0(r)n0(r0)jr� r0j dvdv0 +Ex fn��0g ; (5)where the �rst term is the kineti energy, the seond the eletron-ore Coulomb energy, the thirdterm the eletron-eletron Coulomb energy, and the fourth term the exhange-orrelation energy,respetively. Also the total eletron density n0 at eah point is the sum of up- and down-spin densities1



n0", n0#. Alternatively, the total energy Etot an be expressed in terms of the Kohn-Sham eigenenergies"� as follows: Etot = Eband � 12 Z n0VHdv � Z Tr(Vxn)dv +Ex; (6)where Vx is a non-ollinear exhange-orrelation potential whih will be disussed later on. Consid-ering an orthogonality relation among spinor wave funtions, let us introdue a funtional F :F = Etot +X��0 ���0 (Æ��0 � h � j �0i) : (7)The variation of F with respet to the spatial wave funtion ' is found as:ÆFÆ'�;�� = T̂ '�� +X�0 w��0'�0� + VH'�� +X�0 V ��0x '�0� �X� ���'�� (8)with VH = Z d(r)jr� r0jdv; (9)V ��0x = ÆExÆn�0� : (10)By setting the variation of F with respet to the spatial wave funtion ' to zero, and onsidering aunitary transformation of '�� so that ��� an be diagonalized, we an obtain the non-ollinear Kohn-Sham equation as follows:ÆFÆ'�;�� = 0ÆFÆ'�;�� = 0 9>=>;)  T̂ + w�� + VH + V ��x w�� + V ��xw�� + V ��x T̂ + w�� + VH + V ��x ! '��'�� ! = "�  '��'�� ! : (11)We see that the o�-diagonal potentials produe expliitly a diret interation between � and �spin omponents in this �-� oupled equation. The o�-diagonal potentials onsist of the exhange-orrelation potential Vx and the other ontributions w suh as spin-orbit interations.The U -matrix in Eq. (4) whih relates the non-ollinear eletron densities to the up- and down-spindensities is expressed by a rotation operator D [4℄:D � exp��i�̂ � h�2 � (12)with Pauli matries�1 =  0 11 0 ! ; �2 =  0 �ii 0 ! ; �3 =  1 00 �1 ! ; (13)where h is a unit vetor along ertain diretion, and � a rotational angle around h. Then, onsiderthe following two-step rotation of a unit vetor (1,0) along the z-axis:� First, rotate � on the y-axis ! exp ��i�2�2 �� Seond, rotate � on the z-axis ! exp ��i�3�2 �
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The unit vetor (1,0) along the z-axis is then transformed as follows: 10 ! ) exp��i�3�2 � exp��i�2�2 � 10 ! (14)where exp��i�3�2 � exp��i�2�2 � =  exp(�i�2 ) 00 exp(i�2 ) ! os( �2) � sin( �2 )sin( �2) os( �2 ) !=  exp(�i�2 ) os( �2 ) � exp(�i�2 ) sin( �2 )exp(i�2 ) sin( �2) exp(i�2 ) os( �2 ) ! (15)Thus, if the diretion of the spin is spei�ed by the Euler angle (�; �), the U -matrix in Eq. (4) is givenby the onjugate transposed matrix of Eq. (15).U =  exp(i�2 ) os( �2 ) exp(�i�2 ) sin( �2 )� exp(i�2 ) sin( �2 ) exp(�i�2 ) os( �2) ! (16)The meaning of Eq. (4) beomes more lear when it is written in a matrix form as follows:Un U y = U (X� f�  '��'�� !� '�;�� '�;�� �)U y (17)We see that the U-matrix diagonalizes the total (average) non-ollinear spin matrix rather than thenon-ollinear spin matrix of eah state �. Sine the exhange-orrelation term is approximated by theLDA or GGA, one the non-ollinear spin matrix n is diagonalized, the diagonal up- and down-densitiesare used to evaluate the exhange-orrelation potentials �Vx within LDA or GGA:�Vx =  V "x 00 V #x ! ;= 12(V "x + V #x)I + 12(V "x � V #x)�3;= V 0xI +�Vx�3: (18)Then, the potential �Vx is transformed to the non-ollinear exhange-orrelation potential Vx asfollows: Vx = U y �VxU;= V 0xI +�VxU y�3U;= V 0xI +�Vx��3;=  V 0x +�Vx os(�) �Vx exp(�i�) sin(�)�Vx exp(i�) sin(�) V 0x ��Vx os(�) ! ; (19)where ��3 =  os(�) exp(�i�) sin(�)exp(i�) sin(�) � os(�) ! : (20)The Euler angle (�; �) and the up- and down-spin densities (n0", n0#) are determined from the non-ollinear eletron densities so that the following relation an be satis�ed:UnU y =  n0" 00 n0# ! : (21)
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After some algebra, they are given by� = � artan Im n��Re n��! (22)� = artan 2(Re n�� os(�)� Im n�� sin(�))n�� � n�� ! (23)n0" = 12(n�� + n��) + 12(n�� � n��) os(�) + (Re n�� os(�)� Im n�� sin(�)) sin(�) (24)n0# = 12(n�� + n��)� 12(n�� � n��) os(�)� (Re n�� os(�)� Im n�� sin(�)) sin(�) (25)Then, it is noted that the e�etive potential Ve� in Eq. (11) an be written in Pauli matries asfollows: Ve� = V0�0 +�Vx��3 +W;= V0�0 + b � �̂ +W; (26)where V 0e� = VH + V 0x; (27)W =  w�� w��w�� w�� ! ; (28)b1 = �Vx sin(�) os(�); (29)b2 = �Vx sin(�) sin(�); (30)b3 = �Vx os(�); (31)�̂ = (�1; �2; �3): (32)As well, the non-ollinear spin density an be also written in Pauli matries as follows:n(r) = 12 (N(r)�0 +m(r) � �) (33)with N(r) = X� f� y�(r) �(r); (34)m(r) = X� f� y�(r)�̂ �(r); (35)where �0 is a 2� 2 unit matrix.
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2 Spin-orbit ouplingIn OpenMX, the spin-orbit oupling is inorporated through j-dependent pseudo potentials [3℄. Undera spherial potential, a ouple of Dira equations for the radial part is given bydGnljdr + �rGnlj � a � 2a2 + "nlj � V (r)�Fnlj = 0; (36)dFnljdr � �r Fnlj + a ["nlj � V (r)℄Gnlj = 0; (37)where G and L are the majority and minority omponents of the radial wave funtion. a � 1=(1/137.036 in a.u.). � = l and � = �(l+ 1) for j = l� 12 and j = l+ 12 , respetively. Combining bothEqs. and eliminating F , we have the following equation for G:" 12M(r)  d2dr2 + a22M(r) dVdr ddr + a22M(r) �r dVdr � �(�+ 1)r2 !+ "nlj � V #Gnlj = 0 (38)with M(r) = 1 + a2("nlj � V )2 : (39)By solving numerially Eq. (38) and generating j-dependent pseudo potential V psj by the Troullier andMartine (TM) sheme, we an de�ne a general pseudopotential byVps = Xlm �j�MJ iV l+ 12ps h�MJ j+ j�M 0J 0 iV l� 12ps h�M 0J 0 j� ; (40)where for J = l + 12 and M = m+ 12j�MJ i = � l +m+ 12l + 1 � 12 jY ml ij�i + � l �m2l + 1� 12 jY m+1l ij�i; (41)and for J 0 = l � 12 and M 0 = m� 12j�M 0J 0 i = � l �m+ 12l + 1 � 12 jY m�1l ij�i � � l +m2l + 1� 12 jY ml ij�i: (42)The �MJ and �M 0J 0 are onstituents of the eigenfuntion of Dira equation. Sine �J � M � J and�J 0 � M 0 � J 0, the degeneraies of J and J 0 are 2(l + 1) and 2l, respetively. In the use of thepseudopotential de�ned by Eq. (40), it is transformed to a separable form. By introduing a loalpotential V L whih approahes �Ze�r as r inreases, the j-dependent pseudo potential is divided intotwo ontributions: V l+ 12ps = V l+ 12NL + VL; (43)V l� 12ps = V l� 12NL + VL: (44)The non-loal potentials V l+ 12NL and V l� 12NL are non-zero within a ertain radius. Then, the pseudopo-tential de�ned by Eq. (40) is written byVps = VL +Xlm �j�MJ iV l+ 12NL h�MJ j+ j�M 0J 0 iV l� 12NL h�M 0J 0 j� ; (45)= VL + V̂ l+ 12NL + V̂ l� 12NL : (46)5



The non-loal part is transformed by the Blohl projetor into a separable form:V̂ l+ 12NL = Xlm j�MJ iV l+ 12NL h�MJ j;= Xlm X� jV l+ 12NL �RJ��MJ i 1J� h �RJ��MJ V l+ 12NL j;= Xl� 1J� hP̂ J��� + P̂ J��� + P̂ J��� + P̂ J���i (47)with P̂ J��� = lXm=�l�1� l +m+ 12l + 1 � jCJ�Y ml �ihCJ�Y ml �j; (48)P̂ J��� = lXm=�l�1� l �m2l + 1� jCJ�Y m+1l �ihCJ�Y m+1l �j; (49)P̂ J��� = lXm=�l�1� l +m+ 12l + 1 � 12 � l �m2l + 1� 12 jCJ�Y ml �ihCJ�Y m+1l �j; (50)P̂ J��� = lXm=�l�1� l +m+ 12l + 1 � 12 � l �m2l + 1� 12 jCJ�Y m+1l �ihCJ�Y ml �j; (51)where CJ� � �RJ�V l+ 12NL and �R is an orthonormal set de�ned by a norm R r2drRV l+ 12NL R0, and is alu-lated by the following Gram-Shmidt orthogonalization:�RJ� = RJ� � ��1X� �RJ� 1J� Z r2dr �RJ�V l+ 12NL RJ�; (52)J� = Z r2dr �RJ�V l+ 12NL �RJ� ; (53)Similarly, V̂ l� 12NL = Xlm j�M 0J 0 iV l� 12NL h�M 0J 0 j;= X� jV l� 12NL �RJ 0��M 0J 0 i 1J 0� h �RJ 0��M 0J 0 V l� 12NL j;= Xl� 1J 0� hP̂ J 0��� + P̂ J 0��� � P̂ J 0��� � P̂ J 0��� i (54)with P̂ J 0��� = lXm=�l+1� l �m+ 12l + 1 � jCJ 0�Y m�1l �ihCJ 0�Y m�1l �j; (55)P̂ J 0��� = lXm=�l+1� l +m2l + 1� jCJ 0�Y ml �ihCJ 0�Y ml �j; (56)P̂ J 0��� = lXm=�l+1� l �m+ 12l + 1 � 12 � l +m2l + 1� 12 jCJ 0�Y m�1l �ihCJ 0�Y ml �j; (57)P̂ J 0��� = lXm=�l+1� l �m+ 12l + 1 � 12 � l +m2l + 1� 12 jCJ 0�Y ml �ihCJ 0�Y m�1l �j: (58)
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Moreover, by unitary transforming the omplex spherial harmonis funtions Y into the real spherialharmonis funtion �Y , we obtain the following expressions:P̂ J��� = Xmm0 jCJ� �Y ml �iF 0l;mm0hCJ� �Y m0l �j; (59)P̂ J��� = Xmm0 jCJ� �Y ml �iF 1l;mm0hCJ� �Y m0l �j; (60)P̂ J��� = Xmm0 jCJ� �Y ml �iF 2l;mm0hCJ� �Y m0l �j; (61)P̂ J��� = Xmm0 jCJ� �Y ml �iF 3l;mm0hCJ� �Y m0l �j; (62)P̂ J 0��� = Xmm0 jCJ 0� �Y ml �iG0l;mm0hCJ 0� �Y m0l �j; (63)P̂ J 0��� = Xmm0 jCJ 0� �Y ml �iG1l;mm0hCJ 0� �Y m0l �j; (64)P̂ J 0��� = Xmm0 jCJ 0� �Y ml �iG2l;mm0hCJ 0� �Y m0l �j; (65)P̂ J 0��� = Xmm0 jCJ 0� �Y ml �iG3l;mm0hCJ 0� �Y m0l �j (66)with F 00 = 1; (67)F 01 = 23I + i3 0BB� 0 �1 01 0 00 0 0 1CCA ; (68)
F 02 = 35I + i5 0BBBBBBB� 0 0 0 0 00 0 �2 0 00 2 0 0 00 0 0 0 �10 0 0 1 0

1CCCCCCCA ; (69)
F 03 = 47I + i7

0BBBBBBBBBBBB�
0 0 0 0 0 0 00 0 �1 0 0 0 00 1 0 0 0 0 00 0 0 0 �2 0 00 0 0 2 0 0 00 0 0 0 0 0 �30 0 0 0 0 3 0

1CCCCCCCCCCCCA ; (70)
F 10 = 1; (71)F 11 = (F 01 )�; (72)F 12 = (F 02 )�; (73)F 13 = (F 03 )�; (74)F 20 = 0; (75)7



F 21 = 13 0BB� 0 0 10 0 0�1 0 0 1CCA+ i3 0BB� 0 0 00 0 �10 1 0 1CCA ; (76)
F 22 = 15 0BBBBBBB� 0 0 0 �p3 00 0 0 1 00 0 0 0 1p3 �1 0 0 00 0 �1 0 0

1CCCCCCCA+ i5 0BBBBBBB� 0 0 0 0 p30 0 0 0 10 0 0 �1 00 0 1 0 0�p3 �1 0 0 0
1CCCCCCCA ; (77)

F 23 = 17
0BBBBBBBBBBBBBBB�

0 �p6 0 0 0 0 0p6 0 0 �q52 0 0 00 0 0 0 �q52 0 00 q52 0 0 0 �q32 00 0 q52 0 0 0 �q320 0 0 q32 0 0 00 0 0 0 q32 0 0
1CCCCCCCCCCCCCCCA

+ i7
0BBBBBBBBBBBBBBB�

0 0 p6 0 0 0 00 0 0 0 q52 0 0�p6 0 0 �q52 0 0 00 0 q52 0 0 0 q320 �q52 0 0 0 �q32 00 0 0 0 q32 0 00 0 0 �q32 0 0 0
1CCCCCCCCCCCCCCCA ; (78)

F 30 = 0; (79)F 31 = (F 21 )y; (80)F 32 = (F 22 )y; (81)F 33 = (F 23 )y; (82)G00 = 0; (83)G01 = 13I � i3 0BB� 0 �1 01 0 00 0 0 1CCA ; (84)
G02 = 25I � i5 0BBBBBBB� 0 0 0 0 00 0 �2 0 00 2 0 0 00 0 0 0 �10 0 0 1 0

1CCCCCCCA ; (85)
8



G03 = 37I � i7
0BBBBBBBBBBBB�

0 0 0 0 0 0 00 0 �1 0 0 0 00 1 0 0 0 0 00 0 0 0 �2 0 00 0 0 2 0 0 00 0 0 0 0 0 �30 0 0 0 0 3 0
1CCCCCCCCCCCCA ; (86)

G10 = 0; (87)G11 = (G01)�; (88)G12 = (G02)�; (89)G13 = (G03)�; (90)G20 = 0; (91)G21 = F 21 ; (92)G22 = F 22 ; (93)G23 = F 23 ; (94)G30 = 0; (95)G31 = F 31 ; (96)G32 = F 32 ; (97)G33 = F 33 ; (98)where the real spherial harmonis funtions �Y are denoted by (x; y; z), (3z2 � r2; x2 � y2; xy; xz; yz),and (5z2 � 3r2; 5xz2 � xr2; 5yz2 � yr2; zx2 � zy2; xyz; x3 � 3xy2; 3yx2 � y3) for p-, d-, and f -orbitals,respetively.
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3 Non-ollinear LDA+UIn onjuntion with the on-site exhange term of the unrestrited Hartree-Fok theory, the total energyof a non-ollinear LDA+U method ould be de�ned byELDA+U = ELDA +EU (99)with EU = 12Xi Xp Xl Uipl [Tr(Nipl)� Tr(NiplNipl)℄ ;= 12Xs Us [Tr(Ns)� Tr(NsNs)℄ ; (100)where i is a site index, l an angular momentum quantum number, p a multipliity number of radialbasis funtions, and s an organized index of (ipl). N is an diagonalized oupation matrix with thesize of 2(2l+1)� 2(2l+1). The U is the e�etive Coulomb eletron-eletron interation energy. Also,ELDA is given by Eq. (5). It should be noted that the oupation matrix is twie as size as the ollinearase. In this de�nition it is assumed that the exhange interation arises when an eletron is oupiedwith a ertain spin diretion in eah loalized orbital. Considering the rotational invariane of totalenergy with respet to eah sub-shell s, Eq. (100) an be transformed as follows:EU = 12Xs Us hTr(AsNsAys)� Tr(AsNsAysAsNsAys)i ;= 12Xs Us [Tr(ns)� Tr(nsns)℄ ;= 12Xs Us 24X�m n��s;mm � X�m;�0m0 n��0s;mm0n�0�s;m0m35 ; (101)where �; �0 = � and �. In this Eq. (101), although o�-diagonal oupation terms in eah sub-shell s aretaken into aount, however, those between sub-shells are negleted. This treatment is onsistent withtheir rotational invariant funtional by Dudarev et al.[5℄, and is a simple extension of the rotationalinvariant funtional for the ase that a di�erent U-value is given for eah basis orbital indexed withs � (ipl). In addition, the funtional is rotationally invariant in the spin-spae. In this simpleextension, we an not only inlude multiple d-orbitals as basis set, but also an easily derive the foreon atoms in a simple form as disussed later on.The total energy ELDA+U an be expressed in terms of the Kohn-Sham eigenenergies "� as follows:ELDA+U = ELDA +EU;= Eband + "Eee +E +Ex �X� h � jv̂LDAj �i#+ "EU �X� h � jv̂Uj �i# ;= Eband +�ELDA + 12Xs Us X�m;�0m0 n��0s;mm0n�0�s;m0m;= Eband +�ELDA +�EU; (102)where �ELDA and �EU are the double ounting orretions of LDA- and U-energies, respetively.
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3.1 Oupation numberThe oupation number n (whih is written by an itali font, while the eletron density, appears inSe. 1, is denoted by a roman font) is de�ned byn��0smm0 = X� f�h � jn̂��0s;mm0 j �i; (103)where, to ount the oupation number n, we de�ne three oupation number operators given byon-site n̂��0smm0 = j ~sm�ih ~sm0�0j; (104)full n̂��0smm0 = jsm�ihsm0�0j; (105)dual n̂��0smm0 = 12 �j ~sm�ihsm0�0j+ jsm�ih ~sm0�0j� ; (106)where j ~sm�i is the dual orbital of a original non-orthogonal basis orbital jsm�i, and is de�ned byj ~sm�i = Xs0m0 S�1sm;s0m0 js0m0�i (107)with the overlap matrix S between non-orthogonal basis orbitals. Then, the following bi-orthogonalrelation is veri�ed: h ~sm�jsm0�0i = Æsm�;s0m0�0 : (108)The on-site and full oupation number operators have been proposed by Eshrig et al. [6℄ and Pikettet al. [7℄, respetively. It is noted that these de�nitions do not satisfy a sum rule that the trae ofthe oupation number matrix is equivalent to the total number of eletrons, while only the dualoupation number operator ful�lls the sum rule as follows:Tr(n) = 12 fTr(�S) + Tr(S�)g = Nele; (109)where � is the density matrix de�ned by���0sm;s0m0 = X� f�h � j�̂��0sm;s0m0 j �i;= X� f��;��;sm�0�;s0m0 (110)with a density operator: �̂��0sm;s0m0 = j ~sm�ih ~s0m0�0j: (111)For three de�nition of oupation number operators, on-site, full, and dual, the oupation numbersare given byon-site n��0smm0 = ���0sm;sm0 ; (112)11



full n��0smm0 = Xtn;t0n0 ���0tn;t0n0Stn;smSsm0;t0n0 ; (113)dual n��0smm0 = 12Xtn n���0sm;tnStn;sm0 + Ssm;tn���0tn;sm0o ; (114)3.2 E�etive potentialThe derivative of the total energy Eq. (99) with respet to LCAO oeÆient ��;tn is given by�ELDA+U��;��;tn = �ELDA��;��;tn + �EU��;��;tn ;= �ELDA��;��;tn +X�0 Xsmm0 �EU�n��0smm0 �n��0smm0��;��;tn ;= �ELDA��;��;tn +X�0 Xsmm0 Us(12Æ��0Æmm0 � n�0�sm0m)�n��0smm0��;��;tn ;= �ELDA��;��;tn +X�0 Xsmm0 v��0U;smm0 �n��0smm0��;��;tn (115)withon-site �n��0smm0��;��;tn = ÆstÆmn�0�;sm0 ; (116)full �n��0smm0��;��;tn = Xt0n0 Stn;smSsm0;t0n0�0�;t0n0 ; (117)dual �n��0smm0��;��;tn = 12 (ÆstÆmnXt0n0 �0�;t0n0St0n0;sm0 + Ssm;tn�0�;sm0) : (118)Substituting Eqs. (116)-(118) for the seond term of Eq. (115), we seeon-site Xsmm0 v��0U;smm0 �n��0smm0��;��;tn = X�000 Xt0n0htn�j "X�0�00 Xsmm0 j ~sm�0iv�0�00U;smm0h ~sm0�00j# jt0n0�000i�000�;t0n0 ; (119)full Xsmm0 v��0U;smm0 �n��0smm0��;��;tn = X�000 Xt0n0htn�j "X�0�00 Xsmm0 jsm�0iv�0�00U;smm0hsm0�00j# jt0n0�000i�000�;t0n0 ; (120)
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dual Xsmm0 v��0U;smm0 �n��0smm0��;��;tn = X�000 Xt0n0 htn�j12 X�0�00 Xsmm0 �j ~sm�0iv�0�00U;smm0 hsm0�00j+ jsm�0iv�0�00U;smm0 h ~sm0�00j� jt0n0�000i�000�;t0n0 : (121)Therefore, the e�etive projetor potentials v̂U an be expressed byon-site v̂U = X��0 Xsmm0 j ~sm�iv��0U;smm0h ~sm0�0j; (122)full v̂U = X��0 Xsmm0 jsm�iv��0U;smm0hsm0�0j; (123)dual v̂U = 12X��0 Xsmm0 hj ~sm�iv��0U;smm0hsm0�0j+ jsm�iv��0U;smm0h ~sm0�0ji : (124)It is lear that the e�etive potentials of on-site and full are Hermitian. Also, it is veri�ed that thee�etive potential of dual is Hermitian as follows:htn�jv̂Ujt0n0�0i = 12Xm0 v��0U;tnm0Stm0;t0n0 + 12Xm Stn;t0mv��0U;t0mn0 ;= (ht0n0�0jv̂Ujtn�i)�: (125)It should be noted that in the full and dual the v�U of the site i an a�et the di�erent sites by theprojetor potentials Eqs. (123) and (124) beause of the overlap.3.3 Fore on atomThe fore on atom is evaluated by �ELDA+U�Rk = �ELDA�Rk + �EU�Rk ; (126)The �rst term an be alulated in the same way as in the ollinear ase. The seond term is evaluatedas follows:�EU�Rk = X��0 Xsmm0 �EU�n��0smm0 �n��0smm0�Rk ;= X��0 Xsmm0 v��0U;smm0 �n��0smm0�Rk ;= X� f�X��0 Xtn;t0n0(��;��;tn�Rk htn�jv̂Ujt0n0�0i�0�;t0n0 + �;��;tnhtn�jv̂Ujt0n0�0i��0�;t0n0�Rk+�;��;tn�0�;t0n0 �htn�jv̂Ujt0n0�0i�Rk � : (127)
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Considering H� = "�S� and CySC = I, the �rst and seond terms in Eq. (127) an be transformedinto derivatives of the overlap matrix. The third term in Eq. (127) means that only the di�erentiationfor the overlap matrix is onsidered, And it is analytially di�erentiated, sine it ontains just two-enter integrals.3.4 Enhanement of orbital polarizationThe LDA+U funtional an possess multiple stationary points due to the degree of freedom in theon�guration spae of oupation ratio for degenerate orbitals. If eletrons are oupied with a nearlysame oupany ratio in degenerate orbitals at the �rst stage of SCF steps, the �nal eletroni stateoften onverges a stationary minimum with non-orbital polarization after the SCF iteration. Also, itis often likely that eletrons are disproportionately oupied in some of degenerate orbitals due to theexhange interation, whih is so-alled 'orbital polarization'. As an example of the multiple minima,we an point out a obalt oxide (CoO) bulk in whih d-orbitals of the obalt atom are split to t2g andeg states, and the �ve of seven d-eletrons are oupied in t2g and eg states of the majority spin, andremaining two d-eletrons are oupied in the t2g state of the minority spin. Then, it depends on theinitial oupany ratios for the t2g states of the minority spin how the remaining two d-eletrons areoupied in three t2g states. If the initial oupany ratios are uniform, we may arrive at the non-orbitalpolarized state. In fat, unless any speial treatment is onsidered for the initial oupany ratios, wesee the non-orbital polarized state of the CoO bulk. In order to explore the degree of freedom for theorbital oupation, therefore, it is needed to develop a general method whih expliitly indues theorbital polarization. To indue the orbital polarization, a polarized redistribution sheme is proposedas follows: diagonalize ds = V ynsV ds : asending order (128)summation D = 2(2l+1)Xm=1 dsm (129)redistribution d04l+2 = 1;d04l+1 = 1;:::;d0m = D � (4l + 2�m);d0m�1 = 0; :::: (130)where D =Xm d0m (131)bak trasform n0s = V d0mV y (132)After diagonalizing eah sub-shell matrix onsisting of oupation numbers, we introdue a polarizedredistribution sheme given by Eq. (130) while keeping Eq. (129). Then, by a bak transformationEq. (130), we an obtain a polarized oupation matrix for eah sub-shell. This polarized redistributionsheme is applied during the �rst few SCF steps, and then no modi�ation is made during subsequentSCF steps. This proposed sheme maybe appliable to a general ase: any rystal �eld, any numberof eletrons in the sub-shell, and any orbitals: p,d,f,...
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3.5 Density of statesDe�ne P ��0i� (E) = Xk X� �;�k�;i��0k�;i0�0Si0�0;i�Æ(E � "�k): (133)Then, the density of states, D, is given byD"i�(E) = 12(P��i� + P ��i� ) + 12(P��i� � P ��i� ) os(�i) + �Re P��i� os(�i)� Im P��i� sin(�i)� sin(�i); (134)D#i�(E) = 12(P��i� + P ��i� )� 12(P��i� � P ��i� ) os(�i)� �Re P��i� os(�i)� Im P��i� sin(�i)� sin(�i): (135)Also, the Mulliken populations, Q, are given byQ��0i = X� Z dEf(E)P ��0i� (E): (136)The loal spin diretion is determined by�i = � artan(ImQ��iReQ��i ); (137)�i = artan 2(Re Q��i os(�i)� Im Q��i sin(�i))Q��i �Q��i :! (138)3.6 Zeeman termThe ontribution to the total energy arising the Zeeman term is given byEz = Ezs +Ezo; (139)where Ezs = Xi Bsi � si =Xi (Bsixsix +Bsiysiy +Bsizsiz); (140)Ezo = 12Xi Boi � li = 12Xi (Boixlix +Boiyliy +Boizliz): (141)The vetor omponents of the spin magneti moment are given bysix = 12(N " �N #) sin(�i) os(�i); (142)siy = 12(N " �N #) sin(�i) sin(�i); (143)siz = 12(N " �N #) os(�i) (144)withN 0i" = 12(Ni�� +Ni��) + 12(Ni�� �Ni��) os(�i) + (Re Ni�� os(�i)� Im Ni�� sin(�i)) sin(�i); (145)
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N 0i# = 12(Ni�� +Ni��)� 12(Ni�� �Ni��) os(�i)� (Re Ni�� os(�i)� Im Ni�� sin(�i)) sin(�i); (146)where Ni��0 is given by Ni��0 = Tr(n��0i ): (147)After some alegebra we have six = 12(Ni�� +Ni��); (148)siy = i2(Ni�� �Ni��); (149)siz = 12(Ni�� �Ni��): (150)The vetor omponents of the orbital magneti moment are given byliv = Z dEXk X� f(E)h k� jl̂v j k�iÆ(E � "k�);= Z dEXk X� f(E) hh'�k� jl̂vj'�k�i+ h'�k� jl̂v j'�k�ii Æ(E � "k�);= Xk X� f("k�)24X�;�0 �;�k�;i��k�;i�0h��i�jl̂vj��i�0i+ �;�k�;i��k�;i�0h��i�jl̂vj��i�0i35 ;= X�;�0 ���i�;i�0h��i�jl̂vj��i�0i+ ���i�;i�0h��i�jl̂vj��i�0i; (151)where v = x; y; or z. Noting that l̂x = 12(l̂+ + l̂�); (152)l̂y = 12i(l̂+ � l̂�); (153)l̂zY ml = mY ml ; (154)l̂+Y ml = q(l �m)(l +m+ 1)Y m+1l ; (155)l̂�Y ml = q(l +m)(l �m+ 1)Y m�1l ; (156)and onsidering a unitary transformation of the spherial harmoni funtions into a set of real harmonifuntions de�ned by Ypx = 1p2(�Y �11 + Y 11 ); (157)Ypy = 1ip2(Y �11 + Y 11 ); (158)Ypz = �Y 01 ; (159)it an be shown that 0BB� hYpxjhYpyjhYpzj 1CCA l̂x(jYpxi; jYpyi; jYpzi) = i0BB� 0 0 00 0 �10 1 0 1CCA ; (160)
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0BB� hYpxjhYpyjhYpzj 1CCA l̂y(jYpxi; jYpyi; jYpzi) = i0BB� 0 0 10 0 0�1 0 0 1CCA ; (161)0BB� hYpxjhYpyjhYpzj 1CCA l̂z(jYpxi; jYpyi; jYpzi) = i0BB� 0 �1 01 0 00 0 0 1CCA : (162)It is noted that the expetation values of l̂v in terms of the real harmoni funtions are purely imaginarynumbers. The unitary transformation for the other L-omponents an be found in a subroutine'Set Comp2Real()' in 'SetPara DFT.'. Thus, one an obtain the matrix representation for l̂v interms of the real harmoni funtions.Referenes[1℄ U. Von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972).[2℄ J. Kubler, K-H. Hok, J. Stiht, and A. R. Williams, J. Phys. F: Met. Phys. 18, 469 (1988).[3℄ G. Theurih and N. A. Hill, Phys. Rev. B 64, 073106 (2001).[4℄ J. J. Sakurai, Modern Quantum Mehanis.[5℄ S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).[6℄ H. Eshrig, K. Koepernik, and I. Chaplygin, J. Solid State Chem. 176, 482 (2003).[7℄ W. E. Pikett, SC. Erwin, E. C. Ethridge, Phy. Rev. B 58, 1201 (1998).
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