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1 Total energy for the collinear case

The OpenMX is based on density functional theories (DFT), the norm-conserving pseudopotentials,
and local pseudo-atomic basis functions. The Kohn-Sham (KS) Bloch functions ψµ are expanded in a
form of linear combination of pseudo-atomic basis functions (LCPAO) ϕiα centered on site τi by

ψ(k)
σµ (r) =

1√
N

N∑
n

eiRn·k
∑
iα

c
(k)
σµ,iαϕiα(r − τi − Rn), (1)

where c and ϕ are an expansion coefficient and pseudo-atomic function, Rn a lattice vector, i a site
index, σ (↑ or ↓) spin index, α ≡ (plm) an organized orbital index with a multiplicity index p,
an angular momentum quantum number l, and a magnetic quantum number m. The charge density
operator n̂σ for the spin index σ is given by

n̂σ =
1

VB

∫
B

dk3
occ∑
µ

|ψ(k)
σµ ⟩⟨ψ(k)

σµ |, (2)

where
∫
B means the integration over the first Brillouin zone of which volume is VB, and

∑occ means
the summation over occupied states. The charge density nσ(r) with the spin index σ is found as

nσ(r) = ⟨r|n̂σ|r⟩,

=
1

VB

∫
B

dk3
occ∑
µ

⟨r|ψ(k)
σµ ⟩⟨ψ(k)

σµ |r⟩,

=
1

VB

∫
B

dk3
N∑
n

∑
iα,jβ

occ∑
µ

eiRn·kc
(k)∗
σµ,iαc

(k)
σµ,jβϕiα(r − τi)ϕjβ(r − τj − Rn),

=
N∑
n

∑
iα,jβ

ρ
(Rn)
σ,iαjβϕiα(r − τi)ϕjβ(r − τj − Rn) (3)

with a density matrix defined by

ρ
(Rn)
σ,iαjβ =

1
VB

∫
B

dk3
occ∑
µ

eiRn·kc
(k)∗
σµ,iαc

(k)
σµ,jβ . (4)

Although it is assumed that the electronic temperature is zero in this notes, OpenMX uses the Fermi-
Dirac function with a finite temperature in the practical implementation. Therefore, the force on atom
becomes inaccurate for metallic systems or very high temperature. The total charge density n is the
sum of n↑ and n↓ as follows:

n(r) = n↑(r) + n↓(r). (5)
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Also, it is convenient to define a difference charge density δn(r) for later discussion as

δn(r) = n(r) − n(a)(r),

= n(r) −
∑

i

n
(a)
i (r), (6)

where n
(a)
i (r) is an atomic charge density evaluated by a confinement atomic calculations associated

with the site i.
Within the local density approximation (LDA) and generalized gradient approximation (GGA),

the total energy of the collinear case is given by the sum of the kinetic energy Ekin, the electron-core
Coulomb energy Eec, the electron-electron Coulomb energy Eee, the exchange-correlation energy Exc,
and the core-core Coulomb energy Ecc as

Etot = Ekin + Eec + Eee + Exc + Ecc. (7)

The kinetic energy Ekin is given by

Ekin =
1

VB

∫
B

dk3
∑
σ

occ∑
µ

⟨ψ(k)
σµ |T̂ |ψ(k)

σµ ⟩,

=
1

VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiRn·kc
(k)∗
σµ,iαc

(k)
σµ,jβ⟨ϕiα(r − τi)|T̂ |ϕjβ(r − τj − Rn)⟩,

=
∑
σ

N∑
n

∑
iα,jβ

ρ
(Rn)
σ,iαjβh

(Rn)
iαjβ,kin. (8)

The electron-core Coulomb energy Eec is given by two contributions E
(L)
ec and E

(NL)
ec related to the

local and non-local parts of pseudopotentials:

Eec = E(L)
ec + E(NL)

ec ,

=
1

VB

∫
B

dk3
∑
σ

occ∑
µ

⟨ψ(k)
σµ |

∑
I

{Vcore,I(r − τI) + VNL,I(r − τI)}|ψ(k)
σµ ⟩,

=
1

VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiRn·kc
(k)∗
σµ,iαc

(k)
σµ,jβ⟨ϕiα(r − τi)|

∑
I

Vcore,I(r − τI)|ϕjβ(r − τj − Rn)⟩

+
1

VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiRn·kc
(k)∗
σµ,iαc

(k)
σµ,jβ⟨ϕiα(r − τi)|

∑
I

VNL,I(r − τI)|ϕjβ(r − τj − Rn)⟩

=
∑
σ

N∑
n

∑
iα,jβ

ρ
(Rn)
σ,iαjβ⟨ϕiα(r − τi)|

∑
I

Vcore,I(r − τI)|ϕjβ(r − τj − Rn)⟩

+
∑
σ

N∑
n

∑
iα,jβ

ρ
(Rn)
σ,iαjβ⟨ϕiα(r − τi)|

∑
I

VNL,I(r − τI)|ϕjβ(r − τj − Rn)⟩, (9)

where Vcore,I and VNL,I are the local and non-local parts of pseudopotential located on a site I. Thus,
we have

E(L)
ec =

∑
σ

N∑
n

∑
iα,jβ

ρ
(Rn)
σ,iαjβ⟨ϕiα(r − τi)|

∑
I

Vcore,I(r − τI)|ϕjβ(r − τj − Rn)⟩,

=
∫

dr3n(r)
∑
I

Vcore,I(r − τI). (10)
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E(NL)
ec =

∑
σ

N∑
n

∑
iα,jβ

ρ
(Rn)
σ,iαjβ⟨ϕiα(r − τi)|

∑
I

VNL,I(r − τI)|ϕjβ(r − τj − Rn)⟩. (11)

The electron-electron Coulomb energy Eee is given by

Eee =
1
2

∫ ∫
dr3dr′3

n(r)n(r′)
|r − r′|

,

=
1
2

∫
dr3n(r)VH(r),

=
1
2

∫
dr3n(r){V (a)

H (r) + δVH(r)}, (12)

where VH is decomposed into two contributions V
(a)
H and δVH(r) coming from the superposition of

atomic charge densities and the difference charge density δn(r) defined by

V
(a)
H (r) =

∑
I

∫
dr′3

n
(a)
I (r)

|r − r′|
,

=
∑
I

V
(a)
H,I (r − τI), (13)

δVH(r) =
∫

dr′3
δn(r)
|r − r′|

. (14)

Within the LDA, the exchange-correlation energy Exc is given by

Exc =
∫

dr3{n↑(r) + n↓(r) + npcc(r)}ϵxc(n↑ +
1
2
npcc, n↓ +

1
2
npcc), (15)

where npcc is a charge density used for a partial core correction (PCC). The core-core Coulomb
energy Ecc is given as repulsive Coulomb interactions among effective core charge ZI considered in
the generation of pseudopotentials by

Ecc =
1
2

∑
I,J

ZIZJ

|τI − τJ |
. (16)

As discussed in the paper [1], for numerical accuracy and efficiency it is important to reorganize the
sum of three terms E

(L)
ec , Eee, and Ecc, as follows:

E(L)
ec + Eee + Ecc =

∫
dr3n(r)

∑
I

Vcore,I(r − τI) +
∫

dr3n(r)V (a)
H (r) −

∫
dr3n(r)V (a)

H (r)

+
1
2

∫
dr3n(r){V (a)

H (r) + δVH(r)} +
1
2

∫
dr3n(a)(r)V (a)

H (r) − 1
2

∫
dr3n(a)(r)V (a)

H (r)

+
1
2

∑
I,J

ZIZJ

|τI − τJ |
,

=
∫

dr3n(r)
∑
I

Vna,I(r − τI) +
1
2

∫
dr3n(r)δVH(r) − 1

2

∫
dr3δn(r)V (a)

H (r)

+
1
2

∑
I,J

[
ZIZJ

|τI − τJ |
−

∫
dr3n

(a)
I (r)V (a)

H,J(r)
]
,

=
∫

dr3n(r)
∑
I

Vna,I(r − τI) +
1
2

∫
δn(r)δVH(r)dr

+
1
2

∑
I,J

[
ZIZJ

|τI − τJ |
−

∫
n

(a)
I (r)V (a)

H,J(r)dr
]
, (17)
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where

Vna,I(r − τI) = Vcore,I(r − τI) + V
(a)
H,I (r − τI). (18)

Therefore, we can reorganize these three terms as follows:

E(L)
ec + Eee + Ecc = Ena + Eδee + Eecc, (19)

Ena =
∫

dr3n(r)
∑
I

Vna,I(r − τI),

=
∑
σ

N∑
n

∑
iα,jβ

ρ
(Rn)
σ,iαjβ

∑
I

⟨ϕiα(r − τi)|Vna,I(r − τI)|ϕjβ(r − τj − Rn)⟩, (20)

Eδee =
1
2

∫
dr3δn(r)δVH(r), (21)

Escc =
1
2

∑
I,J

[
ZIZJ

|τI − τJ |
−

∫
dr3n

(a)
I (r)V (a)

H,J(r)
]
. (22)

Following the reorganization of energy terms, the total energy can be given by

Etot = Ekin + Ena + E(NL)
ec + Eδee + Exc + Escc. (23)

2 Kohn-Sham equation

Considering the orthogonality relation among one-particle wave functions, let us introduce a functional
F with Lagrange’s multipliers εσνσ′ν′ :

F = Etot +
∑
k

∑
σ

∑
νν′

ε
(k)
σνσν′

(
δ
(k)
σνσν′ − ⟨ψ(k)

σν |ψ(k)
σν′⟩

)
. (24)

The variation of the functional F with respect to the LCPAO coefficients c
(k)∗
σµ,iα yields the following

matrix equation:

H(k)
σ c(k)

σ = S(k)c(k)
σ ε(k)

σσ . (25)

Moreover, noting that the matrix ε
(k)
σσ for Lagrange’s multipliers is Hermitian, and introducing V

diagonalizing the matrix, we can transform above equation as:

H(k)
σ c(k)

σ V = S(k)c(k)
σ V V †ε(k)

σσ V. (26)

By renaming c
(k)
σ V by c

(k)
σ , and defining the diagonal element of V †ε

(k)
σσ V to be ε

(k)
σµ , we have a well

known Kohn-Sham equation in a matrix form as a generalized eigenvalue problem:

H(k)
σ c(k)

σµ = ε(k)
σµ S(k)c(k)

σµ , (27)

where the Hamiltonian and overlap matrices are given by

H
(k)
σ,iαjβ =

∑
n

eiRn·k⟨ϕiα(r − τi)|Ĥσ|ϕjβ(r − τj − Rn)⟩,

=
∑
n

eiRn·kh
(Rn)
σ,iαjβ . (28)
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S
(k)
iαjβ =

∑
n

eiRn·k⟨ϕiα(r − τi)|ϕjβ(r − τj − Rn)⟩,

=
∑
n

eiRn·ks
(Rn)
σ,iαjβ . (29)

with a Kohn-Sham Hamiltonian operator

Ĥσ = T̂ + Veff,σ, (30)

and the effective potential

Veff,σ =
∑
k

VNL,k +
∑
k

Vna,k + δVH + Vxc,σ. (31)

3 Projector expansion of Vna,I

The neutral atom potential Vna,I is spherical and defined within the finite range determined by the
cutoff radius rc,I of the confinement potential. Therefore, the potential Vna,I can be expressed by a
projector expansion as follows:

V̂na,I =
Lmax∑
lm

Nrad∑
ζ

|Vna,IR̄lζYlm⟩ 1
clζ

⟨YlmR̄lζVna,I |, (32)

where a set of radial functions {R̄lζ} is an orthonormal set defined by a norm
∫

r2drRVna,kR
′ for radial

functions R and R′, and is calculated by the following Gram-Schmidt orthogonalization [4]:

R̄lζ = Rlζ −
ζ−1∑
η

R̄lη
1
clη

∫
r2drR̄lηVna,kRlζ , (33)

clζ =
∫

r2drR̄lζVna,kR̄lζ . (34)

The radial function Rlζ used is pseudo wave functions for both the ground and excited states under the
same confinement potential as used in the calculation of the atomic electron density n

(a)
i [2, 3]. The

most important feature in the projector expansion is that the deep neutral atom potential is expressed
by a separable form, and thereby we only have to evaluate the two-center integrals to construct the
matrix elements for the neutral atom potential. As discussed later, the two-center integrals can be
accurately evaluated in momentum space. For details of the projector expansion method, see also the
reference [1].

4 Two-center integrals

The overlap integrals, matrix elements for the non-local potentials, for the neutral atom potentials in
a separable form discussed in the Sec. 3, and for the kinetic operator consist of two-center integrals.
In this section, the evaluation of the two-center integrals is discussed. The pseudo-atomic function
ϕiα(r) in Eq. (1) is given by a product of a real spherical harmonic function Ȳlm and a radial wave
function Rpl:

ϕiα(r) = Ȳlm(r̂)Rpl(r), (35)
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where r̂ means Euler angles, θ and ϕ, for r, and r radial coordinate. Although the real function is
used for the spherical harmonic function in OpenMX instead of the complex function Ylm(r̂), firstly
we consider the case with the complex function Ylm(r̂) as

ϕiα(r) = Ylm(r̂)Rpl(r). (36)

After the evaluation of two-center integrals related to the complex function, they are transformed
into two-center integrals for the real function Ȳlm(r̂) by matrix operations. Then, the pseudo-atomic
function ϕiα(r) given by Eq. (36) can be Fourier-transformed as follows:

ϕ̃iα(k) =
(

1√
2π

)3 ∫
dr3ϕiα(r)e−ik·r. (37)

The back transformation is defined by

ϕiα(r) =
(

1√
2π

)3 ∫
dk3ϕ̃iα(k)eik·r. (38)

Noting the Rayleigh expansion

eik·r = 4π
∞∑

L=0

L∑
M=−L

iLjL(kr)Y ∗
LM (k̂)YLM (r̂), (39)

e−ik·r = 4π
∞∑

L=0

L∑
M=−L

(−i)LjL(kr)YLM (k̂)Y ∗
LM (r̂), (40)

and putting Eqs. (36) and (40) into Eq. (37), we have

ϕ̃iα(k) =
(

1√
2π

)3 ∫
dr3Ylm(r̂)Rpl(r)

4π
∞∑

L=0

L∑
M=−L

(−i)LjL(kr)YLM (k̂)Y ∗
LM (r̂)

 ,

=
(

1√
2π

)3

4π
∞∑

L=0

L∑
M=−L

(−i)LYLM (k̂)
∫

drr2Rpl(r)jL(kr)
∫

dθdϕ sin(θ)Ylm(r̂)Y ∗
LM (r̂),

=

[(
1√
2π

)3

4π(−i)l
∫

drr2Rpl(r)jl(kr)

]
Ylm(k̂),

= R̃pl(k)Ylm(k̂), (41)

where we defined

R̃pl(k) =

[(
1√
2π

)3

4π(−i)l
∫

drr2Rpl(r)jL(kr)

]
. (42)

Using Eqs. (38), (40), and (41), the overlap integral is evaluated as follows:

⟨ϕiα(r)|ϕjβ(r − τ)⟩ =
∫

dr3ϕ∗
iα(r)ϕjβ(r − τ),

=
∫

dr3
(

1√
2π

)3 ∫
dk3R̃∗

pl(k)Y ∗
lm(k̂)e−ik·r

(
1√
2π

)3 ∫
dk′3R̃p′l′(k′)Yl′m′(k̂′)eik′·(r−τ),

=
(

1
2π

)3 ∫
dk3

∫
dk′3e−ik′·τ R̃∗

pl(k)Y ∗
lm(k̂)R̃p′l′(k′)Yl′m′(k̂′)

∫
dr3ei(k′−k)·r,

=
∫

dk3e−ik·τ R̃∗
pl(k)Y ∗

lm(k̂)R̃p′l′(k)Yl′m′(k̂),
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=
∫

dk3

4π
∞∑

L=0

L∑
M=−L

(−i)LjL(kr)YLM (k̂)Y ∗
LM (r̂)

 R̃∗
pl(k)Y ∗

lm(k̂)R̃p′l′(k)Yl′m′(k̂),

= 4π
∞∑

L=0

L∑
M=−L

(−i)LY ∗
LM (τ̂)Cl(−m),l′m′,LM

∫
dkk2jL(k|τ |)R̃∗

pl(k)R̃p′l′(k), (43)

where an integral in the third line was evaluated as∫
dr3ei(k′−k)·r = (2π)3δ(k′ − k), (44)

and one may notice Gaunt coefficients defined by

Cl(−m),l′m′,LM =
∫

dθdϕ sin(θ)Y ∗
lm(k̂)Yl′m′(k̂)YLM (k̂). (45)

The matrix element for the kinetic operator can be easily found in the same way as for the overlap
integral as follows:

⟨ϕiα(r)|T̂ |ϕjβ(r − τ)⟩ =
∫

dr3ϕ∗
iα(r)

{
−1

2
(

d2

dx2
+

d2

dy2
+

d2

dz2
)

}
ϕjβ(r − τ),

= 2π
∞∑

L=0

L∑
M=−L

(−i)LCl(−m),l′m′,LM

∫
dkk4jL(kr)R̃∗

pl(k)R̃p′l′(k). (46)

5 Discretization

The two energy terms Eδee and Exc are discretized by a regular mesh {rp} in real space [5], while
the integrations in Ekin, Ena, Escc, and E

(NL)
ec can be reduced to two center integrals which can be

evaluated in momentum space. The regular mesh {rp} in real space is generated by dividing the unit
cell with a same interval which is characterized by the cutoff energies E

(1)
cut, E

(2)
cut, and E

(3)
cut:

E
(1)
cut =

1
2
gb1 · gb1, E

(2)
cut =

1
2
gb2 · gb2, E

(3)
cut =

1
2
gb3 · gb3, (47)

ga1 =
a1

N1
, ga2 =

a2

N2
, ga3 =

a3

N3
, (48)

gb1 = 2π
ga2 × ga3

∆V
, gb2 = 2π

ga3 × ga1

∆V
, gb3 = 2π

ga1 × ga2

∆V
, (49)

∆V = ga1 · (ga2 × ga3) , (50)

where a1, a2, and a3 are unit cell vectors of the whole system, and N1, N2, and N3 are the number of
division for a1, a2, and a3-axes, respectively. N1, N2, and N3 are determined so that the differences
among E

(1)
cut, E

(2)
cut, and E

(3)
cut can be minimized starting from the given cutoff energy. Using the regular

mesh {rp}, the Hartree energy Eδee associated with the difference charge density δn(r) is discretized
as

Eδee =
1
2
∆V

∑
p

δn(rp)δVH(rp). (51)
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The same regular mesh {rp} is also applied to the solution of Poisson’s equation to find δVH. Then,
the charge density is Fourier transformed by

δñ(q) =
1

N1N2N3

N1−1∑
n1

N2−1∑
n2

N3−1∑
n3

δñ(rn1n2n3)e
−iq·rn1n2n3 ,

=
1

N1N2N3

∑
p

δn(rp)e−iq·rp . (52)

From {δñ(q)}, we can evaluate δṼH(q) by

δṼH(q) =
4π

|q|2
δñ(q). (53)

Thus, we see that δVH(r) is also written in a discretized form with the regular mesh as follows:

δVH(r) =
∑
q

δṼH(q)eiq·r,

=
4π

N1N2N3

∑
q

1
|q|2

∑
p

δn(rp)eiq·(r−rp). (54)

Within the LDA, Exc can be easily discretized as well as Eδee by

Exc = ∆V
∑
p

{n↑(rp) + n↓(rp) + npcc(rp)}ϵxc(n↑(rp) +
1
2
npcc(rp), n↓(rp) +

1
2
npcc(rp)). (55)

For the GGA, Exc is discretized with the gradient of charge density evaluated with a finite difference
scheme in the same way in the LDA.

Since the derivative of the charge density n(rp) with respect to c
(k)∗
σµ,iα is given by

∂n(rp)

∂c
(k)∗
σµ,iα

=
∑
jβ

cσµ,jβ

N∑
n

eiRn·kϕiα(rp)ϕjβ(rp), (56)

the matrix elements for Vδee and Vxc in the Kohn-Sham equation Eq. (27) are found by differentiating
the energies Eδee and Exc with respect to c

(k)∗
σµ,iα as follows:

∂Eδee

∂c
(k)∗
σµ,iα

=
∑
p

∂n(rp)

∂c
(k)∗
σµ,iα

∂Eδee

∂n(rp)
,

=
∑
jβ

cσµ,jβ

[
N∑
n

eiRn·k∆V
∑
p

ϕiα(rp)δVH(rp)ϕjβ(rp)

]
(57)

and

∂Exc

∂c
(k)∗
σµ,iα

=
∑
p

∂nσ(rp)

∂c
(k)∗
σµ,iα

∂Exc

∂nσ(rp)
,

=
∑
jβ

cσµ,jβ

[
N∑
n

eiRn·k∆V
∑
p

ϕiα(rp)vxc,σ(rp)ϕjβ(rp)

]
, (58)

where the quantities in the parenthesis [] correspond to the matrix elements.
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6 Force on atom

∂Etot

∂τk
=

∂Ekin

∂τk
+

∂Ena

∂τk
+

∂E
(NL)
ec

∂τk
+

∂Eδee

∂τk
+

∂Exc

∂τk
+

∂Escc

∂τk
. (59)

The derivative of the kinetic energy with respect to τk is given by

∂Ekin

∂τk
=

1
VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiτn·k∂c
(k)∗
σµ,iα

∂τk
c
(k)
σµ,jβ⟨ϕiα(r − τi)|T̂ |ϕjβ(r − τj − Rn)⟩

+
1

VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiRn·kc
(k)∗
σµ,iα

∂c
(k)
σµ,jβ

∂τk
⟨ϕiα(r − τi)|T̂ |ϕjβ(r − τj − Rn)⟩

+
1

VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiRn·kc
(k)∗
σµ,iαc

(k)
σµ,jβ

∂⟨ϕiα(r − τi)|T̂ |ϕjβ(r − τj − Rn)⟩
∂τk

. (60)

The derivative of the neutral atom potential energy with respect to τk is given by

∂Ena

∂τk
=

1
VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiRn·k∂c
(k)∗
σµ,iα

∂τk
c
(k)
σµ,jβ⟨ϕiα(r − τi)|Vna(r)|ϕjβ(r − τj − Rn)⟩

+
1

VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiRn·kc
(k)∗
σµ,iα

∂c
(k)
σµ,jβ

∂τk
⟨ϕiα(r − τi)|Vna(r)|ϕjβ(r − τj − Rn)⟩

+
1

VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiRn·kc
(k)∗
σµ,iαc

(k)
σµ,jβ

∂ {⟨ϕiα(r − τi)|Vna(r)|ϕjβ(r − τj − Rn)⟩}
∂τk

. (61)

The derivative of the non-local potential energy with respect to τk is given by

∂E
(NL)
ec

∂τk
=

1
VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiRn·k∂c
(k)∗
σµ,iα

∂τk
c
(k)
σµ,jβ⟨ϕiα(r − τi)|VNL(r)|ϕjβ(r − τj − Rn)⟩

+
1

VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiRn·kc
(k)∗
σµ,iα

∂c
(k)
σµ,jβ

∂τk
⟨ϕiα(r − τi)|VNL(r)|ϕjβ(r − τj − Rn)⟩

+
1

VB

∫
B

dk3
∑
σ

occ∑
µ

N∑
n

∑
iα,jβ

eiRn·kc
(k)∗
σµ,iαc

(k)
σµ,jβ

∂ {⟨ϕiα(r − τi)|VNL(r)|ϕjβ(r − τj − Rn)⟩}
∂τk

. (62)

The derivative of the Hartree energy energy for the difference charge density δn(r) with respect to τk

is given by

∂Eδee

∂τk
=

∑
p

∂n(rp)
∂τk

∂Eδee

∂n(rp)
+

∑
p

∂n(a)(rp)
∂τk

∂Eδee

∂n(a)(rp)
. (63)

Considering Eq. (54) and

∂δVH(rp)
∂n(rq)

=
4π

N1N2N3

∑
q

1
|q|2

eiq·(rp−rq), (64)

we have
∂Eδee

∂n(rq)
=

1
2
∆V {δVH(rq) +

∑
p

δn(rp)
∂δVH(rp)
∂n(rq)

},

=
1
2
∆V δVH(rq) +

4π∆V

2N1N2N3

∑
q

1
|q|2

∑
p

δn(rp)eiq·(rp−rq),

= ∆V δVH(rq), (65)
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and
∂Eδee

∂n(a)(rq)
= −1

2
∆V δVH(rq) +

1
2
∆V

∑
p

δn(rp)
∂δVH(rp)
∂n(a)(rq)

,

= −1
2
∆V δVH(rq) − 1

2
∆V

4π

N1N2N3

∑
q

1
|q|2

∑
p

δn(rp)eiq·(rp−rq),

= −∆V δVH(rq). (66)

Moreover, the derivative of n(rp) with respect to τk is given by

∂n(rp)
∂τk

=
1

VB

∫
B

dk3
∑
σ

occ∑
µ

∑
iα,jβ

N∑
n

eiRn·k

∂c
(k)∗
σµ,iα

∂τk
c
(k)
σµ,jβϕiα(rp)ϕjβ(rp) + c

(k)∗
σµ,iα

∂c
(k)
σµ,jβ

∂τk
ϕiα(rp)ϕjβ(rp)


+

2
VB

∫
B

dk3
∑
σ

∑
α,jβ

∑
µ

N∑
n

eiRn·kc
(k)∗
σµ,kαc

(k)
σµ,jβ

∂ϕkα(rp)
∂τk

ϕjβ(rp). (67)

The derivative of n(a)(rp) with respect to τk is simply given by

∂n(a)(rp)
∂τk

=
∂n

(a)
k (rp)
∂τk

. (68)

The derivative of Exc with respect to the atomic coordinate τk is easily evaluated by
∂Exc

∂τk
=

∑
σ

∑
p

∂nσ(rp)
∂τk

∂Exc

∂nσ(rp)
+

∑
σ

∑
p

∂npcc(rp)
∂τk

∂Exc

∂npcc(rp)
,

= ∆V
∑
σ

∑
p

∂nσ(rp)
∂τk

Vxc,σ(n(rp, npcc(rp)) +
∆V

2

∑
σ

∑
p

∂npcc(rp)
∂τk

Vxc,σ(n(rp), npcc(rp)). (69)

The derivative of the screened core-core Coulomb energy Escc with respect to τk is given by

∂Escc

∂τk
=

1
2

∑
I,J

∂
{

ZIZJ
|τI−τJ |

}
∂τk

−
∂

{∫
dr3n

(a)
I (r)V (a)

H,J(r)
}

∂τk

 . (70)

Since the second term is tabulated in a numerical table as a function of distance due to the spherical
symmetry of integrands, the derivative can be evaluated analytically by employing an interpolation
scheme. The derivatives given by Eqs. (60), (61), (62), (63), and (69) contain the derivative of LCPAO
coefficient c. The derivative of c can be transformed to the derivative of the overlap matrix with respect
to τk as shown below. By summing up all the terms including the derivatives of c in Eqs. (60), (61),
(62), (63), and (69), we have

A =
1

VB

∫
B

dk3
∑
σ

{
Tr

(
Θ(EF − ε(k)

σ )
∂c

(k)†
σ

∂τk
H(k)

σ c(k)
σ

)
+ Tr

(
Θ(EF − ε(k)

σ )c(k)†
σ H(k)

σ

∂c
(k)
σ

∂τk

)}
, (71)

where Θ is a diagonal matrix consisting of Heaviside step functions. Noting that Eq. (27) can be
written by H

(k)
σ c

(k)
σ = S(k)c

(k)
σ ε

(k)
σ and c

(k)†
σ H

(k)
σ = ε

(k)
σ c

(k)†
σ S(k) in a matrix form, the product of two

diagonal matrices is commutable, and Tr(XY ) = Tr(Y X) for any square matrices, Eq. (71) can be
written as

A =
1

VB

∫
B

dk3
∑
σ

{
Tr

(
Θ(EF − ε(k)

σ )
∂c

(k)†
σ

∂τk
S(k)c(k)

σ ε(k)
σ

)
+ Tr

(
Θ(EF − ε(k)

σ )ε(k)
σ c(k)†

σ S(k) ∂c
(k)
σ

∂τk

)}
,

=
1

VB

∫
B

dk3
∑
σ

{
Tr

(
Θ(EF − ε(k)

σ )
∂c

(k)†
σ

∂τk
S(k)c(k)

σ ε(k)
σ

)
+ Tr

(
Θ(EF − ε(k)

σ )c(k)†
σ S(k) ∂c

(k)
σ

∂τk
ε(k)
σ

)}
,

=
1

VB

∫
B

dk3
∑
σ

{
Tr

(
Θ(EF − ε(k)

σ )

(
∂c

(k)†
σ

∂τk
S(k)c(k)

σ + c(k)†
σ S(k) ∂c

(k)
σ

∂τk

)
ε(k)
σ

)}
. (72)
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Moreover, taking account of the derivative of the orthogonality relation c
(k)†
σ S(k)c

(k)
σ = I with respect

to τk, we have the following relation:

∂c
(k)†
σ

∂τk
S(k)c(k)

σ + c(k)†
σ S(k) ∂c

(k)
σ

∂τk
= −c(k)†

σ

∂S(k)

∂τk
c(k)
σ . (73)

Putting Eq. (73) into Eq. (72), we have

A = −
∑
σ

N∑
n

∑
iα,jβ

E
(Rn)
σ,iαjβ

∂S
(Rn)
iαjβ

∂τk
,

where the energy density matrix E
(Rn)
σ,iαjβ is given by

E
(Rn)
σ,iαjβ =

1
VB

∫
B

dk3
occ∑
µ

eiRn·kε(k)
σµ c

(k)∗
σµ,iαc

(k)
σµ,jβ . (74)

The terms including the derivative of matrix elements in Eqs. (60), (61), and (62) can be easily
evaluated by

B =
∑
σ

N∑
n

∑
iα,jβ

ρ
(Rn)
σ,iαjβ

∂
{
h

(Rn)
iαjβ,kin + h

(Rn)
iαjβ,Vna

+ h
(Rn)
iαjβ,VNL

}
∂τk

, (75)

where

h
(Rn)
iαjβ,kin = ⟨ϕiα(r − τi)|T̂ |ϕjβ(r − τj − Rn)⟩, (76)

h
(Rn)
iαjβ,Vna

= ⟨ϕiα(r − τi)|Vna|ϕjβ(r − τj − Rn)⟩, (77)

h
(Rn)
iαjβ,VNL

= ⟨ϕiα(r − τi)|VNL|ϕjβ(r − τj − Rn)⟩, (78)

The derivatives of these elements are evaluated analytically from the analytic derivatives of Eqs. (43)
and (46). The remaining contributions in first terms of Eqs. (63) and (69) are given by

C =
∑
σ

N∑
n

∑
iα,jβ

ρ
(Rn)
σ,iαjβ2∆V

∑
p

∂ϕkα(rp)
∂τk

{δVH(rq) + Vxc,σ(rq, npcc(rp)}ϕjβ(rp). (79)

The second terms in Eqs. (63) and (69) becomes

D = −∆V
∑
p

δVH(rp)
∂n

(a)
k (rp)
∂τk

+
∆V

2

∑
σ

∑
p

∂npcc,k(rp)
∂τk

Vxc,σ(n(rp), npcc(rp)). (80)

Thus, we see that the derivative of the total energy with respect to the atomic coordinate τk is
analytically evaluated for any grid fineness as

∂Etot

∂τk
= A + B + C + D +

∂Escc

∂τk
. (81)
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