DFT+U modified code description

by Siheon Ryee

I. BRIEF SUMMARY OF DFT+U FORMALISM

The general form of DFT+U (It has also been conventionally referred to as LDA+U. However, to strictly distinguish LDA+U and LSDA+U, we used a term "DFT+U".) energy correction for a certain orbital can be expressed as:

$$E^U = E^{\text{int}} - E^{\text{dc}},\tag{1}$$

where E^{int} and E^{dc} refers to the interaction energy and the double-counting term, respectively.

The E^{int} reads (for noncollinear scheme) [1, 2]:

$$E^{\text{int}} = \frac{1}{2} \sum_{\{m_i\},\sigma,\sigma'} \{ n_{m_1m_2}^{\sigma\sigma} \langle m_1, m_3 | V_{ee} | m_2, m_4 \rangle n_{m_3m_4}^{\sigma'\sigma'} - n_{m_1m_2}^{\sigma\sigma'} \langle m_1, m_3 | V_{ee} | m_4, m_2 \rangle n_{m_3m_4}^{\sigma'\sigma} \}, \quad (2)$$

where $n_{m_1m_2}^{\sigma\sigma'}$ are the elements of on-site density matrix (DM) **n** for orbitals $\{m_i\}$ and spins σ, σ' $(\sigma, \sigma' = \uparrow \text{ or } \downarrow)$. Simplification to collinear case is straightforward by taking $n_{m_1m_2}^{\sigma\sigma'} = 0$ for $\sigma \neq \sigma'$. The elements of on-site Coulomb interaction tensor can be expressed as [1, 3]:

$$\langle m_1, m_3 | V_{ee} | m_2, m_4 \rangle = \sum_{\{m'_i\}} \left[S_{m_1 m'_1} S_{m_3 m'_3} \left\{ \sum_{k=0}^{\infty} \alpha_k (m'_1, m'_3, m'_2, m'_4) F^k \right\} S_{m'_2 m_2}^{-1} S_{m'_4 m_4}^{-1} \right], \quad (3)$$

with

$$\alpha_k(m'_1, m'_3, m'_2, m'_4) = \frac{4\pi}{2k+1} \sum_{q=-k}^k \langle Y_{l,m'_1} | Y_{k,q} Y_{l,m'_2} \rangle \langle Y_{l,m'_3} Y_{k,q} | Y_{l,m'_4} \rangle, \tag{4}$$

where α_k and F^k refers to Racah-Wigner numbers and Slater integrals, respectively [1, 3], and S is a transformation matrix from spherical harmonics (m'_i) to the predefined local basis (PAOs in OpenMX). Here $\langle Y_{l,m'_1}|Y_{k,q}Y_{l,m'_2}\rangle$ corresponds to the Gaunt coefficients and can be calculated by using Wigner-3j symbols. Conventional expression of Slater integrals which we follow are $U = F^0$, $J = (F^2 + F^4)/14$, and $F^4/F^2 = 0.625$ for *d*-orbitals. (U: Hubbard U / J: Hund's couplling J).

There are several variations of double-counting term (E^{dc}) . Most widely used are so-called "FLL" and "AMF" forms. For their detailed functional expressions, refer to Ref. 4 and references therin.

Once Eqs. 2 - 4 are computed, all the other processes are very similar to the case of Dudarev's scheme [5, 6].

II. SHORT EXPLANATION TO NEWLY ADDED AND MODIFIED CODES

Newly added source code is Coulomb_Interaction.c to generate Coulomb interaction tensor (Eq. 3). Modified codes are Allocate_Arrays.c, Free_Arrays.c, Input_std.c, Occupation_Number_LDA_U.c, Total_Energy.c, openmx_common.h, outputfile.c, Set_Vpot.c, Set_XC_Grid.c, SetPara_DFT.c, Stress.c, XC_CA_LSDA.c, XC_PBE.c, and XC_PW92C.c. I note that there are minor modifications in Set_Vpot.c, Set_XC_Grid.c, SetPara_DFT.c, Stress.c, XC_CA_LSDA.c, SetPara_DFT.c, Stress.c, XC_CA_LSDA.c, SetPara_DFT.c, Stress.c, XC_CA_RSDA.c, SetPara_RSDA.c, SetPa

A. New input keywords

Followings are the newly added keywords for general DFT+U calculations [4] and are compatible with the existing keywords, scf.Hubbard.U and scf.Hubbard.Occupation.

scf.DFTU.Type	2	#	1:Simplified(Dudarev) 2:General, default=1
scf.dc.Type	cFLL	#	sFLL sAMF cFLL cAMF, default=sFLL
scf.Slater.Ratio	0.625	#	default=0.625
scf.Yukawa	off	#	default=off

Only by setting to scf.DFTU.Type=2, the other keywords (scf.dc.Type, scf.Slater.Ratio, scf.Yukawa) can be used. Also, to use scf.DFTU.Type=2, scf.SpinPolarization should be on or NC.

scf.DFTU.Type=1 corresponds to using the existing DFT+U implementation [6].

B. New source code; Coulomb_Interaction.c

Part for Slater integrals. This part is basically categorized into two choices; when using 1) standard way and 2) Yukawa-type potential. The second choice is activated only when **scf.Yukawa=on** in '*.dat' file. However, either choice has the same purpose: to generate Eq. 3 via Slater integrals and Eq. 4.

1) In the standard way, Slater integrals are expressed as $F^0 = U$, $F^2 = J * \frac{14}{(1.0 + \text{scf.Slater.Ratio})}$, and $F^4 = \text{scf.Slater.Ratio} * F^2$ for *d*-orbital.

2) When using Yukawa-type potential, $F^0 = U$, and F^2 and F^4 are estimated from U [4], thus not requiring input J values. This process is realized by three functions, namely, 'static double Bessel_j', 'static double Bessel_h', and 'static double Integrate_Bessel'. For formal details, please refer to Ref. 4 or Ref. 7.

Part for calculation of Racah-Wigner numbers. Calculation of Eq. 4 is realized by the two functions 'static double Wigner3j' and 'static double Gaunt_SR'.

Finally, with given Slater integrals and Racah-Wigner numbers, Eq. 3 is generated through 'static double Coulomb_Matrix' using transformation matrix S (in Eq. 3) as expressed in function 'static dcomples StoR'. This process is performed for every orbital having nonzero U or J. The generated Coulomb interaction tensor is stored in array named 'Coulomb_Array'.

C. Short note on 'cFLL' and 'cAMF' double-counting

Setting scf.dc.Type to cFLL or cAMF requires *charge-only* exchange-correlation (xc) energy of LDA (or GGA). Therefore, if scf.dc.Type=sFLL or cAMF, OpenMX will automatically enforces zero spin-polarization when using xc subroutines such as Set_XC_Grid.c, XC_CA_LSDA.c, XC_PBE.c, and XC_PW92C.c. Moreover, ignoring spin-polarization in xc energy is constrained to be activated for SCF_iter ≥ 2 , as numerical instability was found when it was done from the very beginning (SCF_iter ≥ 1).

III. TEST CALCULATIONS

The input files are included in the directory 'example'.

A. NiO

B. MnO

C. FeO noncollinear

FIG. 1: The up-spin density of states of NiO by (a) cFLL, (b) sFLL, (c) cAMF, and (d) sAMF. U is fixed to 5 eV and J = 0.5 eV for blue lines and 1.0 eV for red lines.

FIG. 2: The up-spin density of states of MnO by (a) LDA, (b) cFLL, and (c) sFLL. U is fixed to 3 eV and J = 0.5 eV for blue lines and 1.0 eV for red lines.

- [1] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
- [2] A. N. Yaresko, V. N. Antonov, and P. Fulde, Phys. Rev. B 67, 155103 (2003).
- [3] L. Vaugier, H. Jiang, and S. Biermann, Phys. Rev. B 86, 165105 (2012).
- [4] S. Ryee and M. J. Han, arXiv preprint arXiv:1709.03214 (2017).
- [5] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57,

FIG. 3: The noncollinear up- and down-spin density of states of FeO by (a) LDA, (b) cFLL, and (c) sFLL. U is fixed to 4 eV and J = 0.5 eV for blue lines and 1.0 eV for red lines.

Type	$J \; [eV]$	spin moment $[\mu_B/\text{Fe}]$	orbital moment $[\mu_B/{\rm Fe}]$
LDA	-	3.60	0.11
cFLL	0.5	3.80	0.85
	1.0	4.09	0.81
sFLL	0.5	3.99	0.79
	1.0	3.82	0.66

TABLE I: Calculated spin- and orbital-moment of FeO by LDA, cFLL, and sFLL. U = 4 eV for cFLL and sFLL. Mulliken population was used for all cases.

1505 (1998).

- [6] M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 73, 045110 (2006).
- [7] F. Bultmark, F. Cricchio, O. Grånäs, and L. Nordström, Phys. Rev. B 80, 035121 (2009).