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A	postprocessing	code	“kSpin”	
•  “kSpin”	calculates	the	k-space	spin	density	matrices	
from	a	scfout	file	for	every	state	at	every	k-point.	

•  The	k-space	spin	density	matrices	are	used	to	analyze	
spin	textures.	

•  There	are	four	different	methods	in	terms	of	how	to	
choose	k-points.	

•  From	the	the	k-space	spin	density	matrix,	the	direction	
and	magnitude	of	the	spin	for	a	state	at	a	k-point	are	
calculated	to	draw	spin	textures.	

•  The	k-space	spin	density	matrices	are	decomposed	into	
the	contribution	to	each	atom	and	pseudo	atomic	
orbital	(PAO).	



k-space	spin	density	matrix	[1]	
Pσ ʹσ (k,µ) = ψσµ
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k : a wave vector
µ : states (band indices)
σ : spin indices (σ =α,β)

ψσµ
(k ) : Bloch states

cσ : LCPAO expansion coefficients

S (k ) : The overlap matrix
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Eigenvalue problems
for the Kohn-Sham equation
Hσ

(k )cσ
(k ) = S (k )cσ

(k )εσ
(k )

Hσ
(k ) : The Hamiltonian

εσ
(k ) : Energy eigenvalues

[1] H. Kotaka, F. Ishii, and M. Saito, 
Jpn. J. Appl. Phys. 52, 035204 (2013).	



Decomposition	of		
the	k-space	spin	density	matrices	

Mσ ʹσ ,ia (k,µ) = cσµ ,ia
(k )* Siajb

(k)cσ 'µ , jb
(k )

jb
∑ ,

where
Pσ ʹσ (k,µ) = Mσ ʹσ ,ia (k,µ)

ia
∑ .

k : a wave vector
µ : states (band indices)
σ : spin indices
i, j : site indices
ia, jb : PAO indices

ψσµ
(k ) : Bloch states

cσ : LCPAO expansion coefficients

S (k ) : The overlap matrix



1.  Set	an	n	by	m	k-point	grid	in	a	user-specified	two-dimensional	
reciprocal	space.	

2.  Solve	eigenvalue	problems	at	each	k-point.	
3.  Calculate	the	k-space	spin	density	matrices	at	each	k-point.	

Method	1:	GridCalc	
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An	example	in	the	case	of	n	=	m	=	4	
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1.  Set	an	n	by	m	k-point	grid	in	a	user-specified	two-dimensional	
reciprocal	space.	
(We	call	it	the	first	k-point	grid	hereafter.)	

2.  Solve	eigenvalue	problems	at	each	k-point.	

Method	2:	FermiLoop	– 1st	step	
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An	example	in	the	case	of	n	=	m	=	4	
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3.  Find	squares	crossing	curves	that	connects	k-points	where	the	
energy	is	equal	to	an	user-specified	energy	level	(a	green	region	in	
the	below	figure).	

Method	2:	FermiLoop	– 1st	step	

n	

m	

An	example	in	the	case	of	n	=	m	=	4	

k-point	

Curve	that	connects	k-points	
where	the	energy	is	equal		
to	an	user-specified	energy	level.	



4.  Set	an	triangle	mesh	as	the	second	k-point	grid	in	the	squares	on	
the	first	k-point	grid.	

5.  Solve	eigenvalue	problems	at	each	k-point	on	the	second	k-point	
grid.	

6.  Pick	up	sides	of	triangles,	which	compose	the	k-point	grid,	that	
crosses	Fermi	arcs.	

Method	2:	FermiLoop	–	2nd	step	



7.  Determine	k-points	on	the	curves	by	linear	interpolation	or	Brent’s	
method	for	energy	eigenvalues.	Data	of	These	k-points	is	stored	as	
it	is	useful	to	draw	closed	curves	by	connecting	them.	It	is	
important	to	constant	energy	lines	for	Rashba	spin	splittings,	for	
example.	

Method	2:	FermiLoop	–	2nd	step	



8.  Calculate	the	k-space	spin	density	matrices	at	each	k-point	on	Fermi	
arcs.	

Method	2:	FermiLoop	–	2nd	step	



1.  Specify	k-paths.	
2.  Solve	eigenvalue	problems	at	each	of	k-points	on	k-paths.	
3.  Calculate	the	k-space	spin	density	matrices	at	each	k-point.	

Method	3:	BandDispersion	

Specification	of	k-paths:	



1.  Solve	eigenvalue	problems	at	each	of	given	sets	of	a	k-point	and	a	
state	(band	index).	

2.  Calculate	the	k-space	spin	density	matrices	at	each	k-point.	

Method	4:	MulPOnly	

Specification	of	sets	of	a	k-point	and	a	state:	
	 	kx 	 	 	 	ky 	 	 	 	kz 	 	 	μ	(State,	Band	index)	

	0.00000000000000		0.18000000000000		0.00000000000000	 	 	55	
	0.00000000000000		0.17778390130712		0.02815820370724	 	 	55	
	0.00000000000000		0.17119017293313		0.05562305898749	 	 	55	
	0.00000000000000		0.16038117435391		0.08171828995312	 	 	55	
	0.00000000000000		0.14562305898749		0.10580134541265	 	 	55	
	0.00000000000000		0.12727922061358		0.12727922061358	 	 	55	
	0.00000000000000		0.10580134541265		0.14562305898749	 	 	55	
	0.00000000000000		0.08171828995312		0.16038117435391	 	 	55	
	0.00000000000000		0.05562305898749		0.17119017293313	 	 	55	
			 ......	


