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Chapter 1

Orthogonal Basis Sets

In this chapter, the theory of recursion methods are discussed within an orthogonal tight-

binding representation. Then, as an extension of the recursion method, a practical recursion

method based on the block Lanczos algorithm are presented. Several convergence properties

for energies and forces show that the block scheme handles automatically the very different

character of σ and π bonds by introducing block elements, which produces rapid convergence

of the energies and forces within insulators, semiconductors, metals, and molecules. The

method gives the first convergent results for vacancies in semiconductors using a moments-

based method with a low number of moments. Our use of the Lanczos basis simplifies the

calculations of the band energy and forces, which allows the application of the method to

the molecular dynamics simulations of large systems.

1.1 Theory

1.1.1 Tight-binding

Let us start the recursion method or bond-order potential (BOP) within the two center

orthogonal TB representation[10, 31]. It will be assumed that the basis set is an orthonormal

set of atomiclike orbitals |iα〉 where i is a site index, and α an orbital index. The Hamiltonian

can be represented by the matrix Hiα,jβ = 〈iα|Ĥ|jβ〉. The on-site elements of the matrix are

written as εiα. The cohesive energy, assuming that the electrons are at a finite temperature

T , is the sum of bond, promotion, and repulsive energies:

Ecoh = Ebond + Eprom + Erep, (1.1)

where the repulsive energy is given by the sum of pair potentials or embedded potentials

which are usually determined so that the TB model reproduces equilibrium structures and

elastic constants. The bond energy is the attractive contribution that leads to cohesion.

There are two different but equivalent expressions that describe the bond energy. The first

gives the bond energy in terms of the on-site density of states as follows:

Ebond = 2
∑

iα

∫
(E − εiα)niα(E)f

(
E − µ

kBT

)
dE, (1.2)

where niα(E) is the density of states projected onto orbital |iα〉, and the function f(x) =

1/[1 + exp(x)] is the Fermi function. The second gives the bond energy explicitly in terms
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of the individual intersite bond energies as follows:

Ebond =
1

2

∑

iα6=jβ

(
2Θiα,jβHjβ,iα

)
, (1.3)

where Θiα,jβ is the bond-order between orbitals |iα〉 and |jβ〉, and the expression parenthesis

represents the corresponding bond energy associated with orbitals |iα〉 and |jβ〉. This allows

us to interpret the bonding and structure of molecules and solids from a chemical point of

view[32]. It should be noted that the bond-order is not pairwise but is determined by the

particular arrangement and connectivity of the atoms adjacent to the two atoms forming the

bond. In the block BOP representation the two different expressions Eqs. (1.2) and (1.3)

for the bond energy are exactly identical at any level of approximations. The proof will be

given later on. The promotion energy is defined by

Eprom =
∑

iα

(
εiαNiα − ε0

iαN0
iα

)
, (1.4)

where Niα and N0
iα are the number of electrons in |iα〉 in the condensed and free atomic

systems, respectively. The promotion energy is repulsive due to the excitation of electrons

from their free atomic ground state as the atoms are brought together. Therefore, the

cohesive energy of a system is determined by the balance between the attractive bond energy

and the repulsive pairwise/embedding and promotion energies. The bond and promotion

energies can be repartitioned into the band and atomic energies:

Ebond + Eprom =
∑

iα6=jβ

Θiα,jβHjβ,iα +
∑

iα

(
εiαNiα − ε0

iαN0
iα

)

=
∑

iα,jβ

Θiα,jβHjβ,iα −
∑

iα

ε0
iαN0

iα

= Eband − Eatoms. (1.5)

Eband is equal to the energy which is defined by integrating
∑

iα Eniα(E) up to the Fermi

level.

In the TB model the single particle eigenfunctions are expanded in a basis set that is an

orthonormal set of real atomiclike orbitals: |iα〉.

|φ〉 =
∑

iα

C
(φ)
iα |iα〉, (1.6)

where the expansion coefficients are defined by C
(φ)
iα ≡ 〈iα|φ〉. C

(φ)
iα is always real because of

real atomic orbitals and Hamiltonian. Then the bond-orders may be defined in terms of the

expansion coefficients as follows:

Θiα,jβ = 2
∑

φ

C
(φ)
jβ C

(φ)
iα f

(
ε(φ) − µ

kBT

)
, (1.7)

where the factor 2 accounts for spin degeneracy. ε(φ) is the eigenvalue corresponding to an

eigenstate |φ〉.
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The force on atom k is obtained by differentiating Eq. (1.1) with respect to atomic

positions:

Fk = −∂Ecoh

∂rk

= − ∑

iα,jβ

(
∂Θiα,jβ

∂rk

Hjβ,iα + Θiα,jβ
∂Hjβ,iα

∂rk

)
− ∂Erep

∂rk

. (1.8)

The first term of Eq. (1.8) is identically zero at zero electronic temperature so that

Fk = − ∑

iα,jβ

Θiα,jβ
∂Hjβ,iα

∂rk

− ∂Erep

∂rk

, (1.9)

where the first term of Eq. (1.9) is the Hellmann-Feynman force. If the bond-orders are

approximate values, then the sum of the derivatives of the bond-orders with respect to atomic

positions will not be zero, so that Eq. (1.9) gives the exact force which is consistent with

the total energy at zero temperature. while in insulators and metals at a finite temperature,

on the other hand, the sum is not always zero. However, in the block BOP representation

the forces are given by Eq. (1.9), since it is very difficult to evaluate the derivatives of the

bond-orders. Hence, the forces calculated by block BOP become exact as the bond-orders

converge to the exact values.

1.1.2 One-particle Green’s functions

The local density of states and bond-orders can be related to the one particle Green’s func-

tions. The one particle Green’s function operator is defined by

Ĝ(Z) = (Z − Ĥ)−1

=
∑

φ

|φ〉〈φ|
Z − ε(φ)

. (1.10)

Then the imaginary part of the diagonal elements of the Green’s function matrix give the

local density of states:

Im Giα,iα(E + i0+) =
∑

φ

−0+〈iα|φ〉〈φ|iα〉
(E − ε(φ))2 + (0+)2

= −π
∑

φ

(C
(φ)
iα )2δ(E − ε(φ))

= −πniα(E).

Therefore

niα(E) = − 1

π
Im Giα,iα(E + i0+), (1.11)

where Giα,iα(Z) = 〈iα|Ĝ(Z)|iα〉, 0+ represents a positive infinitesimal, and δ(x) is the delta

function. The imaginary part of the off-diagonal elements of the Green’s function matrix

has the following relation to the expansion coefficients of the single particle eigenfunctions:

Im Giα,jβ(E + i0+) = −π
∑

φ

C
(φ)
jβ C

(φ)
iα δ(E − ε(φ)). (1.12)
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Multiplying the both sides of Eq. (1.12) by the Fermi function, integrating with respect to

the energy we obtain the following useful expression for the bond-order:

Im
∫

Giα,jβ(E + i0+)f(
E − µ

kBT
)dE

= −π
∑

φ

C
(φ)
jβ C

(φ)
iα

∫
δ(E − ε(φ))f(

E − µ

kBT
)dE

= −π
∑

φ

C
(φ)
jβ C

(φ)
iα f(

ε(φ) − µ

kBT
)

= −π

2
Θiα,jβ.

Therefore

Θiα,jβ = − 2

π
Im

∫
Giα,jβ(E + i0+)f(

E − µ

kBT
)dE. (1.13)

The evaluations of the bond energy Eqs. (1.2) and (1.3) require calculating the local density

of states and bond-orders. We obtain the local density of states and bond-orders from the

Green’s function through Eqs. (1.11) and (1.13). The diagonal elements of the Green’s

function matrix can be calculated in a numerically stable way by the recursion method[33,

34].

Additional derivation (A)

Consider the matrix form of Green’s function:

G(Z) = (ZI −H)−1

The Hamiltonian H follows the eigenvalue matrix equation:

HA = AE

Then

G(Z) = (ZI −HAA†)−1

= (ZI − AEA†)−1

= (ZAA† − AEA†)−1

= (A[ZI − E]A†)−1

= (A[ZI − E]−1A†)

So, we have

Gij(Z) =
N∑

k=1

aika
∗
jk
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Additional derivation (B)

Let us consider the nature of a function g(Z):

g(Z) =
1

Z − E0

Let Z be E + iε, then

Img(E + iε) =
1

2i

(
1

Z − E0

− 1

Z∗ − E0

)

=
1

2i

(
1

E − E0 + iε
− 1

E − E0 − iε

)

Img(E + iε) =
−ε

(E − E0)2 + ε

Outline of Img(E + iε) are as follows:

-6

-5

-4

-3

-2

-1

0

1

-3 -2 -1 0 1 2 3

Img(E+iep)

where E0 = 0 and ε = 0.2. Integrating Img(E + iε) on the real axis:

∫ ∞

−∞
Img(E + iε)dE

=
∫ ∞

−∞
−ε

(E − E0)2 + ε

= −ε
[
1

ε
tan−1 E − E0

ε

]∞

−∞
= −π

So, we find

lim
ε→0

− 1

π
Img(E + iε) = δ(E − E0)

1.1.3 Recursion method

Any Hermite Hamiltonian matrix H can be tridiagonalized using the Lanczos algorithm.

First, assume that H is tridiagonalized by the unitary transformation with an unitary matrix

U :

HTD = U †HU. (1.14)
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H and HTD are satisfied the following eigenvalue matrix equations:

HA = AE, (1.15)

HTDB = BE. (1.16)

So, we have B = U †A . The Green’s function GTD(Z) for HTD can be ralated to the original

Green’s function G(Z) as follows:

GTD(Z) = (ZI −HTD)−1,

= (ZI − U †HU)−1,

= (ZU †U − U †HU)−1,

= [U †(ZI −H)U ]−1,

= U †(ZI −H)−1U,

GTD(Z) = U †G(Z)U. (1.17)

Also, the diagonal elements Gii(Z) and GTD
ii (Z) are written using A and B, respectively, as

follows:

Gii(Z) =
N∑

k=1

aika
∗
jk

1

Z − Ek

(1.18)

GTD
ii (Z) =

N∑

k=1

bikb
∗
jk

1

Z − Ek

. (1.19)

Here, let us assume that GTD
ii (Z) is equivalent to Gii(Z). The assumption requires aij = bij.

Considering aij =
∑N

k=1 uikbkj, then, the following condition must be satisfied:

uik = 1 k = i

uik = 0 k 6= i
(1.20)

By the Lanczos algorithm, we can make an unitary matrix which satisfies the condition

Eq. (1.20). Writing Eq. (1.14) explicitly, we have

H{|u0 >, |u1 >, |u2 >, ..., |uN >} = {|u0 >, |u1 >, |u2 >, ..., |uN >} × (1.21)


α0 β1

β1 α1 β2

. . . . . .

. . . . . .

βN−1 αN−1 βN

βN αN




,

H|u0 > = |u0 > α0 + |u0 > β1,

H|u1 > = |u0 > β1 + |u1 > α1 + |u2 > β2,

. . .

H|un > = |un−1 > βn + |un > αn + |un+1 > βn+1, (1.22)
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where U = {|u0 >, |u1 >, |u2 >, ..., |uN >}. Then, inversely solving Eq. (1.22), we get the

following Lanczos algorithm:

Set < u0| = (1, 0, 0, ....)

Compute H|un >

Compute αn < un|H|un >

Compute |rn >= H|un > −|un−1 > βn − |un > αn

Compute βn =
√

< rn|rn >

Compute |un+1 >= |rn > /βn

n := n + 1 (1.23)

It can be easily proven by the inductive method that U = {|u0 >, |u1 >, |u2 >, ..., |uN >} is

an orthonormal set. From Eq. (1.23), we have

|un+1 > βn = H|un > −|un−1 > βn − |un > αn (1.24)

In case of n = 0, < u0|u0 >= 1. Assuming that {|un >} is an orthonormal set upto n, then

Mulplying < uk| for k = 0 ∼ n from the left side of Eq. (1.24), we find

< uk|un+1 > βn = < uk|H|un > − < uk|un−1 > βn− < uk|un > αn

= 0. (1.25)

In case of k = n + 1, we clearly see < un+1|un+1 >= 1. Therefore, U = {|u0 >, |u1 >, |u2 >

, ..., |uN >} is an orthonormal set.

We also find that the condition, Eq. (1.20), is satisfied for U = {|u0 >, |u1 >, |u2 >

, ..., |uN >}. So, we can use GTD
00 (Z) instead of Gii(Z). GTD

00 (Z) is calculated as the ratio of

the determinant D to the reduced determinant D1 of (ZI −HTD) as follows:

GTD
00 (Z) =

D1

D
(1.26)

where

D = det(ZI −HTD) (1.27)

D1 = det(ZI −H ′
TD) (1.28)

with

H
′
TD =




α1 β2

β2 α2 β3

. . . . . .

. . . . . .

βN−1 αN−1 βN

βN αN




,
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Let us consider Cauchy expansion, the determinants D and Dn for the tridiagonaized

Hamiltonian HTD.



α0 β1

β1 α1 β2

. . . . . .

. . . . . .

βN−1 αN−1 βN

βN αN




, (1.29)

det(ZI −HTD) can be written using Laplace expansion for the first row as follows:

det(ZI −HTD) = (Z − α0)A11 − β1A12, (1.30)

where A11 and A12 are cofactors given by

A11 = D1, (1.31)

A12 = β1D2. (1.32)

Therefore, we have

D = (Z − α0)D1 − β2
1D2 (1.33)

Generalizing the above equation, we can write as

Dn = (Z − αn)Dn+1 − β2
n+1Dn+2 (1.34)

Using the relation, Eq. (1.34), we rewrite Eq. (1.26) in a continued fraction as follows:

GL
00(Z) =

D1

D

=
D1

(Z − α0)D1 − β2
1D2

=
1

Z − α0 − β2
1D2

D1

=
1

Z − α0 − β2
1D2

(Z − α1)D2 − β2
2D3

· · ·
GL

00(Z) =
1

Z − α0 − β2
1

Z − α1 − β2
2

Z − α2 − β2
3

. . .

. (1.35)

Next, we consider terminating the continued fraction. Assuming that αn and βn for Nt ≤ n

are constant, The terminator T (Z) can be written by a closed form including itself as follows:

T (Z) =
1

Z − α∞ − β2
∞

Z − α∞ − β2
∞

Z − α∞ − β2
∞

. . .
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T (Z) =
1

Z − α∞ − β2∞T (Z)
(1.36)

If we solve Eq. (1.36) regading T (Z), then we get a well known squre root terminator:

T (Z) =
(Z − α∞ −

√
(Z − α∞)2 − 4β2∞
4β2∞

(1.37)

1.1.4 Block recursion method

Block BOP is a general recursion method for evaluating efficiently both the diagonal and

off-diagonal elements of the Green’s function matrix by the recursion method. The first step

of the recursion method is to tridiagonalize the Hamiltonian using the Lanczos algorithm[35].

In the block BOP we introduce the block Lanczos algorithm with the starting state as a single

site containing all the valence orbitals rather than the usual scalar Lanczos algorithm with a

single starting orbital[13]. However, the application of the conventional block algorithm[36,

37] to finite systems such as molecules introduces a numerical instability, since the terminal

number of recursion levels of the π bond are different from that of the σ bond in the recursive

algorithm. Therefore, we modify the conventional block Lanczos algorithm. A series of

procedures for the modified block Lanczos algorithm can be carried out as follows:

|U0) = (|i1〉, |i2〉, . . . , |iMi〉). (1.38)

An = (Un|Ĥ|Un). (1.39)

|rn) = Ĥ|Un)− |Un−1)
tBn − |Un)An. (1.40)

(Bn+1)
2 = (rn|rn). (1.41)

(λn)2 = tV n(Bn+1)
2V n. (1.42)

Bn+1 = λn
tV n. (1.43)

(Bn+1)
−1 = V nλ

−1
n . (1.44)

|Un+1) = |rn)(Bn+1)
−1. (1.45)

An and Bn are recursion block coefficients with Mi × Mi in size, where Mi is the number

of atomic orbitals on the starting atom i, and the underline indicates that the element is a

block.

The states |Un) = (|Ln1〉, |Ln2〉, · · · , |LnMi
〉) represent the Lanczos basis, and are or-

thonormal and block-tridiagonalize the Hamiltonian. The modified algorithm gives different
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expressions for the block elements Bn+1 and these inverses compared with the conventional

algorithm. The block elements in the conventional block Lanczos algorithm are defined by

Bn+1 = V nλn
tV n. (1.46)

(Bn+1)
−1 = V nλ

−1
n

tV n. (1.47)

The failure in the conventional algorithm can be illustrated by a carbon trimer with a linear

chain structure along the x-axis. If the block Lanczos algorithm is applied with the central

atom in the trimer as the starting state, then the py and pz orbitals span two independent

subspaces. Thus, the recursive algorithm finishes after only one iteration for the Lanczos

vectors concerned with the py and pz orbitals. This gives two zero eigenvalues in the four

eigenvalues of the block element (B2)
2. Then one can not evaluate the inverse of B2 using

Eq. (1.44). Therefore, defining B2 and its inverse by the modified Eqs. (1.48) and (1.49),

respectively, and assuming that the diagonal elements of λ−1
1 corresponding to the zero

eigenvalues are zero we have

B2(B2)
−1 =




1

1

0

0




. (1.48)

(U2|U2) =




1

1

0

0




. (1.49)

|U2) is reduced to the state with two vectors, while the starting state |U0) is constructed by

the four vectors, which permits us to iterate once more with the recursive algorithm. The

conventional block Lanczos algorithm does not satisfy both Eqs. (1.48) and (1.49), since the

block elements B2 and the inverse are obtained from the unitary transformations of λ1 and

the inverse, respectively. Therefore, the conventional algorithm terminates at this recursion

level even though the Lanczos vectors for the σ orbital can still hop. This reduction of the

state avoids the numerically instabilities for the case of small eigenvalues of (Bn+1)
2, even

when the eigenvalues are not zero.

Application of the block Lanczos algorithm defines an orthonormal basis set called the

Lanczos vector or basis. The Lanczos vectors reflect the neighboring atomic arrangement of

the starting site. In Fig. 1.1 we show the Lanczos vectors on an s-valent square lattice. The

Lanczos vectors spread gradually from the central atom as the number of recursion levels

increases. Thus, we now expand a one electron eigenstate using the Lanczos vectors:

|φ〉 =
∑
nν

D(φ)
nν |Lnν〉, (1.50)

where Dφ
nν ≡ 〈Lnν |φ〉. Then the representation based on the atomic basis can be transformed

into that of the Lanczos basis set by the matrix U such that

TL = tUTU, (1.51)
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a) b) c)

Figure 1.1: The Lanczos vectors on the s-valent square lattice. a), b), and c) are an initial

state |L0〉, |L1〉, and |L2〉, respectively. The diameter of the circles is proportional to the

magnitude of the expansion coefficient in the Lanczos vector.

where U is defined by 〈iα|Lnν〉, and T can be the Hamiltonian H, the derivative of Hamil-

tonian with respect to atomic position ∂H/∂ri, the bond-order Θ, or the Green’s function

G(Z) matrix. The index L indicates the representation based on the Lanczos basis. Equa-

tion (1.51) is a pseudo unitary transformation, and the matrix U becomes unitary when the

number of the recursion levels is infinity in infinite systems. If the block Lanczos algorithm

is started through Eq. (1.38) with the atomic orbitals on atom i as the starting state, then

considering Eq. (1.51) and the orthonormality of the Lanczos basis, we can relate the bond

orders in the Lanczos basis representation to the bond-orders based on the atomic basis by

the following simple relation:

Θij =
∑
n

ΘL
0n

tUnj, (1.52)

where Θij and ΘL
0n are the block elements of the bond-orders for the atoms i and j, and the

states |U0) and |Un), respectively. For example Θij signifies

Θij =




Θi1,j1 Θi1,j2 · · · Θi1,jMj

Θi2,j1 Θi2,j2 · · · Θi2,jMj

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ΘiMi,j1 ΘiMi,j2 · · · ΘiMi,jMj




, (1.53)

where Mi and Mj are the numbers of atomic orbitals including atoms i and j, respectively.

In Eq. (1.52) tUnj, which is the (n,j) block element of the matrix tU , is defined by

tUnj =




〈Ln1|j1〉 〈Ln1|j2〉 · · · 〈Ln1|jMj〉
〈Ln2|j1〉 〈Ln2|j2〉 · · · 〈Ln2|jMj〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈LnMi
|j1〉 〈LnMi

|j2〉 · · · 〈LnMi
|jMj〉




. (1.54)

The simple relation Eq. (1.52) allows us to evaluate the bond-order in terms of the Lanczos

basis representation. We have only to calculate the 0th block line, which are the bond-orders

between the starting atom and the Lanczos vectors surrounding the atom, of the bond-order
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matrix. In the block BOP the bond-orders are evaluated in the Lanczos basis representation,

and then we get the bond-orders based on the atomic basis from Eq. (1.52).

It is essential to start the block Lanczos algorithm with a single site as in Eq. (1.38).

Although it is possible to derive an analogous transformation to Eq. (1.52) using the usual

scalar Lanczos algorithm, the bond energy of the system depends on the rotation of the

system[37]. Thus, the use of the scalar algorithm is not appropriate, since the bond energy

should be invariant to the rotation of the system. We could also start the recursion with a

cluster containing a neighbor shell of atoms instead of a single site[36]. However, this choice

is unsuitable because it is highly computationally intensive.

In the Lanczos representation the Hamiltonian is block-tridiagonalized:

(Um|Ĥ|Un) =





An if m = n,
tBn if m = n− 1,

Bn+1 if m = n + 1,

0 otherwise.

(1.55)

The block element G00(Z) = (U0|Ĝ|U0) can be written explicitly by the form of the multiple

inverse, since the Green’s function matrix G(Z) is the inverse of the matrix (ZI−H). Appling

repeatedly the partitioning method[38, 39], which is a method for calculating the inverse of

matrices, to the matrix (ZI−H) we get

GL
00(Z) = [ZI− A0 − tB1[ZI− A1 − tB2[· · ·]−1B2]

−1B1]
−1. (1.56)

GL
00(Z) is equal to the block element Gii(Z) based on the atomic basis, since we have started

the block Lanczos algorithm with Eq. (1.38). Therefore, the local density of states can be

evaluated from the diagonal elements by Eq. (1.11). Also the trace of GL
00(Z) gives the local

density of states on atom i.

Moreover, by taking account of the block-tridiagonalized Hamiltonian and the identity

(ZI − H)G(Z) = I in the Lanczos basis representation, the off-diagonal elements of the

Green’s function matrix GL
0n may be obtained from the following recurrence relation:

GL
0n(Z) =

(
GL

0n−1(Z)(ZI− An−1)−GL
0n−2(Z) tBn−1 − δ1nI

)
(Bn)−1, (1.57)

where δ is the Kronecker’s delta, G0−1(Z) and tB0 are 0, respectively. All the off-diagonal

block elements GL
0n(Z) are related to the diagonal block element GL

00(Z). Once GL
00(Z) has

been obtained, the off-diagonal block elements are easily evaluated from the above recursive

relation. The simplicity of evaluating the off-diagonal block elements is an important advan-

tage of the Lanczos basis representation. The block elements of the Green’s function matrix

have the same relation to the bond-orders based on the Lanczos basis as that of the atomic

basis representation:

ΘL
0n = − 2

π
Im

∫
GL

0n(E + i0+)f(
E − µ

kBT
)dE (1.58)

In case the bond-orders are evaluated by Eqs. (1.52) and (1.58), we can prove that the

two different expressions Eqs. (1.2) and (1.3) for the bond energy are identical at any level of

approximations. Consider the trace of G(Z)(ZI−H). Transforming the trace of the atomic
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basis representation into that of the Lanczos basis using Eq. (1.51), and making use of the

identity G(Z)(ZI − H) = I in the Lanczos basis representation we see that the trace is a

constant:

tr {G(Z)(ZI−H)}
=

∑

i

tr {ZGii(Z)} −∑

ij

tr
{
Gij(Z)Hji

}

=
∑

i

tr
{
ZGL(i)

00 (Z)
}
−∑

in

tr
{
GL(i)

0n (Z)HL(i)

n0

}

=
∑

i

tr(I(i)), (1.59)

where Ii is a unit matrix with Mi ×Mi in size. The index L(i) indicates the representation

based on the Lanczos basis with the starting state on atom i. Considering the imaginary

parts of the trace we have

Im
∑

iα

ZGiα,iα(Z) = Im
∑

iα,jβ

Giα,jβ(Z)Hjβ,iα. (1.60)

We see that the two expression for the bond energy give the same energy, since the Green’s

functions can be related to the local density of states and bond-orders through Eqs. (1.11) and

(1.13), respectively. The block BOP, thus, provides the equivalence of the two expressions

for the bond energy in a natural way, whereas in the usual BOP the Green’s functions need

a carefully chosen truncator in order to satisfy the sum rule[12].

Additional derivation (C)

The derivation of Eq. (1.56) is given here. Let us introduce the partitioning method for

inverting a matrix. We divide a matrix, A, with the size N ×N into A1(p× p), A2(p× q),

A3(q × p), and A4(q × q), where N = p + q as follows:

A =

(
A1 A2

A3 A4

)
(C.1)

Similarly, we write the inverse A−1 as

A−1 =

(
X1 X2

X3 X4

)
(C.2)

Taking into account AA−1 = I, the following equations are derived:

AA−1 =

(
A1 A2

A3 A4

) (
X1 X2

X3 X4

)
=

(
A1X1 + A2X3 A1X2 + A2X4

A3X1 + A4X3 A3X2 + A4X4

)
= I

A1X1 + A2X3 = I (C.3)

A1X2 + A2X4 = 0 (C.4)
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A3X1 + A4X3 = 0 (C.5)

A3X2 + A4X4 = I (C.6)

Then, considering Eq. (C.3) - A2A
−1
4 × Eq. (C.5), we have

(A1 − A2A
−1
4 A3)X1 = I

Here, replacing

∆ = A1 − A2A
−1
4 A3 (C.7)

Then, we have

X1 = ∆−1 (C.8)

Returning back Eq. (C.5),

A4X3 = −A3X1

X3 = −A−1
4 A3∆

−1 (C.9)

Next, considering Eq. (C.4) - A2A
−1
4 × Eq. (C.6), we have

X2 = −∆−1A2A
−1
4 (C.10)

From Eq. (C.6), we find

X4 = A−1
4 − A−1

4 A3X2 (C.11)

So, we see

X1 = ∆−1 (C.8)

X2 = −∆−1A2A
−1
4 (C.10)

X4 = A−1
4 − A−1

4 A3X2 (C.11)

∆ = A1 − A2A
−1
4 A3 (C.7)

From Eqs. (C.7) and (C.8), we have

X1 = [A1 − A2A
−1
4 A3]

−1 (C.12)

Moreover, we apply the above treatment to the matrix A4. Similarly, dividing A4, we write

A4 =

(
B1 B2

B3 B4

)
(C.13)

Similarly, we write the inverse

A−1
4 =

(
Y1 Y2

Y3 Y4

)
(C.14)

Applying the same procedure to A4, immediately, we find

Y1 = [B1 −B2B
−1
4 B3]

−1 (C.15)

Similarly, the procedure can be applied to B4. So, we see that the diagonal block element

GL
00(Z) can be written in a multiple inverse.
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1.1.5 Moment description

The moments of the local density of states allow us to link the behavior of the electronic

structure to the local topology about the given site [14, 15, 32]. We now discuss the rela-

tion between the block recursion matrices and the moments of the density of states. From

Eq. (1.10) for |Z| → ∞, the diagonal element GL
00(Z) can be rewritten as follows:

GL
00(Z) =

∑

φ

(U0|φ〉〈φ|U0)

Z − ε(φ)

=
∑

φ

d
(φ)
00




∞∑

p=0

(ε(φ))p

Zp+1




=
∞∑

p=0

µ(p)
00

Zp+1
, (1.61)

where

d
(φ)
00 =




D
(φ)
i1 D

(φ)
i1 D

(φ)
i2 D

(φ)
i1 · · · D

(φ)
ip D

(φ)
i1

D
(φ)
i1 D

(φ)
i2 D

(φ)
i2 D

(φ)
i2 · · · D

(φ)
ip D

(φ)
i2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D
(φ)
i1 D

(φ)
ip D

(φ)
i2 D

(φ)
ip · · · D

(φ)
ip D

(φ)
ip




, (1.62)

µ(p)
00

=
∑

φ

d
(φ)
00

(
ε(φ)

)p
, (1.63)

and µ(p)
00

is the block element of the pth moment for the atom i, the diagonal elements of

which give the pth moments of the projected density of states niα(E). Thus, Eq. (1.16) is

the moment expansion of the Green’s function GL
00(Z). Also the pth block moment can be

evaluated explicitly as the expectation value of the pth power of the Hamiltonian in terms

of the block elements An, Bn:

µ(p)
00

= (U0|Ĥp|U0)

=
∑

m1···mp−1

(U0|Ĥ|Um1)(Um1|Ĥ|Um2) · · · (Ump−1|Ĥ|U0). (1.64)

The first few block moments are

µ(0)
00

= I,

µ(1)
00

= A0,

µ(2)
00

= (A0)
2 + tB1B1. (1.65)

From Eq. (1.64) we see that the pth moment is the sum over all self-returning paths of length

p. The first moment corresponds to a hop on a single site, the second to nearest neighbors

and back, and so on. Thus, the atomic connectivity can be related directly to the electronic

structure through the description of the Green’s function by the moments.

Multiplying both sides of Eq. (1.61) by (E + 0+)r, and integrating with respect to the

energy E we get the following relation:

− 1

π
Im

∫ ∞

−∞
ErGL

00(E + 0+)dE = µ(r)
00

. (1.66)
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This relation means that the imaginary part of the moment of the block diagonal element

in the Green’s function matrix is equal to the moment of the Hamiltonian.

Let us define the orthogonal block polynomials P n(x):

xP n(x) = P n(x)An + P n−1(x) tBn + P n+1(x)Bn+1, (1.67)

where P−1(x) and P 0(x) are the zero matrix 0 and the the unit matrix I with Mi×Mi in size.

By using the block polynomials the recursion block elements An and Bn can be expanded

with the moments:

An = (Un|H|Un)

= tP n(Ĥ)(U0|Ĥ|U0)P n(Ĥ)

=
2n+1∑

m

amµ(m)
00

a′m. (1.68)

Bn = (Un|H|Un−1)

= tP n(Ĥ)(U0|Ĥ|U0)P n−1(Ĥ)

=
2n∑
m

bmµ(m)
00

b′m. (1.69)

In the derivations of Eqs. (1.68) and (1.69) we have assumed the substitution: |U0)Ĥ →
Ĥ|U0) and Ĥ(U0| → (U0|Ĥ. The block coefficients am, a′m, bm, and b′m are given by the

recursion block elements. For example A1 and B1 can be written as follows:

A1 = ( tB1)
−1

{
µ(3)

00
− A0µ

(2)
00
− µ(2)

00
A0 + A0µ

(1)
00

A0

}
(B1)

−1. (1.70)

B1 = ( tB1)
−1

{
µ(2)

00
− A0µ

(1)
00

}
. (1.71)

In case the recursion in the block Lanczos algorithm is terminated at the qth level, the

diagonal block element of the Green’s function matrix can be expanded with the (2q + 1)th

moments, because it is constructed by the multiple inverse with the recursion block elements

An(n = 0 ∼ q), Bn(n = 1 ∼ q) given by the qth recursion. As shown in Eqs. (1.68) and

(1.69), the recursion block elements are expanded in terms of the moments. Thus, GL
00

contains the 0 ∼ (2q +1)th moments. This implies that up to (2q +1)th moment is included

in the sum of the moment expansion Eq. (1.61), and Eq. (1.66) satisfies for r ≤ 2q + 1.

To obtain the moments for the off-diagonal elements of the Green’s function matrix,

multiplying both sides in Eq. (1.61) by (E +0+)r and integrating with respect to the energy

E, we have

Im
∫ ∞

−∞
ErGL

0n(E + 0+)dE =
n∑

m=0

(
Im

∫ ∞

−∞
Er+mGL

00(E + 0+)dE
)

cm, (1.72)

where the block coefficients cm can be written in terms of the recursion block elements. As

mentioned above the right side of Eq. (1.72) is equal to the moment of the Hamiltonian

for r + m ≤ 2q + 1, so that the left side gives the exact moment µ(r)
0n

for r ≤ 2q + 1 − n.

This means that the off-diagonal elements of the Green’s function matrix can be expanded
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with up to the (2q + 1 − n)th moment, which results in the expansion of the bond-order

ΘL
0n by up to the (2q + 1 − n)th moment. Moreover we can relate the bond-orders in the

atomic basis representation to the moments through the transformation Eq. (1.52). In the

right side of Eq. (1.52) the bond-order ΘL
0q for n = q determines the maximum order of the

moments for the bond-orders based on the atomic basis. So we see that the bond-orders in

the atomic basis representation can be expanded with the moments for r ≤ q + 1. Thus, in

the block BOP the off-diagonal elements of the Green’s function matrix can be constructed

with the moments for r ≤ q + 1, while the diagonal elements have the information of the

moments for r ≤ 2q + 1. This could be imply the difference in the convergence properties

of the bond energy and the forces. On a simple consideration it is estimated that the rate

of the convergence of the force is about half as fast as that of the bond energy in terms of

recursion levels. However it should be noted that the contribution of ΘL
0n to Θij decreases as

the recursion level n increases, since the Lanczos vectors, which hop repeatedly in the atomic

connectivity, have their weight away from the starting atom as the recursion level n increases.

Thus, the bond-orders in the atomic basis representation do not have all the moments of

the higher order more than the (q + 1)th, but can include the higher moments through the

GL
0n for n < q. In this case whereas the inexact moments for r ≤ 2q + 1 − n are included

in the bond-order in the atomic basis representation, the error can be negligible, since the

bond-orders ΘL
0n become small as the recursion level n increases. So it is stressed that the

higher moments can be included in the bond-order based on the atomic basis through the

Green’s function GL
0n for small recursion levels n. Therefore, it is expected that the forces

should be comparable to the bond energy in terms of the convergence rate. In Sec. 2.2 we

will discuss this point again numerically.

1.1.6 Details on implementation

The technical details to implement the block BOP are given here. For an infinite system,

there could be an infinite number of levels in the multiple inverse of the diagonal Green’s

function. It is often the case, however, that the exact values can be replaced by estimated

values after a certain number of levels, without reducing the accuracy significantly. The

simplest approximation is to take An = A∞, Bn = B∞ for n > nt, where nt is the number of

exact levels, and A∞ and B∞ are constant block elements. This approximation is reasonable

from the observation that the scalar elements in both An and Bn converge to constant values

or oscillate around constant values as n tends to infinity[37]. We have only to replace the

level for n = nt + 1 in the multiple inverse with the terminator, since the constant terms

can be summed exactly. The terminator can be written by a closed form including itself as

follows:

T (Z) = [ZI− A∞ − tB∞T (Z)B∞]−1. (1.73)

However, this is still a difficult set of equations to solve, so to simplify matters we assume that

the off-diagonal elements of T (Z) are zero and all the diagonal elements are the same, since

the differences between the diagonal elements of An and Bn become small as the number

of the recursion levels increases, respectively. Then the identical diagonal element t(Z) of

T (Z) is written as the square root terminator:

t(Z) = [Z − a− b2t(Z)]−1
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=
1

b


Z − a

2b
− i

√
1−

(
Z − a

2b

)2

 , (1.74)

where a and b2 are given by the means of the diagonal elements of Ant
and B2

nt
, respectively.

Thus, we see that the effect of the terminator is to smear out the sharp states with energy

a into semielliptical bands. The degree of smearing is given by b.

There are two ways to conserve charge neutrality in the system: local charge neutrality

(LCN)[10] or the total charge neutrality (TCN)[13]. Within LCN the on-site energies are

varied (keeping the splitting between on-site s and p energy levels fixed) in order to conserve

the number of electrons on each atom. If the excess charge on site i is Qi = Zi − ∑
α Niα,

where Zi is the effective core charge, then the on-site energies can be shifted using the

response function Xi =
∑

α Xiα for atom i as follows:

ε′iα = εiα − λ
Qi

Xi

, (1.75)

where λ is a parameter to accelerate the convergence, and generally is 1.0. The response

function projected on an atomic orbital iα is given by

Xiα =
2

π
Im

∫
[Giα,iα(E + i0+)]2f(

E − µ

kBT
)dE. (1.76)

Usually no more than three or four iterations are required to achieve the convergence so that

the absolute value of Q/atom is below 10−5, since Xiα ' ∂Niα/∂εiα. The assumption of LCN

has the advantage that the Madelung energy contribution is zero, so that the TB model needs

not take this into account in its expression for the energy. Also LCN is suitable for parallel

computation, since the calculations of the bond energy and the forces of each atom are

perfectly independent within the assumption. However, LCN brings an inefficiency in terms

of computational effort, since LCN requires the Lanczos algorithm to be implemented again,

after the charge neutralities of all the atoms has been achieved, since the recursion block

elements are varied by the shift of the on-site energies. Thus, the block Lanczos algorithm

and the shift of the on-site energies must be repeated until self-consistency is accomplished.

This self-consistency requires typically twenty iterations. This discourages us from applying

LCN in the molecular dynamics simulations. On the other hand, we can conserve the total

number of electrons in the system by a shift of the chemical potential in terms of TCN. If

the excess charge of the system is Q =
∑

i Qi, then a good approximation of the chemical

potential is given by

µ′ = µ + λ
Q

X
, (1.77)

where X =
∑

i Xi. The convergence is achieved after only three or four iterations. The TCN

assumption, corresponding to the micro canonical distribution, has physically appropriate

meaning, which is consistent with the usual electronic structure calculations by diagonaliza-

tion. Moreover within TCN we need not repeat the Lanczos algorithm, since the recursion

block elements are not varied by the shift of the chemical potential. Thus, TCN has consid-

erable advantage in terms of computational effort. The TCN condition reduces the separa-

bility of individual atoms in the calculations of the band energy and forces, and complicates
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slightly the parallelizability of the program code. However, the evaluation and integration of

the Green’s function, which are time-consuming steps, are performed separately. Therefore,

we use the TCN constraint to conserve the total number of electrons.

It is required to integrate the Green’s functions with the Fermi function in order to eval-

uate the bond energy, bond-orders, and response functions. The integration can be carried

out in the complex plane by summing up an infinite series over the modified Matsubara poles

which is given in Appendix A[14, 15, 40]. The general form can be given as follows:

Im
∫

A(E + i0+)f(x)dE = −2π

β
Re


 lim

P→∞

P−1∑

p=0

zpA(Ep)


 , (1.78)

with

Ep = µ +
2P

β
(zp − 1), zp = exp

(
iπ(2p + 1)

2P

)
, (1.79)

where A(x) is an arbitrary function defined in the complex plane, and β = 1/kBT . Also

Ep are the poles of the approximated Fermi function in the complex plane. This modified

Matsubara summation converges rapidly with about 40 complex poles (P ' 40) with a

high electron temperature (kBT > 0.1 eV ), although many poles are needed to achieve the

convergence with a lower electron temperature. In the case of systems with a gap between

the valence and conduction bands, we need to pay attention to the evaluation of the chemical

potential, since the response functions in the gap become zero as kBT tends to 0, so that it is

difficult to estimate the chemical potential under a low electron temperature using Eq. (1.75).

This can be solved by smearing the density of states under a high electron temperature. Thus,

it is required to evaluate the response functions at high electronic temperatures in order to

obtain stable MD simulations.

We now estimate the time-dependence within the block BOP. The total system is divided

into finite clusters centered on individual atoms in order to evaluate the energy and force of

each atom. The size of the finite cluster is not determined by the size of the total system,

but by the system and the condition of the MD simulation. Therefore, the computational

effort is proportional to the number of atoms Natom, so that the number of computational

operations can be written as cNatom, where c is a proportionality constant. The scaling of

the constant c can be estimated as a function of the numbers of recursion level q, atoms

within a finite cluster nc, and orbitals on an atom M . For simplicity it is assumed that the

system consists of only one type of element with M orbitals. In the block Lanczos algorithm

the time-consuming step is the product of the Hamiltonian matrix by the vector, so that the

count of operations in the block Lanczos algorithm is nearly proportional to qn2
cM . At the

next step, the inverses and recursive calculations are required to evaluate the diagonal and

off-diagonal elements of the Green’s function matrix, respectively, and their integrations are

performed as the sum of the residues for the poles in the complex plane, so that the count

of operations for the evaluations is almost proportional to qPM3. Thus, the proportionality

constant c can be estimated as cL × qn2
cM + cG × qPM3, where cL and cG are prefactors

of the count of operations for the block Lanczos algorithm and the the evaluation of the

bond-orders, respectively. The prefactors depend on the computer, and the system, and the

criterion of charge neutrality. For example, for the case of a 3 hop cluster, 10 recursion
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a) b)

Figure 1.2: The physically (a) and logically (b) truncated clusters in a infinite disordered

square lattice. The physical truncation determines the cluster by selecting atoms within

a given radius of a sphere centered an atom. On the other hand, the logical truncation

constructs the cluster from the connectivity of the bondings, where we regard a pair of two

atoms forms the bonding when the distance of two atoms is smaller than a given length.

levels, and 40 complex poles for diamond carbon, the calculation time of the block Lanczos

algorithm is comparable to that in evaluating and integrating the Green’s functions.

In the remainder of this subsection the procedure for implementing the block BOP is

enumerated. (I). The partition of the system. The hopping range of each atom is determined

by terminating the system. There are two ways to terminate the system as shown in Fig. 1.2.

One of them is the physical truncation that the terminated cluster contains atoms within a

sphere with a certain cutoff radius. The physical truncation can bring inaccurate properties

into the convergence of the energies, since atoms that have no bonding to other atoms can be

included in the neighborhood of the cluster surface. Moreover, in MD simulations the energies

can jump discontinuously when an atom moves in or out of the surface of the sphere. The

more stable way is logical truncation. The cluster of size n is here defined by all neighbors

that can be reached by n hops. Provided the cutoff distance for the hopping integral is

identical to that defining the connectivity of the bonding, the energies are continuous as a

function of time in MD simulations. Therefore, it is desirable to truncate logically the system

in terms of accuracy. (II). The block Lanczos algorithm. The Hamiltonians for the individual

terminated clusters are constructed. For these small cluster Hamiltonians the block Lanczos

algorithm Eqs. (1.38)∼(1.45) is applied. (III). The evaluations and integrations of the Green’s

functions. In the Lanczos basis representation the diagonal and the off-diagonal elements

of the Green’s functions are evaluated using Eqs. (1.56) and (1.57), respectively, and then

their integrations are performed via the modified Matsubara summation with Eq. (1.78). (I

V). The transformation into the atomic basis representation. The bond-orders based on the

Lanczos basis are transformed into those in the atomic basis representation using Eq. (1.52).

(V). The bond energy and forces. From Eqs. (1.3) and (1.9) the bond energy and forces are

evaluated, respectively.
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1.1.7 Analytic example

Let us apply the method to the s-valent Bethe lattice which branches at each lattice point

in K-fold as an analytic example of the block BOP. It is assumed that each on-site energy is

ε(≤ 0), a hopping integral between the nearest neighbor atoms is −h (0 < h), and the other

hopping integrals are zero. The number of n-th neighbor atoms, which can be reached in

the process of n-hopping from a central atom, for a central atom in the K-fold Bethe lattice

is given by Cn = K(K − 1)n−1 for n ≥ 1, and the total number of atoms which participate

in the process of the n-hopping is written as Sn = (K(K − 1)n − 2)/(K − 2) for n ≥ 0.

Therefore, starting the recursion with a central atom as the starting state in the Lanczos

algorithm, we can write the Lanczos bases as follows:

〈L0| = (1, 0, 0, · · · , ). (1.80)

〈Ln| = 1√
K(K − 1)n−1

(

Sn−Cn︷ ︸︸ ︷
0, · · · , 0,

Cn︷ ︸︸ ︷
1, · · · , 1, 0, 0, · · · , ) for n ≥ 1. (1.81)

From Eq. (1.81) we see that the Lanczos bases in the s-valent Bethe lattice are reflected

only the spreading process of an electron, since the recoil process is omitted in the developed

vectors through the orthonormalization in the Lanczos algorithm. By using the Lanczos

bases, the recursion chain coefficients An and Bn, which correspond on-site energies and

hopping integrals in the transformed semi-infinite chain cluster, respectively, are given by

An = 〈Ln|Ĥ|Ln〉 = ε. (1.82)

Bn = 〈Ln|Ĥ|Ln−1〉 =

{ −√K h, for n = 1,

−√K − 1 h, for n ≥ 2.
(1.83)

Bn for n = 1 is different from that for n ≥ 1 since the number of virgin sites which can be

hopped from the central atom is one more than that of the other sites. Considering that

the recursion chain coefficients are elements of the tridiagonalized Hamiltonian, then the

off-diagonal Green’s function may be written explicitly as a continued fraction:

GL
00(Z) =

1

Z − ε− Kh2

Z − ε− (K − 1)h2

Z − ε− (K − 1)h2

Z − ε− ...
.

(1.84)

The continued fraction expressed in self-similar form can be compactly rewritten by using a

square root terminator as follows:

GL
00(Z) =

1(
1− K

2(K − 1)

)
(Z − ε) +

K

2(K − 1)

√
(Z − ε)2 − 4(K − 1)h2

. (1.85)

In the off-diagonal Green’s functions based on the Lanczos basis, only GL
01(Z) which is

defined between the starting site and the first Lanczos vector is required in order to calculate
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Figure 1.3: The imaginary parts of the diagonal (left panel) and the nearest neighbor off-

diagonal (right panel) Green’s functions on the s-valent Bethe lattice for K = 2, 3, 4, 5, and

10, where ε = 0 and h = 1 eV.

the bond-order between the nearest neighbor atoms, since the contribution of the nearest

neighbor atoms for the central atom appears only the first Lanczos vector. The Green’s

function GL
01(Z) is calculated by the recurrence relation Eq. (1.57), and then GL

01(Z) the

based on the Lanczos basis is transformed into that of the atomic basis representation.

Thus, the Green’s function GNN(Z) between the nearest neighbor atoms is given by

GNN(Z) = − 1

Kh

{
GL

00(Z)(Z − ε)− 1
}

. (1.86)

In Fig. (1.3) we show the imaginary parts of Eqs. (1.85) and (1.86). While the local density of

states of K = 2 has clearly singularities of Van-Hove which characterize an one-dimensional

lattice, the singularities in the local density of states become indistinct with increasing

number of coordinates K. Also the width of the band is 4|h|√K − 1. The imaginary parts

of the off-diagonal Green’s functions show that from the bottom of the band until the center

corresponds to the bonding states, on the other hand, the band above the center comes

from the anti-bonding states. The increase of K reduces the bond-order between the nearest

neighbor atoms with the relation of the approximately inverse proportional ratio.

When K = 2 corresponding to a chain which is the simplest Bethe lattice, we can easily

carry out analytic integrals of GL
00 and GL

01. If it is assumed that the total number of electrons

is equivalent to that of sites, then the number of electrons on each site is N = 1, and the

bond-order between the nearest neighbor atoms is given as ΘNN = 2/π ' 0.6366. Next we

shall compare the exact bond-order with those at the first, second, and third levels in the

Lanczos algorithm. Approximating the exact Green’s function at the first, second, third,

and fourth levels in the continued fraction, we can write the off-diagonal Green’s functions
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between the nearest neighbor sites, respectively, as follows:

GFirst
NN (Z) =

√
2

4

Z +
√

2 h
+

−
√

2
4

Z −√2 h
, (1.87)

GSecond
NN (Z) =

√
3

6

Z +
√

3 h
+

−
√

3
6

Z −√3 h
, (1.88)

GThird
NN (Z) =

√
2+
√

2

8

Z +
√

2 +
√

2 h
+

√
2−√2

8

Z +
√

2−√2 h

+
−
√

2+
√

2

8

Z −
√

2 +
√

2 h
+

−
√

2−√2

8

Z −
√

2−√2 h
, (1.89)

GFourth
NN (Z) =

1
10

√
5+
√

5
2

Z +
√

5+
√

5
2

h
+

1
10

√
5−√5

2

Z +
√

5−√5
2

h

+
− 1

10

√
5+
√

5
2

Z −
√

5+
√

5
2

h
+

− 1
10

√
5−√5

2

Z −
√

5−√5
2

h
, (1.90)

where constant terms were omitted, since they have no contribution to the bond-order.

Considering the residues of the states which are occupied in these Green’s functions, we see

that the approximated bond-order are 0.7071, 0.5774, 0.6533, and 0.6155 at the first, second,

third, and fourth levels, respectively, and also the errors of these approximated bond-orders

are 11.1, -9.3, 2.6, and -3.3 %, respectively, compared with the exact value 0.6366. Thus, the

analytic example shows that the bond-order can be reproduced with a considerable accuracy

at a few finite level of approximations even the sparse structure such as the linear chain

which has singularities in the density of states.

Additional derivation (D)

A simple analytic example is given, which is helpful to understand the recursion method.

Let us consider π electron of a benzene molecule described by the Huckel theory.

0

1

2

3

4

5
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H =




a b 0 0 0 b

b a b 0 0 0

0 b a b 0 0

0 0 b a b 0

0 0 0 b a b

b 0 0 0 b a




Lanczos process:

(1)

|u0 >= (1, 0, 0, 0, 0, 0)t

(2)

H|u0 >= (a, b, 0, 0, 0, b)t

(3)

α0 =< u0|H|u0 >= a

(4)

|r0 > = H|u0 > −α0|u0 >

= (0, b, 0, 0, 0, b)t

(5)

β2
1 = < r0|r0 >

= 2b2

β1 =
√

2b

(6)

|u1 > =
1

β1

|r0 >

=
1√
2
(0, 1, 0, 0, 0, 1)t

(7)

H|u1 > =
1√
2
(2b, a, b, 0, b, a)t

(8)

α1 =< u1|H|u1 >= a
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(9)

|r1 > = H|u1 > −β1|u0 > −α1|u1 >

=
1√
2
(0, 0, b, 0, b, 0)t

(10)

β2
2 = < r1|r1 >

= b2

β2 = b

(11)

|u2 > =
1

β2

|r1 >

=
1√
2
(0, 0, 1, 0, 1, 0)t

(12)

H|u2 > =
1√
2
(0, b, a, 2b, a, b)t

(13)

α2 =< u2|H|u2 >= a

(14)

|r2 > = H|u2 > −β2|u1 > −α2|u2 >

=
1√
2
(0, 0, 0, 2b, 0, 0)t

(15)

β2
3 = < r2|r2 >

= 2b2

β2 =
√

2b

(16)

|u3 > =
1

β3

|r2 >

= (0, 0, 0, 1, 0, 0)t

(17)

H|u3 > = (0, 0, b, a, b, 0)t

(18)

α3 =< u3|H|u3 >= a
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(19)

|r3 > = H|u3 > −β3|u2 > −α3|u3 >

= (0, 0, 0, 0, 0, 0)t

So, we have a tridiagonalized Hamiltonian:

HTD =




a
√

2b 0 0√
2b a b 0

0 b a
√

2b

0 0
√

2b a




Green’s functions can be written as follows:

GTD
00 (Z) =

1

Z − a− 2b2

Z − a− b2

Z − a− 2b2

Z − a

Let Z be E + iε, and us write the outline of ImGTD
00 where ε = 10−5, a = 0, and b = −1, so

we see the local density of states for π electron of a benzene:

1.2 Convergence Properties

O(N) methods with linear scaling algorithms are approximate approaches compared to the

exact diagonalization for dealing with large scale systems, so that the realization of the

O(N) algorithms is accompanied by decreases in computational accuracy in exchange for

computational efficiency. Therefore, O(N) methods should only be applied to atomistic

simulations once their accuracy and efficiency has been tested.
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In the block BOP three approximations are introduced to reduce the computational ef-

fort: the number of moments, or recursion levels, the size of the cluster of atoms over which

the hops are made, and a finite number of poles in the modified Matsubara summation

which gives accurately integration of Green’s functions with the Fermi function within a

small number of poles. The finite approximations for the number of levels and the size of

the cluster can lead to the errors in the energies and forces. Thus, we now investigate the

block BOP through several test calculations in terms of its accuracy and efficiency. In order

to ascertain applicable bounds for a wide range of materials, the energy and force conver-

gence are examined for an insulator (carbon[41] in the diamond structure), a semiconductor

(silicon[42]), a metal (titanium, described by a canonical d-band model), and a molecule

(benzene[43]) as functions of the number of recursion levels and the size of cluster. In all

the test calculations, we have chosen the same value (40 poles) as the number of poles in the

modified Matsubara summation. The 40 poles is enough to achieve convergence in carbon,

silicon, titanium, and benzene materials in case of kBT = 0.1 eV used in all the numerical

tests[15]. Moreover, in terms of the computational efficiency the block BOP is compared

with k-space calculations in computational time. Also as a test of the quality of the forces,

we perform a constant energy molecular dynamics (CEMD) simulation of carbon.

1.2.1 Energy convergence

Figure 2.4 shows the cohesive energy per atom for carbon in the diamond structure, silicon

in the diamond structure, hcp titanium, and benzene. The cohesive energies were calculated

using 2 ∼ 15 recursion levels (a numerical instability often appears for > 20 recursion levels)

for three, five, and seven shell clusters by the logical truncation method, where the three,

five, and seven shell clusters for the diamond structure include 41, 147, and 363 atoms,

respectively, and these clusters for the hcp structure contain 153, 587, and 1483 atoms,

respectively. The cohesive energies for carbon and silicon converge rapidly to the results of

k-space calculations. The errors for carbon and silicon are only 1 % at six recursion levels.

Thus, we see that up to the 13th moment corresponding to six recursion levels determine

the cohesive energies. The contribution of the higher order moments is unimportant, since

the convergence properties are almost identical for three, five, and seven shell clusters. The

cohesive energy for silicon converges more slowly compared with that of carbon in the rate of

convergence for the size of cluster. This suggests that a semiconductor such as silicon requires

higher moment than an insulator such as carbon for good convergence of the cohesive energy.

The cohesive energy for the metallic hcp titanium converges very quickly in terms of the

number of recursion levels. For the five and seven shell clusters the cohesive energy converges

fully to the k-space result, while the convergence value for the three shell cluster is in error

by 2 % from the k-space result. For benzene the convergence is achieved with a very small

cluster (2 shells). The error at four recursion levels is only 0.1%. We see that the block

BOP can evaluate accurately the cohesive energy for a molecule with a sparse structure like

benzene, which has both localized σ bonds and delocalized π bonds.

The calculation of the vacancy formation energy is a severe test to distinguish the ac-

curacy of different O(N) methods, since it is a criterion that tests the precision which the

dangling bonds caused by the vacancy are handled by O(N) method. In practice, the usual

moment-based O(N) methods fail to reproduce the vacancy formation energy of carbon in
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Figure 1.4: The cohesive energy for carbon in the diamond structure, silicon in the diamond

structure, hcp titanium, and benzene as a function of number of recursion levels for three,

five, and seven shell clusters, calculated using a square root terminator, a total charge

neutrality, and kBT = 0.1 eV.

the diamond structure even when dozens of moments are included[27, 28]. The computa-

tional error at 30 moments is still about 20 % compared to the k-space result. In Fig. 1.5

we show the vacancy formation energy for carbon in the diamond structure, silicon in the

diamond structure, and hcp titanium. These are calculated as the difference between the

energy for a bulk unit cell (of 64, 64 or 32 atoms, respectively) with a single atom removed,

and the perfect bulk cell energy scaled to 63, or 31 atoms. The results are for an unrelaxed

vacancy. The convergence properties for carbon and silicon are almost identical. The va-

cancy formation energy in the five and seven shell clusters converges smoothly toward the

k-space results, while in the 3 shell cluster the converged values for carbon and silicon are

15 %, and 13 % underestimated, respectively. In the seven shell cluster at 15 recursion

levels the errors for carbon and silicon are only 1%. Thus, we see that the block BOP gives

an accurate vacancy formation energy for strongly covalent materials such as carbon and

silicon with the use of about 30 block moments. This remarkable result suggests that the

block BOP accurately describes dangling bonds in comparison with the usual moment-based

methods. For titanium the vacancy formation energy converges to the k-space result equally

within the three, five, and seven shell clusters. The error for the 3 shell cluster at 5 recursion

levels is about 6%. The vacancy formation energy oscillates with respect to the number
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Figure 1.5: The vacancy formation energy for carbon in the diamond structure, silicon in the

diamond structure, and hcp titanium for three, five, and seven shell clusters as a function

of number of recursion levels, calculated using a square root terminator, a total charge

neutrality, and kBT = 0.1 eV.

of recursion levels due to the long range value of the density matrix (see fig. 2 of ref. 23).

The oscillations are damped by imposing LCN instead of TCN to conserve the number of

electrons.

1.2.2 Force convergence

The accuracy of the forces is investigated from two different perspectives. The first is the ac-

curacy when compared to the exact k-space result, the second is the degree of correspondence

between the numerical and analytic Hellmann-Feynman forces. In order to perform reliable

MD simulations the two criteria should be satisfied. In Fig. 1.6 we show the z-component

of the force on an atom in the bulk-terminated (001) surface of carbon, silicon, and hcp

titanium, and the force on a hydrogen atom on benzene. For carbon the force of the three

shell cluster overestimates by about 130 % in comparison with the k-space result, although

the error in the Hellmann-Feynman term is only 1 %. The forces of the five and seven shell

clusters converge smoothly toward the k-space result. The rate of convergence in silicon is

much better than that of carbon. Even the three shell cluster shows a converged value that

differs by only 5 % from the k-space result. The three, five, and seven shell clusters of Ti

show similar convergence properties of the forces, the converged value being underestimated
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Figure 1.6: The z-component of the force on an atom on the carbon (001) surface, silicon

(001) surface, titanium (001) surface, and on a hydrogen atom in benzene for three, five,

and seven shell clusters as a function of number of recursion levels, calculated using a square

root terminator, total charge neutrality, and kBT = 0.1 eV.

by about 8% compared with the k-space result. For benzene the force converges rapidly

with small cluster size. As discussed in Sec. 1.1.5 the bond-orders can be expanded using

the lower order moments compared with the density of states in the block BOP. It can be

estimated that the forces should converge more slowly at the k-space results than the bond

energies, since the forces on the atoms are evaluated using the bond-orders. However, these

numerical results for the forces show that the convergence rate of the force is comparable

to that of the bond energy. This means that the sum of Eq. (1.52) converges rapidly as the

number of the recursion levels increases because of the diffusion of the Lanczos vectors.

As a test of the consistency between the total energy and the forces, constant energy

molecular dynamics (CEMD) simulations have been performed for carbon. If the forces are

equal to the derivative of the total energy with respect to atomic positions, the total energy

of the system is conserved. Thus, the CEMD simulation is a criterion to investigate the

consistency of forces. In Fig. 1.7 we show the energy for carbon at 1000 and 5000 K as a

function of time using five and ten recursion levels. The initial structure is the diamond

lattice, and the unit cell is fixed in volume and shape. When the initial temperature of

the system is 1000 K, the atoms oscillate around the equilibrium positions. At five and ten

recursion levels we see that the total energy is almost conserved. When the temperature
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Figure 1.7: The potential, kinetic, and total energies as a function of time for molecular

dynamics simulations of carbon using a three hop logically truncated cluster, a square root

terminator, total charge neutrality, and kBT = 0.1 eV. In panels (a) and (b) the results are

for five and ten recursion levels at 1000 K, respectively, whereas in panels (c) and (d) they

are for five and ten recursion levels at 5000 K, respectively. The time step is 0.5 fs.

is raised to 5000 K, the carbon in the diamond structure transforms into liquid carbon

with mainly three coordinate structure. From Fig. 1.7 we see that the forces are of good

quality at ten recursion levels, while the total energy at five recursion levels increases by

about 10 eV during the 1 ps, which corresponds to a temperature increase of 1800 K. These

results indicate that the block BOP can give forces consistent with the total energy, provided

the proper number of recursion levels is used, even for liquid materials such as carbon at

a high temperature. On the other hand, in the variational DM method, although only

the Hellmann-Feynman term survives formally as the derivatives of the band energy with

respect to atomic coordinates, total energy of liquid silicon in the CEMD simulation exhibits

a steady upward drift[44].

1.2.3 Computational efficiency

To study the computational efficiency of the block BOP we carry out two benchmark tests:

the comparison between the block BOP and the k-space calculation in computer time, and

the relation between the computational error and the computer time. Figure 1.8 shows the

time to evaluate the energy and forces for a cell containing carbon in the diamond structure

as function of the number of atoms in the cell for the block BOP and k-space using a single

k-point. The crossover point at which the block BOP becomes favorable is about 100 atoms.
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diamond structure as a function of number of atoms in the cell for the block BOP, calculated

using a three hop logically truncated cluster, and k-space. The calculations were performed

on an IBM RS/6000 workstation.

Figures 1.9(a) and (b) show the relation between the error and the the time per atom

to evaluate the energy and forces in the calculations of the vacancy formation energy of

diamond carbon and hcp titanium, respectively. Here the increase in time corresponds to

the increase of the number of recursion levels. We see that the block BOP can calculate the

vacancy formation energy to high accuracy within almost the same computational time as

the other moment-based results reported by Bowler et al.[27] where the calculations were

performed using the same computational facilities. We note that the block BOP has given a

good convergent result of the vacancy formation energy in diamond carbon for the first time

with a moments-based method, while the computational time to achieve this convergence is

still ten times slower than that of the DM method. This work, therefore, still supports the

conclusions of the study in ref. 23 that the DMM is best for systems with energy gaps, but

that moments-based methods such as BOP are best for metallic systems.
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on a HP9000/735 workstation.
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Chapter 2

Non-Orthogonal Basis Sets

In this chapter, the generalization of recursion methods to non-orthogonal basis orbitals are

discussed, which is a crucial step to make the recursion method applicable to ab initio elec-

tronic structure calculations such as density functional theories and Hartree-Fock methods.

2.1 Non-orthogonal basis sets

In the non-orthogonal basis set, the overlap matrix is defined by

Siα,jβ = 〈iα|jβ〉. (2.1)

An orthogonality relation similar to that of the orthogonal case can be obtained by intro-

ducing the dual basis defined by

|ĩα〉 =
∑

jβ

S−1
iα,jβ|jβ〉, (2.2)

where S−1 is the inverse of the overlap matrix S. It is then easy to verify that

〈ĩα|jβ〉 = δiα,jβ. (2.3)

A similar complete relation can be also given in a mixied form of the non-orthogonal basis

and the dual basis as follows:

∑

iα

|ĩα〉〈iα| = ∑

iα

|iα〉〈ĩα| = 1. (2.4)

By using the overlap matrix Eq. (2.1), the secular equation based on the non-orthogonal

basis set can be written in the DFT as follows:

HC = SCE, (2.5)

where the C-matrix is defined by expansion coefficients Ciα,φ = 〈ĩα|φ〉 of one-particle eigen

functions |φ〉 based on the non-orthogonal basis, and the diagonal elements of the diag-

onalized E-matrix are the eigen values corresponding to the one-particle eigen functions.

The one-particle eigen functions derived from Eq. (2.5) form a set of orthonormal functions.

Thus, the orthonormality can be expressed in matrix form as follows:

†CSC = I. (2.6)
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The traces of both sides in Eq. (2.6) provide the total number of electrons in a system:

Nele =
∑

ij

tr
{
ΘijSji

}
. (2.7)

The summation of only an atom i or j gives the atomic population defined by Mulliken[?].

Moreover, taking into account both Eqs. (2.5) and (2.6), we get an expression which gives

the band energy in terms of the bond-order similar to that of the orthogonal basis set as

follows:

Eband = 2 tr {E}
= 2 tr

{†CHC
}

=
∑

ij

tr
{
ΘijHji

}
. (2.8)

In comparison with Eq. (2.3) we see that the band energy in the non-orthogonal basis set

is given by the identical expression which is derived in the orthogonal basis set. In contrast

to the similarity, the force expression in the non-orthogonal basis set includes the correc-

tion term which comes from the derivatives of the expansion coefficients in addition to the

Hellmann-Feynman term. Differentiating Eqs .(2.8) with respect to the atomic coordinates,

substituting Eq. (2.6) and the derivative of Eq. (2.8) for the corresponding terms in the

derivative of Eqs .(2.8), we get

F
(band)
k = −2 tr

{
†C

∂H

∂rk

C

}
+ 2 tr

{
†C

∂S

∂rk

CE

}

= −∑

ij

tr

{
Θij

∂Hji

∂rk

}
+

∑

ij

tr

{
Λij

∂Sji

∂rk

}
(2.9)

with

Λij = − 2

π
Im

∫
EGij(E + i0+)f(x)dE, (2.10)

where the second term in Eq. (2.9) gives the correction to the Hellmann-Feynman force in

the non-orthogonal basis set. It is appropriate in terms of the computational efficiency that

the correction term excludes the derivatives of the expansion coefficients. Hence in order to

evaluate the band energy and the derivatives in the non-orthogonal basis set, we need to

calculate the diagonal and the off-diagonal Green’s functions as well as the orthogonal basis

set. In following description, we discuss four three generalized recursion methods in order

to develop an accurate, efficient, and robust O(N) method.

2.2 Algorithm A

2.2.1 Formalism

In the non-orthogonal basis the one particle Green’s function operator Ĝ(Z) has to satisfy

the same indentity Ĝ(Z)(Z − Ĥ) = 1̂ in comparison to the orthogonal case. Inserting the

complete relation Eq. (2.4) into the identity, and operating 〈ĩα| and |iα〉 from the left and
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the right sides, respectively, we see that the Green’s function matrix based on the dual basis

can be obtained by the inverse of (ZS − H) based on the original non-orthogonal basis.

Then, the Green’s function matrix based on the dual basis can be simplified by inserting the

orthogonality Eq. (2.6) as follows:

GD(Z) = (ZS −H)−1

= [SC(ZI− †CHC)†CS]−1

= C(ZI− E)−1 †C, (2.11)

where the index D of the Green’s function represents the dual basis representation. There-

fore, we see that the element of the Green’s function matrix provides the bond-order based

on the non-orthogonal basis in similar form compared that in the orthogonal case.

Next we extend the block Lanczos algorithm into the non-orthogonal case. The basic

idea for extending to the non-orthogonal case is only to find a matrix U which diagonalizes

the overlap and block-tridiagonalize the Hamiltonian matrices simultaneously. That is,

†USU = I, (2.12)

†UHU = HBTD, (2.13)

where HBTD means the block-tridiagonalized Hamiltonian which is equivalent to HL based

on the Lanczos basis as shown later on. Multiplying U by both sides of Eq. (2.13), and

substituting U †US = I, we have

H ′U = UHBTD, (2.14)

where the modified Hamiltonian H which is not any more hermitian is given by H ′ = S−1H.

Regarding Eq. (2.14) as a scattering equation for an electron, and solving conversely it, we

can write a series of procedures for the block Lanczos algorithm in the non-orthogonal case

as follows:

|U0) = (|i1〉, |i2〉, . . . , |iMi〉). (2.15)

An = (Un|Ĥ|Un). (2.16)

|rn) = Ĥ ′|Un)− |Un−1)
tBn − |Un)An. (2.17)

(Bn+1)
2 = (rn|Ŝ|rn). (2.18)

(λn)2 = tV n(Bn+1)
2V n. (2.19)

Bn+1 = λn
tV n. (2.20)

(Bn+1)
−1 = V nλ

−1
n . (2.21)
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|Un+1) = |rn)(Bn+1)
−1, (2.22)

where the U -matrix is obtained as the expansion coefficients in the Lanczos vectors with

respect to the non-orthogonal basis set. Inserting Eq. (2.12) and its variants into the identity

G(Z)(ZS − H) = I based on the non-orthogonal and the dual basis sets, we see that the

Green’s function matrix based on the dual basis set is connected with the Lanczos basis

representation through the following relation:

GD(Z) = UGL(Z)†U. (2.23)

While this transformation is apparently similar to Eq. (2.13), it should be noted that

Eq. (2.13) is defined as the inverse transformation, since the transformation of the Green’s

function such as Eq. (3.51) is given by GL(Z) = †USGD(Z)SU .

Since †USGD(Z)SU = †UG(Z)U in the identity based on the Lanczos basis and the

transformation is similar to that of the Hamiltonian, the Green’s function based on the

Lanczos basis can be directly connected with the Hamiltonian of the Lanczos basis rep-

resentation through the identity G(Z)(ZI − H) = I, while the Hamiltonian based on the

non-orthogonal basis is related to the Green’s function based on the dual basis by the iden-

tity. The equality of the representation in the Lanczos basis is due to the orthogonality of

the Lanczos basis.

As discussed the generalization of the block BOP above, although it would be hoped

that the slight modifications in the non-orthogonal basis case cause outwardly no problems

in terms of the computational efforts compared to the block BOP for the orthogonal basis

case, however, the generalized block BOP possesses intrinsically several problems which

discourage us applying the method to the non-orthogonal basis case as an efficient O(N)

method. The computational inefficiency may be caused by two calculations in the block

BOP algorithm: the inverse of the overlap matrix which is essentially cubic in the scaling of

the computation unless one uses any efficient scheme, and the transformation Eq. (2.23) of

the Green’s functions.

2.2.2 Analytic example

In order to clarify the inefficiency, as an illustration of the generized block BOP we apply the

method to the simplest system, i.e., a s-valent dimer. It is assumed that the dimer has two

electrons, the hopping integrals is −h(0 < h), the overlap is S(0 < S), the on-site energies

are zero, and the electronic temperature is zero. The inverse of the overlap matrix and the

modified Hamiltonian is then given by

S−1 =
1

1− S2

(
1 −S

−S 0

)
. (2.24)

H ′ =
1

1− S2

(
Sh −h

−h Sh

)
. (2.25)

If the Lanczos algorithm Eqs. (2.15)-(2.22) is applied to the dimer with a site |1〉 which is

a non-orthogonal basis as the starting state, as a result, the recursion coefficients are given
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as A0 = 0, A1 = 2Sh/(1 − S2), and B1 = h/
√

1− S2, and the U-matrix can be written as

follows:

U =


 1 S√

1−S2

0 −1√
1−S2


 . (2.26)

Moreover, considering that the recursion coefficients and the identity, we get

GL
00(Z) =

1−S
2

Z − h
1−S

+
1+S

2

Z + h
1+S

. (2.27)

GL
01(Z) =

√
1−S2

2

Z − h
1−S

+
−
√

1−S2

2

Z + h
1+S

. (2.28)

GL
11(Z) =

1+S
2

Z − h
1−S

+
1−S

2

Z + h
1+S

, (2.29)

where GL
01(Z) = GL

10(Z). From Eq. (2.23) and the Green’s functions based on the Lanczos

basis, we have

GD
11(Z) = GL

00(Z) + 2
S√

1− S2
GL

10(Z) +
S2

1− S2
GL

11(Z), (2.30)

GD
12(Z) = − 1√

1− S2
GL

01(Z)− S

1− S2
GL

11(Z), (2.31)

GD
22(Z) =

1

1− S2
GL

11(Z), (2.32)

where GD
12(Z) = GD

21(Z). Thus, the bond-order matrix can be evaluated from the residues

of the poles which are occupied in the Green’s functions, namely

Θ =

(
1

1+S
1

1+S
1

1+S
1

1+S

)
. (2.33)

The simple example clearly shows that the generalized block BOP requires huge computa-

tional efforts in practical applications compared with the block BOP in the orthogonal case,

which discourages us applying the block BOP to large scale simulations as an efficient O(N)

method. The huge computational efforts can be produced by the Lanczos inverse transfor-

mation Eq. (2.23). In this transformation all the off-diagonal block elements are required

in addition to GL
0n which are used in the orthogonal case, since the first block line of the

U -matrix is not a zero line. It can be a considerably time-consuming step to evaluate all the

off-diagonal elements in the Green’s function matrix based on the Lanczos basis. Also the

cubic computational efforts are required in evaluating the inverse of the overlap matrix.
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2.3 Algorithm B

2.3.1 Formalism

Let us introduce a hybrid representation[56] of Hamiltonian which is a non Hermitian matrix

represented by the original and the dual bases as H ′
iα,jβ = 〈ĩα|Ĥ|jβ〉. The hybrid Hamiltonian

can be written in the matrix form as H ′ = S−1H, where Hiα,jβ ≡ 〈iα|Ĥ|jβ〉. With the

relation G(Z)(ZS −H) = I, the hybrid Green function G′(Z) defined by

G′
iα,jβ(Z) = {G(Z)S}iα,jβ = 〈ĩα|Ĝ(Z)|jβ〉 (2.34)

satisfies G′(Z)(ZI −H ′) = I. One of the merits of using G′(Z) is that its diagonal element

gives directly the Mulliken population Piα of an orbital |iα〉:

Piα = − 2

π
Im

∫
G′

iα,iα(E + 0+)f(
E − µ

kBT
)dE

=
∑

jβ

Θiα,jβSjβ,iα. (2.35)

In the block BOP, determination of the chemical potential is needed to conserve the total

number of electrons Nele in the system [13], so that the relation of Eq. (2.35) is very ad-

vantageous to computational efficiency because of the simple relation Nele =
∑

iα Piα. Thus,

we present below a prescription how to calculate the hybrid Green functions. The diagonal

elements of the Green function matrix can be calculated in a numerically stable way by

the recursion method [33] based on the Lanczos algorithm [35]. The block BOP method

is a general recursion method for evaluating efficiently both the diagonal and off-diagonal

elements of the Green function matrix by the recursion method. Moreover the use of a single

site containing all the localized orbitals as the starting state in the block Lanczos algorithm

rather than a single orbital in the usual one conserves the rotational invariance of the total

energy. In the present case of non-orthogonal basis, we further extend the formalism to

adopt a two-sided block Lanczos algorithm [57], since the hybrid Hamiltonian is not any

more Hermitian. The two-sided block Lanczos algorithm can be performed in the following

procedure:

An = (Ũn|Ĥ|Un), (2.36)

|rn) = Ĥ|Un)− |Un)An − |Un−1)Bn,

(r̃n| = (Ũn|Ĥ − An(Ũn| − Cn(Ũn−1|, (2.37)

Bn+1Cn+1 = (r̃n|rn), (2.38)

|Un+1) = |rn)(Cn+1)
−1,

(Ũn+1| = (Bn+1)
−1(r̃n|, (2.39)

An, Bn, and Cn are recursion block coefficients with Mi×Mi in size, where Mi is the number

of localized orbitals on the starting atom i, and the underline indicates that the element is
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a block. In the two-sided block Lanczos algorithm the Lanczos vectors in the left and right

sides have a bi-orthogonality relation. It is essential to start the two-sided block Lanczos

algorithm with a single site and its corresponding dual state as

|U0) = (|i1〉, |i2〉, . . . , |iMi〉),
|Ũ0) = (|ĩ1〉, |ĩ2〉, . . . , | ˜iMi〉). (2.40)

Equation (2.40) is an optimum choice in terms of computational accuracy and efficiency

because of the rotational invariance of the total energy and the consistent description for

the different properties of σ, π, and δ bonds.

In the Lanczos basis representation the Hamiltonian HL is block-tridiagonalized as a

non Hermitian matrix and the Green function matrix GL(Z) is the inverse of the matrix

(ZI−HL), so that the block diagonal element GL
00(Z) = (Ũ0|Ĝ|U0) can be written explicitly

in the form of the multiple inverse as follows:

GL
σ,00(Z) = [ZI− Aσ,0 −Bσ,1[ZI− Aσ,1 −Bσ,2[· · ·]−1Cσ,2]

−1Cσ,1]
−1, (2.41)

where the index L indicates the representation based on the Lanczos basis. The off-diagonal

elements of hybrid Green function matrix can be calculated by using a recurrence relation

which can be derived basically along the same line as that described for the case of orthogonal

basis [13]. The explicit expression consistent with Eqs. (2.36) and (2.40) is given below:

GL
σ,0n(Z) =

(
GL

σ,0n−1(Z)(ZI− An−1)−GL
σ,0n−2(Z)Bσ,n−1 − δ1nI

)
(Cn)−1,

where δ is Kronecker’s delta, and G0−1(Z) = C0 = 0. The block elements of the Green

function matrix have the same relation to the bond-orders based on the Lanczos basis ΘL
0n

as that of the dual basis representation. Therefore, we can obtain the bond orders through

the following transformation:

Θij =
∑

n,k

ΘL
0nŨnkS

−1
kj , (2.42)

where Ũnj is defined by Ũnj = (Ũn|(|j1〉, |j2〉, . . . , |jMj〉). As a result of the simple inverse

transformation Eq. (2.42), we only have to perform the evaluation and the integration of

the Green functions of the 0th block line in the Lanczos basis representation, which means

that the computational time of the algorithm is about two times longer compared to that

of the orthogonal case [13]. Only the hybrid representation can provide this simple relation

Eq. (2.42) as well as Eq. (2.35), while the other representations suffer from computational

inefficiency [33, 58]. In the generalized block BOP using the non-orthogonal basis we need

to calculate S−1, the inverse of the overlap matrix. In the following calculations, we used a

new O(N) efficient method for inverting the overlap matrix [59].

2.3.2 Analytic example

We apply the algorithm B to the simplest system, i.e., a s-valent dimer. It is assumed that

the dimer has two electrons, the hopping integrals is −h(0 < h), the overlap is S(0 < S),
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the on-site energies are zero, and the electronic temperature is zero. So, we can write the

Hamiltonian and overlap matrices as follows:

H =

(
0 −h

−h 0

)
, S =

(
1 s

s 1

)
. (2.43)

In this model, each atom has one basis orbital. So, the block algorithm becomes the scaler

version. First, the Lanczos algorithm is applied to the overlap matrix to calculate the

inverse of the overlap matrix. When the initial state is set as 〈LS
0 | = (1, 0), we find that

a0 = 1, a1 = 1, b1 = s, and 〈LS
1 | = (0, 1). Then, the diagonal element RL

00(Z) of the resolvent

RL(Z) ≡ (SL − ZI)−1 is written as

RL
00(Z) =

1

a0 − Z − b2
1

a1 − Z

=
1− Z

(1− Z)2 − s2
(2.44)

Considering RL(Z)(SL − ZI) = 1, we have

RL
01(Z) =

1

b1

(
1− (a0 − Z)RL

00(Z)
)

=
−s

(1− Z)2 − s2
(2.45)

The resolvent based on the original representation {|1〉, |2〉} is normally evaluated from the

inverse transformation Rij(Z) =
∑

n RL
0n

tUnj, where tUnj = 〈LS
n|j〉. However, we find that

R(Z) = RL(Z) in the simple model. So, the inverse of overlap matrix can be given using

the resolvent as

S−1 = ReR(0)

=
1

1− s2

(
1 −s

−s 1

)
, (2.46)

After calculating the hybrid representation H ′ = S−1H of Hamiltonian using Eq. (2.46),

we apply the two-sided Lanczos algorithm to H ′. If assuming that 〈L0| = (1, 0), 〈R0| =

(1, 0) for the left and right initial Lanczos vectors, then we obtain the following recursion

coefficients:

A0 = A1 =
sh

1− s2
(2.47)

B1 = C1 =
h

1− s2
(2.48)

(2.49)

Also, we find that 〈L1| = (0,−1), 〈R1| = (0,−1) In the Lanczos representation, the diagonal

GL
00(Z) and off-diagonal GL

01(Z) elements of Green’s function GL(Z) ≡ (ZI − HL)−1 are
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given by

GL
00(Z) =

1

Z − A0 −
B1C1

Z − A1

=
1
2

Z − h
1−s

+
1
2

Z + h
1+s

(2.50)

GL
01(Z) =

1

C1

(
GL

00(Z)(Z − A0)− 1
)

=
1
2

Z − h
1−s

+
−1

2

Z + h
1+s

(2.51)

Assuming that the total number of electron in the system is two, the density matrix based

on the Lanczos representation is written as ρL
00 = 1/2 and ρL

01 = −1/2 by taking account of

the residue in Eqs. (2.51) and (2.52). Applying the inverse transformation, then we have the

density matrix based on the original representation:

ρ11 = ρL
00S

−1
11 − ρL

01S
−1
21

=
1

2(1 + s)
(2.52)

ρ12 = ρL
00S

−1
12 − ρL

01S
−1
22

=
1

2(1 + s)
(2.53)

(2.54)

We see that the density matrix is equivalent to that by the usual diagonalization. For ρ22, ρ
L
21

of atom 2, the same procedure can be applied.

2.3.3 Numerical tests

In Fig. 2.1 we show convergence properties of the band energy in an insulator and a metal

described by a simple s-valent TB as a test of the present method. The errors in the band

energy at the seven-shell cluster and recursion levels are 0.2 % and 0.9 % for the insulator and

the metal, respectively. Thus, we see that the block BOP gives sufficient convergent results

in both the simple insulator and metal. Figures 2.2(a) and (b) show the error in the band

energy at the five-shell cluster and recursion levels for insulators and metals described by a

simple s-valent TB as a function of direct band gap and electronic temperature, respectively.

In insulators the error goes to zero as the gap increases, while the errors, whose absolute

values are no more than 0.5 % compared to the band energy in the whole region, are relatively

small. In metals the error becomes almost negligible for the higher electronic temperature.

This behavior in both insulators and metals is consistent with the recent study about the

locality of the density matrix [60], though the block BOP depends on the convergence of the

moment expansions for the density matrix rather than the locality of the density matrix [13].

From the comparison in the NaCl and FCC structures it is clear that the use of the terminator

in the diagonal Green functions effectively reduces the error in both cases. Next we discuss
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Figure 2.1: The error, with respect to the standard k-space calculations, in the band energy for an
insulator (zinc blende) and a metal (FCC) described by a simple s-valent TB model in which the
nearest neighbor hopping and overlap integrals are -1.0 eV and 0.1, respectively, with others being
zero, and the number of electrons is the same as that of atoms. The zinc blende has a direct gap
of 1.0 eV which was controlled by the gap of the on-site energies of the different atoms. In these
calculations, the seven-shell cluster and a square-root terminator were used.

convergence properties of the block BOP in realistic materials within the TB based DFT

proposed by Sankey and Niklewski [7]. Figure 2.3 shows the convergence properties of the

cohesive energy for carbon in the diamond structure, silicon in the diamond structure, fcc

aluminum, and C60 molecule. In carbon and silicon the cohesive energies rapidly converge to

the k-space results in the five and seven-shell clusters, while the convergence values for the

three-shell cluster are in error by 0.4 and 0.9 % from the k-space results, respectively. Even

for metallic aluminum, the convergence is very fast with respect to the number of recursion

levels and the errors in the converged values are only 0.3 and 0.1 % for the three- and five

shell clusters, respectively. For C60 the convergence is achieved with the three-shell cluster.

The error at the sixth recursion level is only 0.02 %.
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Figure 2.2: The error in the band energy for (a) insulators and (b) metals, calculated at the
five-shell cluster and recursion levels. The calculations were carried out with the same s-valent TB
model as that in Fig. 2.1 using a square-root terminator. For NaCl and FCC the non terminator
results are also shown.
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Figure 2.3: The error in the cohesive energy for carbon in the diamond structure, silicon in the
diamond structure, fcc aluminum, and C60 for three-, five-, and seven-shell clusters, calculated
using a square-root terminator. These calculations were performed within DFT.
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2.4 Algorithm C

2.4.1 Formalism

In addition to the Lanczos algorithm described in the algorithm A, to increase the numerical

stability, we introduce the block Gram-Schmidt algorithm, which maintains the orthogonality

relation among Lanczos vectors, and the singular value decomposition for (Bn+1)
2, which is

highly effective to avoid the break down in the Lanczos process. The Lanczos algorithm is

given as:

|U0) = (|i1〉, |i2〉, . . . , |iMi〉). (2.55)

An = (Un|Ĥ|Un). (2.56)

|rn) = Ĥ ′|Un)− |Un−1)
tBn − |Un)An. (2.57)

|rn) := |rn)−
n∑

k=0

|Uk)(Uk|S|rn) (2.58)

(Bn+1)
2 = (rn|Ŝ|rn). (2.59)

(λn)2 = tV n(Bn+1)
2V n. (2.60)

Bn+1 = λn
tV n. (2.61)

(Bn+1)
−1 = V nλ

−1
n . (2.62)

|Un+1) = |rn)(Bn+1)
−1, (2.63)

By applying the Lanczos algorithm to the Hamiltonian matrix, we have a block symmetric

tridiagonalized Hamiltonian.

HL =




A0 Bt
1

B1 A1 Bt
2

. . . . . .

. . . . . .

BN−1 AN−1 Bt
N

BN AN




. (2.64)

In the algorithm C, we directory diagolize the tridiagonalized Hamiltonian using the QR

factorization and the inverse iterative method, although the Green’s functions, which are

expressed by the multiple inverse and the recurrence relation, are used in the algorithm A

to evaluate the density matrix. So, we have the following eigen value equation:

HLW = WE, (2.65)

where E is a diagonal matrix in which the diagonal elements are eigenvalues Eµ, and W is a

matrix constructed from the eigenvecors. Then, the Green’s function based on the Lanczos

basis is explicitly written by the delta function:

GL
mn(Z) =

∑
µ

Wm,µWn,µδ(Z − Eµ). (2.66)

The Green’s functions based on the original dual basis are easily obtained from Eq. (2.23).
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2.5 Algorithm D

2.5.1 Formalism

In addition to the Lanczos algorithm described in the algorithm B, to increase the numerical

stability, we introduce the two-sided block Gram-Schmidt algorithm, which maintains the

orthogonality relation among Lanczos vectors, and the singular value decomposition for

Bn+1Cn+1, which is highly effective to avoid the break down in the Lanczos process. The

Lanczos algorithm is given as:

|U0) = (|i1〉, |i2〉, . . . , |iMi〉),
|Ũ0) = (|ĩ1〉, |ĩ2〉, . . . , | ˜iMi〉). (2.67)

An = (Ũn|Ĥ|Un), (2.68)

|rn) = Ĥ|Un)− |Un)An − |Un−1)Bn,

(r̃n| = (Ũn|Ĥ − An(Ũn| − Cn(Ũn−1|, (2.69)

|rn) := |rn)−
n∑

k=0

|Un)(Ũn|rn)

(r̃n| := (r̃n| −
n∑

k=0

(r̃n|Un)(Ũn| (2.70)

Bn+1Cn+1 = (r̃n|rn) = V WQ, (2.71)

Bn+1 = V W 1/2,

Cn+1 = W 1/2Q (2.72)

|Un+1) = |rn)(Cn+1)
−1,

(Ũn+1| = (Bn+1)
−1(r̃n|, (2.73)

By applying the Lanczos algorithm to the Hamiltonian matrix, we have a block symmetric

tridiagonalized Hamiltonian.

HL =




A0 B1

C1 A1 B2

. . . . . .

. . . . . .

CN−1 AN−1 BN

CN AN




. (2.74)

In the algorithm D, we directory diagolize the tridiagonalized Hamiltonian using the QR

factorization and the inverse iterative method, although the Green’s functions, which are
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expressed by the multiple inverse and the recurrence relation, are used in the algorithm A

to evaluate the density matrix. So, we have the following eigen value equation:

HLW = WE, (2.75)

where E is a diagonal matrix in which the diagonal elements are eigenvalues Eµ, and W is a

matrix constructed from the eigenvecors. Then, the Green’s function based on the Lanczos

basis is explicitly written by the delta function:

GL
mn(Z) =

∑
µ

Wm,µWn,µδ(Z − Eµ). (2.76)

The Green’s functions based on the original dual basis are easily obtained from Eq. (2.23).

Then, we can utilize the efficient relations Eqs. (2.35) and (2.42) in the hybrid representaion.

2.6 Preliminary tests

Figure 2.2 shows that the norm of residual density matrix of a benzene molecule as a function

of SCF iterations. We see that the algorithm C is most stable and accurate. I think that a

highly accurate precision for O(N) methods might be required to achieve the convergence

for SCF calculations.
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Figure 2.4: The norm of residual density matrix of a benzene molecule as a function of SCF

iterations. The double valence basis sets are used for carbon and hydrogen atoms.
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Appendix A

Modified Matsubara Summation

In this Appendix we give an efficient method for evaluating an integral with the Fermi func-

tion, which is required in the calculation of energies and response function, in addition, and

an integral with the derivative of the Fermi function with respect to the chemical potential.

Although this is customarily performed in the complex plane by summing up an infinite

series over the Matsubara poles, the convergence of this series is, however, very slow. A

much more efficient scheme has been given by Nicholson et al. [40]. It should be noted that

another scheme exists also[55].

It is possible to accelerate considerably the Matsubara summation by using the following

approximant for the exponential function:

eZ ≈
(
1 +

Z

n

)n

(A.1)

which becomes exact as n tends to infinity. This gives the following very useful representation

for the Fermi function:

f(Z) =
1

eβ(Z−µ) + 1
≈ 1

(
1 +

β(Z − µ)

2M

)2M

+ 1

, (A.2)

where β = 1/kBT , and µ is the chemical potential. This approximation has 2M simple poles

(Ep) located on a circle in the complex plane off the real axis

Ep = µ +
2M

β
(zp − 1),

zp = e
iπ(2p+1)

2M , p = 0, 1, · · · , 2M − 1. (A.3)

Therefore, assuming that A(Z) defined in the complex plane is an analytical function inside

the circles centered on the poles, the integral of a function A(Z) with the Fermi function

can be written as the sum of products between the function value A(Ep) and the residues

Rp for the poles Ep:

∫ ∞

−∞
A(E)f(E)dE ≈ 2πi

M−1∑

p=0

A(Ep)Rp (A.4)
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where Rp is given by

Rp =
1

2πi

∮

C
f(Z)dZ

=
1

2π
lim
r→0

∫ 2π

0
f(Ep + reiθ)reiθdθ, (A.5)

where
∮
C reveals the path integral rotating counterclockwise around the poles Ep, and the

second line was derived by transforming the variable as Z = Ep + reiθ. Expanding the

approximated Fermi function using the binomial theorem, we get

lim
r→0

∫ 2π

0
f(Ep + reiθ)reiθdθ = lim

r→0

∫ 2π

0

1

βz2M−1
p + 2M−1

4M
β2z2M−2

p reiθ + · · ·dθ

= −2πzp

β
. (A.6)

Substituting Eq. (A.6) into Eq. (A.5), we get

Rp = −zp

β
. (A.7)

Thus, substituting Eq. (A.7) into Eq. (A.4) and dividing it into the real and imaginary parts,

we have

Re
∫ ∞

−∞
A(E)f(E)dE ≈ 2π

β
Im




M−1∑

p=0

zpA(Ep)


 . (A.8)

Im
∫ ∞

−∞
A(E)f(E)dE ≈ −2π

β
Re




M−1∑

p=0

zpA(Ep)


 . (A.9)

In case the numerical integral is applied to the Green’s functions, we find that typically 30

to 50 complex poles are enough to achieve convergence within about 10 digits.

Next we consider an integral with the derivative of the Fermi function with respect to the

chemical potential µ, which is required in the modified force approach discussed in chapter

3. Approximating the derivative using the same approximant Eq. (A.1) compared to the

Fermi function case, we can write

∂f(Z)

∂µ
=

βeβ(Z−µ)

(eβ(Z−µ) + 1)
2 = β

(
eβ(Z−µ) + 1− 1

(eβ(Z−µ) + 1)
2

)

= β

(
1

eβ(Z−µ) + 1
− 1

(eβ(Z−µ) + 1)
2

)

≈
2M−1∑

p=0

−zp

Z − Ep

+
2M−1∑

p,p′=0

− zpzp′
β

(Z − Ep)(Z − Ep′)
. (A.10)

This approximation has 2M poles (Ep) to the second order which are located on the circle

in the complex plane similar to the approximated Fermi function. The second term of the

51



right side in Eq. (A.10) can be decomposed into the sum of partial fractions as follows:

2M−1∑

p,p′=0

−
zpzp′

β

(Z − Ep)(Z − Ep′)
=

1

M

2M−1∑

p=0

zp

Z − Ep




2M−1∑

p′ 6=p

zp′

zp − zp′


 +

2M−1∑

p=0

z2
p

β

(Z − Ep)2
.

(A.11)

The sum in the parenthesis of Eq. (A.11) can be simplified as follows:

2M−1∑

p′ 6=p

zp′

zp − zp′
=

2M−1∑

p′ 6=p

1

e
iπ(p−p′)

M − 1

=
2M−1∑

p=1

1

e
iπp
M − 1

=
2M−1∑

p=1

1(
cos p

M
π − 1

)
+ i sin p

M
π

= −
2M−1∑

p=1

1

2
+ i

2M−1∑

p=1

sin p
M

π

cos p
M

π − 1
. (A.12)

The imaginary part in Eq. (A.12) is zero due to the unsymmetrical summation for p = M ,

so that we get a very simple result for the sum in the parenthesis of Eq. (A.11):

2M−1∑

p′ 6=p

zp′

zp − zp′
= −M +

1

2
. (A.13)

Substituting Eq. (A.13) into Eqs. (A.11) and (A.10) we have

∂f(Z)

∂µ
≈ − 1

2M

2M−1∑

p=0

zp

Z − Ep

− 1

β

2M−1∑

p=0

z2
p

(Z − Ep)2
. (A.14)

Thus, the integral of the block element G00(Z) with the approximated derivative Eq. (A.14)

can be written as follows:

Re
∫ ∞

−∞
G00(E)

∂f(E)

∂µ
dE ≈ π

M
Im




M−1∑

p=0

zpG00(Ep)


 +

2π

β
Im




M−1∑

p=0

z2
pG

′
00(Ep)


 .

(A.15)

Im
∫ ∞

−∞
G00(E)

∂f(E)

∂µ
dE ≈ − π

M
Re




M−1∑

p=0

zpG00(Ep)


− 2π

β
Re




M−1∑

p=0

z2
pG

′
00(Ep)




(A.16)

with G′(Ep) which is a function value at Ep for the derivative of G(Z) with respect to Z

calculated by

G′
00(Ep) = −∑

n=0

G0n(Ep)Gn0(Ep). (A.17)
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The relation Eq. (A.17) is derived from the indentity based on the Lanczos basis represen-

tation. Also the integral of the product between E and the block element G00(Z) with the

approximated derivative Eq. (A.14) can be written as follows:

Re
∫ ∞

−∞
EG00(E)

∂f(E)

∂µ
dE

≈ π

M
Im




M−1∑

p=0

zpEpG00(Ep)


 +

2π

M
Im




M−1∑

p=0

z2
pG00(Ep)


− 2π

β
Im




M−1∑

p=0

z2
pEpG

′
00(Ep)


 .

(A.18)

Im
∫ ∞

−∞
EG00(E)

∂f(E)

∂µ
dE

≈ − π

M
Re




M−1∑

p=0

zpEpG00(Ep)


− 2π

M
Re




M−1∑

p=0

z2
pG00(Ep)


 +

2π

β
Re




M−1∑

p=0

z2
pEpG

′
00(Ep)


 .

(A.19)

These expressions Eqs. (A.18) and (A.19) have been derived for the first time in this

Appendix.
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