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1 Total energy for the collinear case

The OpenMX is based on density functional theories (DFT), the norm-conserving pseudopotentials,
and local pseudo-atomic basis functions. The Kohn-Sham (KS) Bloch functions 1, are expanded in a
form of linear combination of pseudo-atomic basis functions (LCPAO) ¢;, centered on site 7; by
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where ¢ and ¢ are an expansion coefficient and pseudo-atomic function, R, a lattice vector, i a site
index, o (T or |) spin index, a = (plm) an organized orbital index with a multiplicity index p,
an angular momentum quantum number /, and a magnetic quantum number m. The charge density
operator n, for the spin index o is given by
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where [ means the integration over the first Brillouin zone of which volume is Vg, and }°“ means
the summation over occupied states. The charge density n,(r) with the spin index o is found as
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with a density matrix defined by
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Although it is assumed that the electronic temperature is zero in this notes, OpenMX uses the Fermi-
Dirac function with a finite temperature in the practical implementation. Therefore, the force on atom
becomes inaccurate for metallic systems or very high temperature. The total charge density n is the
sum of nt and n| as follows:

n(r) = ny(r) + n|(r). (5)



Also, it is convenient to define a difference charge density dn(r) for later discussion as
on(r) = n() —n® (),
= n(r) -2 (), (6)

where n( )(r) is an atomic charge density evaluated by a confinement atomic calculations associated
with the site 4.

Within the local density approximation (LDA) and generalized gradient approximation (GGA),
the total energy of the collinear case is given by the sum of the kinetic energy FEiyi,, the electron-core
Coulomb energy FEq., the electron-electron Coulomb energy Fee, the exchange-correlation energy Fixc,

and the core-core Coulomb energy FE.. as
Etot — Ekin + Eec + Eee + Exc + Ecc- (7)

The kinetic energy FEy, is given by
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The electron-core Coulomb energy FEe. is given by two contributions E,% ) and Ee(CN L) related to the

local and non-local parts of pseudopotentials:

Eo = E(L)+E(NL)’
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where Vore,r and Vnr, 1 are the local and non-local parts of pseudopotential located on a site I. Thus,

we have

Eég) = ZZ Z Pma]g ¢w¢ r_Tz Z‘/L:orel )‘¢jﬁ(r_7j _Rn)>7

n 4a,j3

= /d'r' TL(I‘) Z ‘/corc,l(r - TI)' (10)
I



EQY = ZZ Z pazayﬂ (Pia(r —7i) !ZVNLI r —77)|¢;s(r — 7 — Ru)). (11)

The electron-electron Coulomb energy F. is given by
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where Vg is decomposed into two contributions V3~ and §Vi(r) coming from the superposition of
atomic charge densities and the difference charge density 6n(r) defined by
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Within the LDA, the exchange-correlation energy Ey. is given by

1 1

Ex. = /dr3{nT (r) +ny(r) + npee(r) bexe(ny + §npccv ny+ ianC)7 (15)

where npe. is a charge density used for a partial core correction (PCC). The core-core Coulomb
energy F.. is given as repulsive Coulomb interactions among effective core charge Z; considered in
the generation of pseudopotentials by
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As discussed in the paper [1], for numerical accuracy and efficiency it is important to reorganize the
sum of three terms Ee(é: ), FEee, and E., as follows:
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where
Vna,](r - TI) = V;:ore,l(r - TI) + VIJ(I?]) (I‘ - TI)' (18>
Therefore, we can reorganize these three terms as follows:
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Following the reorganization of energy terms, the total energy can be given by

Etot = Ekin + Ena + Eg;\IL) + Eéee + Exc + Escc- (23)

2 Kohn-Sham equation

Considering the orthogonality relation among one-particle wave functions, let us introduce a functional
F with Lagrange’s multipliers €,,57,/:
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The variation of the functional F' with respect to the LCPAO coefficients o
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yields the following
matrix equation:

H9) = §0900:0) (25)

[

(

Moreover, noting that the matrix egg) for Lagrange’s multipliers is Hermitian, and introducing V

diagonalizing the matrix, we can transform above equation as:

H® My = gl )y vty (26)

By renaming cg v by cg ), and defining the diagonal element of VTe( )V to be 55,1;), we have a well

known Kohn-Sham equation in a matrix form as a generalized eigenvalue problem:

H = 950908 @
where the Hamiltonian and overlap matrices are given by
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with a Kohn-Sham Hamiltonian operator
Hy =T+ Ve 5, (30)
and the effective potential
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3 Projector expansion of V}, s

The neutral atom potential V},, 1 is spherical and defined within the finite range determined by the
cutoff radius 7. of the confinement potential. Therefore, the potential V;,, ; can be expressed by a
projector expansion as follows:
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where a set of radial functions { R} is an orthonormal set defined by a norm [ r?drRVj, R’ for radial
functions R and R’, and is calculated by the following Gram-Schmidt orthogonalization [4]:
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The radial function R;¢ used is pseudo wave functions for both the ground and excited states under the
same confinement potential as used in the calculation of the atomic electron density nl(a) (2, 3]. The
most important feature in the projector expansion is that the deep neutral atom potential is expressed
by a separable form, and thereby we only have to evaluate the two-center integrals to construct the
matrix elements for the neutral atom potential. As discussed later, the two-center integrals can be
accurately evaluated in momentum space. For details of the projector expansion method, see also the

reference [1].

4 Two-center integrals

The overlap integrals, matrix elements for the non-local potentials, for the neutral atom potentials in
a separable form discussed in the Sec. 3, and for the kinetic operator consist of two-center integrals.
In this section, the evaluation of the two-center integrals is discussed. The pseudo-atomic function
¢ia(r) in Eq. (1) is given by a product of a real spherical harmonic function Y, and a radial wave

function R,;:

Bia(r) = Yo () Rpi (), (35)



where r means Euler angles, 6 and ¢, for r, and r radial coordinate. Although the real function is
used for the spherical harmonic function in OpenMX instead of the complex function Yy, (), firstly
we consider the case with the complex function Y}, (r) as

Pia(r) = Vi (F) Ry (7). (36)

After the evaluation of two-center integrals related to the complex function, they are transformed
into two-center integrals for the real function Y}, (#) by matrix operations. Then, the pseudo-atomic
function ¢;n(r) given by Eq. (36) can be Fourier-transformed as follows:
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and putting Egs. (36) and (40) into Eq. (37), we have
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where we defined
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Using Eqgs. (38), (40), and (41), the overlap integral is evaluated as follows:

Ro(k) = [<1>3 dm(—i)! / dri® Ry (r) jL(k'r)] . (42)

Gialojole =) = [ A6 msja(c — 7).

= (2 ) /dkg/dklg —ik’- TR* k)}/;*,m/(f{)j? /l/ )/l’ / /d’f el(k/ k)I‘
™

— [ AR R )Y () By () Vi (),

/d?”?’( > /dkS )/lm l;)eik-l‘( ) /dk/ ’l' l’m’(kl) ik’-(r—7)



R;l(k)yzfn(l;)Rp'l/(k)Yl' /(k),

/dk3 [477 > Z Lip (k) Yo (K) Y (2)

L=0 M=

- 47TZ Z _1 LYLM )Ol(fm),l’m’,LM/dkk2jL(k|7—’)R;l(k)ép/l/(k}),
L=0M=

where an integral in the third line was evaluated as
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and one may notice Gaunt coefficients defined by
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The matrix element for the kinetic operator can be easily found in the same way as for the overlap
integral as follows:
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5 Discretization

The two energy terms Eje and Ey. are discretized by a regular mesh {rp} in real space [5], while
the integrations in FEiyi,, Fha, Fscc, and EéCN L can be reduced to two center integrals which can be
evaluated in momentum space. The regular mesh {rp} in real space is generated by dividing the unit
cell with a same interval which is characterized by the cutoff energies EY @ and BS).
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where aj, as, and a3 are unit cell vectors of the whole system, and Ny, No, and N3 are the number of
division for aj, ao, and ag-axes, respectively. N1, No, and N3 are determined so that the differences
among Eélll%, (5121%, and E(u% can be minimized starting from the given cutoff energy. Using the regular
mesh {rp}, the Hartree energy Fs.. associated with the difference charge density dn(r) is discretized
as

Efee = %AV > on(rp)Va(rp). (51)



The same regular mesh {rp} is also applied to the solution of Poisson’s equation to find 6V4. Then,
the charge density is Fourier transformed by
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From {672(q)}, we can evaluate 6Vii(q) by
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Thus, we see that 6V (r) is also written in a discretized form with the regular mesh as follows:
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Within the LDA, Fy. can be easily discretized as well as Ejqc by
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For the GGA, F. is discretized with the gradient of charge density evaluated with a finite difference

scheme in the same way in the LDA.
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Since the derivative of the charge density n(rp) with respect to Copia 1S given by
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the matrix elements for Ve, and Vi in the Kohn-Sham equation Eq. (27) are found by differentiating
(k)=

the energies Ej.. and Fy. with respect to Copia B8 follows:
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where the quantities in the parenthesis [] correspond to the matrix elements.



6 Force on atom

aEtot _ 8Ekin + 8Ena + 8E’§CNL) + aE&ee + aE‘xc + aEscc.
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The derivative of the kinetic energy with respect to 7% is given by
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The derivative of the neutral atom potential energy with respect to 7 is given by
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The derivative of the non-local potential energy with respect to 7 is given by
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The derivative of the Hartree energy energy for the difference charge density dn(r) with respect to 7%

is given by
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Moreover, the derivative of n(rp) with respect to 7y, is given by
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The derivative of n(a)(rp) with respect to 7 is simply given by
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The derivative of Ey. with respect to the atomic coordinate 73 is easily evaluated by
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The derivative of the screened core-core Coulomb energy Fgcc Wlth respect to 7 is given by
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Since the second term is tabulated in a numerical table as a function of distance due to the spherical
symmetry of integrands, the derivative can be evaluated analytically by employing an interpolation
scheme. The derivatives given by Eqgs. (60), (61), (62), (63), and (69) contain the derivative of LCPAO
coefficient c. The derivative of ¢ can be transformed to the derivative of the overlap matrix with respect
to 7% as shown below. By summing up all the terms including the derivatives of ¢ in Egs. (60), (61),
(62), (63), and (69), we have
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where © is a diagonal matrix consisting of Heaviside step functions. Noting that Eq. (27) can be
written by H((yk)c(k) SKe (k) 2“) and c(k)TH (k) _ 5, )cz(,k)TS %) in a matrix form, the product of two
diagonal matrices is commutable, and Tr(XY) = Tr(Y X) for any square matrices, Eq. (71) can be

written as
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Moreover, taking account of the derivative of the orthogonality relation cg g, ( ) = I with respect

to 75, we have the following relation:
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Putting Eq. (73) into Eq. (72), we have
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where the energy density matrix E ;g 1S given by
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The terms including the derivative of matrix elements in Egs. (60), (61), and (62) can be easily

evaluated by
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The derivatives of these elements are evaluated analytically from the analytic derivatives of Eqgs. (43)

and (46). The rernaining contributions in first terms of Eqgs. (63) and (69) are given by
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The second terms in Egs. (63) and (69) becomes
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Thus, we see that the derivative of the total energy Wlth respect to the atomic coordinate 7y is
analytically evaluated for any grid fineness as
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