Householder Method for Tridiagonalization: Ver. 1.0

Taisuke Ozaki, RCIS, JAIST

August 17, 2007

The Householder method [1] is a way of transforming a Hermitian matrix B to a real symmetric tridiagonalized matrix B_{TD} . Let **b** be a column vector of B, and consider that the vector **b** consists of the real part \mathbf{b}_r and the imaginary part \mathbf{b}_i as

$$|\mathbf{b}\rangle = |\mathbf{b}_r\rangle + i|\mathbf{b}_i\rangle. \tag{1}$$

Also let us introduce a vector **s** of which real part has just one non-zero component $s(=\sqrt{\langle \mathbf{b} | \mathbf{b} \rangle})$ and imaginary part is a zero vector as

$$|\mathbf{s}\rangle = \begin{pmatrix} s \\ 0 \\ \cdot \\ \cdot \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ 0 \\ \cdot \\ \cdot \\ 0 \end{pmatrix}. \tag{2}$$

Then, consider a mirror transform Q^{\dagger} bridging the two vectors **b** and **s** by

$$Q^{\dagger} = I - \alpha^* |\mathbf{v}\rangle \langle \mathbf{v}|, \tag{3}$$

where let us assume that

$$|\mathbf{s}\rangle = Q^{\dagger}|\mathbf{b}\rangle. \tag{4}$$

Putting Eq. (3) into Eq. (4), and solving it with respect to $|\mathbf{v}\rangle$, we have

$$|\mathbf{v}\rangle = \frac{1}{\alpha^* \langle \mathbf{v} | \mathbf{b} \rangle} (|\mathbf{b}\rangle - |\mathbf{s}\rangle).$$
 (5)

Thus, Eq. (5) allows us to write $|\mathbf{v}\rangle$ as

$$|\mathbf{v}\rangle = \beta (|\mathbf{b}\rangle - |\mathbf{s}\rangle) = \beta |\mathbf{u}\rangle.$$
 (6)

If **v** is normalized, β is given by

$$\beta = \frac{1}{\sqrt{(\langle \mathbf{b} | - \langle \mathbf{s} |)(|\mathbf{b} \rangle - |\mathbf{s} \rangle)}},$$

$$= \frac{1}{\sqrt{\langle \mathbf{b} | \mathbf{b} \rangle + \langle \mathbf{s} | \mathbf{s} \rangle - \langle \mathbf{b} | \mathbf{s} \rangle - \langle \mathbf{s} | \mathbf{b} \rangle}},$$

$$= \frac{1}{\sqrt{2s^2 - \langle \mathbf{b} | \mathbf{s} \rangle - \langle \mathbf{s} | \mathbf{b} \rangle}}.$$
(7)

Comparing Eqs. (5) with (6) and making use of Eq. (7), we have

$$\alpha^* = \frac{2a_r}{a_r^2 + a_i^2} (a_r - ia_i) \tag{8}$$

with a_r and a_i given by

$$a_r = \frac{1}{2} \left(2s^2 - \langle \mathbf{b} | \mathbf{s} \rangle - \langle \mathbf{s} | \mathbf{b} \rangle \right) \tag{9}$$

and

$$a_i = \langle \mathbf{b}_i | \mathbf{s} \rangle. \tag{10}$$

Then, it is verified that

$$QQ^{\dagger} = (I - \alpha |\mathbf{v}\rangle\langle\mathbf{v}|) (I - \alpha^{*}|\mathbf{v}\rangle\langle\mathbf{v}|),$$

$$= I - \alpha^{*}|\mathbf{v}\rangle\langle\mathbf{v}| - \alpha |\mathbf{v}\rangle\langle\mathbf{v}| + \alpha \alpha^{*}|\mathbf{v}\rangle\langle\mathbf{v}|\mathbf{v}\rangle\langle\mathbf{v}|,$$

$$= I - \frac{(2a_{r})^{2}}{a_{r}^{2} + a_{i}^{2}}|\mathbf{v}\rangle\langle\mathbf{v}| + \frac{(2a_{r})^{2}}{a_{r}^{2} + a_{i}^{2}}|\mathbf{v}\rangle\langle\mathbf{v}|,$$

$$= I.$$
(11)

Thus, the transformation $Q^{\dagger}BQ$ for the Hermitian matrix B is a similarity transformation, and given by

$$Q^{\dagger}BQ = (I - \alpha^* | \mathbf{v} \rangle \langle \mathbf{v} |) B (I - \alpha | \mathbf{v} \rangle \langle \mathbf{v} |),$$

= $B - \alpha^* | \mathbf{v} \rangle \langle \mathbf{v} | B - \alpha B | \mathbf{v} \rangle \langle \mathbf{v} | + \alpha^* \alpha | \mathbf{v} \rangle \langle \mathbf{v} | B | \mathbf{v} \rangle \langle \mathbf{v} |.$ (12)

By defining

$$|\mathbf{p}\rangle \equiv B|\mathbf{v}\rangle,$$
 (13)

Eq. (12) becomes

$$Q^{\dagger}BQ = B - \alpha^{*}|\mathbf{v}\rangle\langle\mathbf{p} - \alpha|\mathbf{p}\rangle\langle\mathbf{v}| + \alpha^{*}\alpha|\mathbf{v}\rangle\langle\mathbf{v}|\mathbf{p}\rangle\langle\mathbf{v}|,$$

$$= B - \alpha^{*}|\mathbf{v}\rangle\left(\langle\mathbf{p}| - \frac{\alpha}{2}\langle\mathbf{v}|\mathbf{p}\rangle\langle\mathbf{v}|\right) - \alpha\left(|\mathbf{p}\rangle - \frac{\alpha^{*}}{2}|\mathbf{v}\rangle\langle\mathbf{v}|\mathbf{p}\rangle\right)\langle\mathbf{v}|.$$
(14)

Moreover, by defining

$$|\mathbf{q}\rangle \equiv \alpha \left(|\mathbf{p}\rangle - \frac{\alpha^*}{2} |\mathbf{v}\rangle \langle \mathbf{v}|\mathbf{p}\rangle \right),$$
 (15)

we have a compact form:

$$Q^{\dagger}BQ = B - |\mathbf{v}\rangle\langle\mathbf{q}| - |\mathbf{q}\rangle\langle\mathbf{v}|. \tag{16}$$

For the numerical stability, we furthermore modify Eq. (16) as shown below. Let us introduce a vector \mathbf{p}' as.

$$|\mathbf{p}'\rangle = \frac{B|\mathbf{u}\rangle}{\frac{|\mathbf{u}|^2}{2}}. (17)$$

Then, \mathbf{p} can be written by \mathbf{p}' as

$$|\mathbf{p}\rangle = B|\mathbf{v}\rangle,$$

$$= \frac{B|\mathbf{u}\rangle}{\sqrt{2a_r}},$$

$$= \frac{|\mathbf{p}'\rangle a_r}{\sqrt{2a_r}},$$

$$= \frac{\sqrt{2a_r}}{2}|\mathbf{p}'\rangle.$$
(18)

Also, noting that

$$|\mathbf{v}\rangle = \frac{1}{\sqrt{2a_r}}|\mathbf{u}\rangle,\tag{19}$$

q can be rewritten by

$$|\mathbf{q}\rangle = \alpha \frac{\sqrt{2a_r}}{2} \left(|\mathbf{p}'\rangle - \frac{\alpha^*}{4a_r} |\mathbf{u}\rangle \langle \mathbf{u}|\mathbf{p}'\rangle \right).$$
 (20)

Putting Eqs. (19) and (20) into Eq. (16), we have

$$Q^{\dagger}BQ = B - |\mathbf{u}\rangle\langle\mathbf{q}'| - |\mathbf{q}'\rangle\langle\mathbf{u}|$$
(21)

with \mathbf{q}' defined by

$$|\mathbf{q}'\rangle = \frac{\alpha}{2} \left(|\mathbf{p}'\rangle - \frac{\alpha^*}{4a_x} |\mathbf{u}\rangle\langle \mathbf{u}|\mathbf{p}'\rangle \right),$$
 (22)

where

$$|\mathbf{p}'\rangle = \frac{1}{a_r} B|\mathbf{u}\rangle. \tag{23}$$

The transformation by Eq. (21) can be applied to each column vector step by step in which the place occupied by s in Eq. (2) is shifted one by one. Then, the tridiagonalized matrix B_{TD} is given by

$$B_{\text{TD}} = Q_{n-1}^{\dagger} Q_{n-2}^{\dagger} \cdots Q_3^{\dagger} Q_2^{\dagger} Q_1^{\dagger} B Q_1 Q_2 Q_3 \cdots Q_{n-2} Q_{n-1}.$$
 (24)

References

[1] A. S. Householder, J. ACM 5, 339 (1958).